
A New Approach to Assembly Software Retargeting for
Microcontrollers

Ing-Jer Huang and Dao-Zhen Chen
Institute of Computer and Information Engineering

National Sun Yat-sen University
Kaohsiung, Taiwan
Republic of China

ijhuang@cie.nsysu.edu.tw

Abstract
A new approach is proposed to translate existing software

programs from one instruction set to other instruction sets at the
assembly level. The behaviors of instructions are abstractly
represented as manipulation of the machine state. The behavior
of each basic block of the software program is then represented
as a pair of state transition. Instruction set retargeting is then
modeled as the problem of finding sequences of instructions
accomplishing the same machine state transitions at the target
machine as does the software program at the source machine.
The proposed approach has been successfully demonstrated on
the software translation between several industrial
microcontrollers.

1. Introduction
The fast progress of IC design technologies has offered many
new microcontrollers/microprocessors with better code density,
more functionality and lower power consumption to the markets
of portable and consumer electronics products, where the issue of
cost/functionality is more concerned than the issue of software
compatibility. To replace the old microcontrollers with the new
ones in the products often faces one challenge: in order to
preserve the original software investment and to shorten the
time-to-market, the existing software that has been developed
under the old microcontrollers has to be retargeted (ported) to the
new microcontrollers (if they have different instruction sets,
which is usually true if better code density or more functionality
is desired). However, unlike in the environment of desktop
computers, a significant portion of software is usually developed
directly at the assembly or binary level to optimize for the cost or
performance of these products. In such case traditional
retargetable compilers based on high level languages are of little
help.

In this paper we present a new approach to the instruction set
retargeting problem at the assembly level based on the machine
state transition notation. This is motivated by the observation
that the goal of retargeting is actually to look for an instruction
sequence of the new instruction set that produces (emulates) the
same machine state as the instruction sequence of the original
instruction set. As long as the same machine state is reached, it
does not matter whether the two instruction sequences come
from the same grammatical expressions (or trees, graphs, etc.) or
not. This observation is especially applicable to microcontroller-
based embedded systems since the major purpose of the software
running on them is to monitor and control the machine state
(status). What the programmers care most is how the machine
state transits, instead of the operations of the instruction set itself.

The machine state based retargeting approach has been
successfully applied to solve a special version of the retargeting
problem: constructing the x86-to-RISC instruction mapping table

for an embedded RISC processor core [1]. The embedded core
can be considered as an application specific instruction set
processor (ASIP) with its sole application being to efficiently
emulate x86 instructions. An x86 instruction is fetched into the
core and then is decoded on the fly into simpler RISC
instructions according to the mapping table for efficient
execution. In this case, the retargeting is performed instruction
by instruction.

The work presented in this paper is an extension of the above
work by expanding the translation scope from individual
instructions to entire software programs for microcontrollers.
This extension makes it possible to perform instruction
retargeting, code optimization and verification with the same
machine state notation.

The rest of the paper is organized as follows. Section 2 reviews
related work. Section 3 discusses the problem modeling. Section
4 presents the retargeting framework. Section 5 demonstrates the
proposed technique with translation between three industrial 8-
bit microcontrollers: PIC (RISC-like), MC8052 (CISC-like) and
HT48100 (RISC-like).

2. Related Work
Most of retargeting compiler systems are based on the graph or
tree matching algorithms. Aho et al. [2] propose an optimal
dynamic-programming-based tree matching algorithm for
retargeting compilers. Marwedel also presents a tree-based
approach for mapping to a predefined hardware structure [4].
Corazao [6] proposes a matching method for DSP processors,
based on templates of the CDFG’s (control/data flow graphs) of
instructions. Liem et al. [7] use rule-driven compilation. It has a
shorter compilation time than those of pattern matching.
Extensive reviews on the retargetable code generation theories
and practices can be found in the book by Marwedel and
Goossens [8].

These matching algorithms usually need high level source code
in order to generate the necessary trees or graphs for matching.
Therefore, they are not well suited for binary or assembly level
retargeting because source code is not available.

Sites et al. [5] develop a binary translator that translates the VAX
VMS and MIPS Ultrix binary code into DEC Alpha AXP and its
execution environment. They build a translator called VEST and
a run time environment called TIE. The translator maps the VAX
code to AXP code according to a mapping table. When the
translator encounters the portion of the VAX code that the
translator is unable to distinguish whether it is the program or the
data, the portion is embedded in the new AXP code. The VAX
code embedded in the AXP code is executed by a run-time
interpreter. Another similar work is Digital’s FX!32 [3]. We are
interested in how the mapping tables are constructed but

2

unfortunately these are not discussed in the papers. We guess that
they are constructed manually since their target platforms are
fixed and therefore a one-time, ad-hoc effort is sufficient.

C. Cifuentes cooperates with N. Ramsey to develop an integrated
reverse engineering environment for binary code which is
capable of translating binary programs from a given machine to a
different machine [9]. The binary translation is achieved by three
phases: a front-end to translate the binary representation to an
intermediate representation, a middle-end to perform analysis
and optimization and a back-end to map the intermediate
representation to the binary representation of the target machine.
The retargeting tool is built upon a syntax specification language
SLED [10] and a semantics specification language SSL [11]. Our
work is different from theirs in two aspects. First, their
techniques are targeted at general purpose microprocessors, such
as SPARC, x86 and PowerPC, while ours is targeted at
application specific embedded system. Second, we do not rely on
the typical intermediate representation, found in many retargeting
research work, as the interface between two instruction sets.
Instead, we abstract the source instructions into machine state
transitions and then try to accomplish the same machine state
transitions with the target machine instructions.

In our previous work [1], we have already proposed state
notation to guide the instruction-to-instruction retarget, but have
not considered dependency schedule issues. And the phase that
performs state abstraction of basic block is not yet accomplished.
In this paper, we consider the retarget of basic block, and extend
the idea to application program retargeting.

3. Problem Modeling
3.1 Machine states

3.1.1 State Abstraction
A more effective way to study the behaviors of instructions is to
observe their effects on the storage elements such as registers,
flags, latches and memory, which together define the
characteristics or the state of the entire machine. The right side of
Figure 1 shows the machine state of the microarchitecture, shown
at the left side of Figure 1. The ultimate objective of instructions
is to manipulate the machine state; the operations (of the
instructions) in the microarchitecture are just the means to
accomplish such manipulation. Therefore, the machine state can
serve as an abstraction for the machine. This state-based
abstraction is more suitable to the instruction retargeting problem

since observing how the machine state is modified by
instructions requires less amount of information and efforts than
observing the data path structure and detailed operations in the
microarchitecture. In addition, the view point of machine state
makes it easy to accommodate variations in the microarchitecture
and the instruction set: two pieces of software code, although
different in their contents or even in the instruction sets that they
are based upon, can be regarded as compatible as long as they
carry out the same state transition (from the same initial state to
the same final state).
Based upon the above concept, we construct the machine state
with a list of symbolic values of storage locations, called
contents. The content of each storage location can be expressed
as a binary tuple: content(Location, Value) where Value
is the symbolic value of the storage element in Location. The
storage location can be a special or general register, a memory
word, a latch, an IO port, etc. The symbolic value can be a
constant, a value from another location, or an expression
comprising constants and values from some storage locations.
For example, the instruction add a, b, 1 (a = b + 1) is
represented as content(reg(a), reg(b)+immed(1)) which
shows that the register location reg(a) gets the value of the
register reg(b) plus the immediate value of one. Notice that
register index may be physical or symbolic. In the latter case,
register allocation is necessary to couple the retargeting process.
Since a machine state may consist of numerous storage locations
(e.g., a few giga-words of memory), only the locations those are
modified or of a particular interest need to be explicitly specified.

The above binary tuple needs to be extended to support
conditional states. In such case, the machine state is represented
by the triple content(Condition, TrueStateList,

FalseStateList) where Condition is a Boolean expression,
and TrueStateList and FalseStateList are the machine
state (i.e., a list of contents as defined previously) under the true
and false conditions, respectively.

3.1.2 State Representation of Basic Blocks
The machine state representation of a basic block is derived by
consolidating the machine states of individual instructions in the
basic block. To consolidate the machine states, we take union of
the machine states of individual instructions, and perform
constant/expression propagation if some instructions reuse some
parts of the machine state. For example, suppose a basic block
has a simple instruction sequence [mov a,b; mov c,a]. After
processing the first instruction, the machine state becomes
[content(reg(a),reg(b))]. After processing the second
instruction, the machine state becomes
[content(reg(a),reg(b)), content(reg(c),reg(b))].
Note that original semantics of the second instruction copies the
value of register a to c. However, since the register a is stored
with the initial value of register b by the first instruction, so the
final value of register c is represented as reg(b), instead of
reg(a).

One of the advantages of the machine state representation is that
while abstracting the basic block behavior into states, some code
optimizations can be automatically (implicitly) achieved. Some
examples are given below.

Eliminate architecture bias
Figure 2 shows the state representation of a simple basic block
containing two instructions. The instructions are part of the
instruction set of a two-operand architecture. The derived state
specifies that the effect of the basic block is that register a gets
the summation of registers b and c. Note that in the state

• State Notation
Register File

Memory

Flag

Stack

PC

Abstraction

Figure 1. State Abstraction Concept

3

representation the effect of the two-operand architecture
disappears. When the basic block is translated into a three-
operand architecture according to the state representation, it will
be directly translated into one instruction such as the add a,b,c
instruction. In this example, the architecture dependent feature
(bias) is automatically eliminated without extra effort.

Produce less dependent code
Consider the basic block in Figure 3 which copies the

value of register b to register a first and then copies the value of
register a to c. There is a data dependency on register a.
However, when we abstract the basic block, it shows that the net
effect is that the value of register b is duplicated to both register
a and c. The data dependency is implicitly eliminated by the
state abstraction process.
Produce Less redundant code

Redundant code can also be automatically removed by the state
abstraction process. For example, the second instruction of
assembly code in Figure 4 is a redundant instruction that does not
create any new machine state. The corresponding state
representation is simply [content(a,b)], as shown in the
figure. When this basic block is mapped to other instruction sets
based on the derived state representation, only one instruction
will be needed, instead of two instructions as in the original
inefficient code.

3.2 Modeling the retargeting process

3.2.1 Retargeting as state transition
Figure 5 illustrates the state transition view of assembly
programs on different instruction sets. Machine I executes three
instructions Op_X1, Op_X2, and Op_X3 to bring the initial state
Si to the final state Sj with Si1 and Si2 being the intermediate
states. On the other hand, machine II executes two instructions
Op_Y1 and Op_Y2 to bring the machine from the same initial
state Si to the same final state Sj with Sj1 being the intermediate
state. Although with different intermediate states, the instruction
sequences {Op_X1, Op_X2, Op_X3} and {Op_Y1, Op_Y2}
bring machine I and machine II, respectively, to the same final
state, as long as they start from the same initial state. Therefore,

the latter sequence can be regarded as the result of retargeting the
former sequence from machine I to machine II, and vice versa.

3.2.2 Applying operators and creating the
Intermediate States
Instructions are considered as operators which, when applied,
change the state of the machine. Therefore, the retargeting
process is a process of selecting appropriate operators to bring
the machine from an initial state to a final state. Since both the
operators (instructions of the target machine) and the basic
blocks (of the original assembly program) are abstracted as
states, the selection of the operators to be applied can be regarded
as a matching process. In the current implementation, we select
the appropriate operator with the following order:

1. Find the perfect match first. Both location and value are
matched.

2. Find an operator that the location is matched and value is
similar to the value part of instruction’s.

3. Find an operator that the value matched and the location is
similar.

4. Find an operator that location is matched and the value part
is similar and is an expression

The operators selected by the rule 1 reduces the size of the state
to be achieved (i.e., the problem state). The retargeting process is
completed when the size of the problem state is empty. The
operators selected by the rules 2 to 4 do not reduce the size of the
problem state, but create some intermediate state to which other
operators can be applicable. If there is no applicable operator,
then the retargeting process halts.

3.2.3 Backward Chaining
We adopt the backward-chaining algorithm to solve the
retargeting problem. A solution can be constructed backwards in
the following way: first, select an operator whose post-condition
best match the given final state; second, an intermediate state (a

Final StateInitial State

mov a,b % a <- b
add a,c % a <- a+c

reg(a)

State pair transition

registers
reg(b)+reg(c)reg(a)

reg(b) reg(b)
reg(c) reg(c)

Figure 2. Implicit optimization with state abstraction (1)

Final StateInitial State

mov reg(a), reg(b)
mov reg(c), reg(a)

reg(a)

State pair transition

registers

reg(b)reg(a)
reg(b) reg(b)
reg(c) reg(b)reg(c)

Figure 3. Implicit optimization with state abstraction (2)

Final StateInitial State

mov a,b % a <- b
mov b,a % b <- a

reg(a)

State pair transition

registers reg(b)reg(a)
reg(b) reg(b)

Figure 4. Implicit optimization with State Abstraction (3)

Initial State Si

Intermediate
State SI1

Intermediate
State SI2

Final State Sj

OP_X1

OP_X2

OP_X3

Retargeting

OP_Y1

Intermediate
State SJ1

OP_Y2

Machine I Machine II

Figure 5. Retargeting process

Initial
State

Final
StateSx Sy Sz

op1 op2 op3 op4

plan: op1-> op2 -> op3 -> op4

Sx, Sy and Sz are intermediate
states

Figure 6. Backward Chaining

4

state closer to the initial state than the original final state) can be
constructed by deleting the post-condition from and adding the
pre-condition to the original final state; third, if the intermediate
state is not equal to the initial state, then it serves as the new final
(goal) state, and the plan construction is repeated. An example is
depicted in Figure 6. State Sz is the result of applying operator
op4 backwards. In other words, applying op4 to the state Sz can
make a state transition to final state when we are in state Sz. State
Sy is the result of applying operator op3 backwards, and so on.
After the searching, we obtain the solution in the sequence of
op4, op3, op2 and op1. The final solution is reversed and we get
op1, op2, op3 and op4.

4. The Retargeting framework
Figure 7 shows the flow graph of our retargeting system
framework. The main retargeting phase includes state
abstraction, storage/IO mapping, retargeting engine, and human
suggestions. The main input files are application programs which
want to be retargeted to other instruction set platform, instruction
set specification of the source and target architecture, storage and
IO mapping file. In the figure, it is assumed that the original
assembly program is given in by the instruction set A. The
assembly program is to be translated to instruction set B, C, D,
etc. We will call instruction set A as the source instruction set,
and the instruction sets B, C, D, etc., as the target instruction
sets.

4.1 The translation flow

The retargeting granularity is based on the basic block boundary.
It is assumed that the basic blocks in the assembly program have
been clearly marked.
The first step, state abstraction, in the translation is to derive the
state representation for each basic block. This step requires an
instruction set specification file for the instruction set A. The
specification is also based on the state representation.
Different processor architectures may have different organization
of registers file, memory, or IO architecture. Therefore, a second
step, storage mapping, in the translation is necessary to match the
storage elements and their access methods between these
architectures. For example, the registers in the MC8051
microcontroller has to be mapped into a certain memory
locations in the HT48100 microcontroller, as shown in Figure 8.

After the previous pre-processing steps, the basic blocks
are now ready for translation. The retargeting engine,
implementing the algorithm in Section 3, translates each basic
block into a sequence of instructions, based on the instruction set
specification of the target instruction set, which is also
represented with the state notation.

4.2 The feedback loop in the translation flow
We acknowledge that assembly program translation is not an
easy thing to be automated. Therefore, we provide a manual
feedback loop to the translation flow to take care of the difficult
cases.
One difficult case is that there may be some instructions in the
source instruction set for which the translation algorithm fails to
find a solution with the target instruction set. Many of these
instructions are control related. Efficient solutions to these kinds
of instructions may involve some combination of more than one
control flow instructions which our current algorithm fails to deal
with.
For example, in MC8051, the JNZ is a conditional jump on the
condition when zero flag is not true. On the other hand, in
HT48100, there is no conditional jump instructions. But
HT48100 provides a conditional skip instruction SZ which skips
the following instruction when the zero flag is true. By
combining the SZ and the JUMP (unconditional jump) instructions
of HT48100, we can achieve the same control flow mechanism
as the JNZ of MC8051, as shown in Figure 9. However, our
current algorithm is not able to derive this combination since the
basic block structure of the [SZ;JUMP] sequence is totally
different from that of the JNZ instruction.
Once the solution (an instruction pattern) is manually found, it
can be viewed as a powerful instruction and added into the
instruction set specification for the target instruction set. Next
time when the state of the source instruction is encountered, the
algorithm automatically selects the known solution.
Understanding that assembly translation is by no means an easy
problem, we do not expect that the entire program can be
automatically translated. Instead, we aim to take care as much as
possible of the portion of the program which can be

Assembly Program
Basic Block in

Instruction Set A

State Abstraction

State Pairs for the
Assembly Program

State Pairs for
Instruction Set A

Retargeting Engine

State Pairs for the
Instruction Set D

State Pairs for the
Instruction Set C

State Pairs for the
Instruction Set B

Assembly Program in
Instruction Set D

Assembly Program in
Instruction Set C

Assembly Program in
Instruction Set B

Storage Mapping Technology File

Human
Suggestion

update
spec.difficult

inst.

Figure 7. The retargeting framework

ACC

MC8051

R31

Reg File

HT48100
ACC

R0

Accumulator

mem(R0)

mem(R31)

Memory

Accumulator

Figure 8. Storage mapping of MC8051 to HT48100

don't carePC

labelPC

8051:JNZ label

PC+1PC

don't carePC

PC+1PC
HT48100:SZ

PC+2PC

don't carePC labelPC

HT48100:JMP label

don't carePC

labelPC

HT48100:SZ
 JMP label

PC+2PC

z<>0

z=0

z<>0

z=0

z<>0

z=0

Figure 9. Instruction Pair for conditional jump

5

automatically translated, usually more than 85% of the entire
program in our experience, so the designer can focus on
manually translating the most challenging portion trough the
feedback pass of the translation flow. Moreover, the manual
derived solutions can be added into the target instruction set
specification, so next time when the same situation is
encountered, the algorithm will know how to deal with it. As
more solutions are accumulated into the specification, less
manual intervention will be required.

5. Experimental result
The proposed instruction set retargeting technique is

demonstrated with three experiments. In Section 5.1, we show
the inherent optimization benefit of the state abstraction of basic
blocks (discussed in Section 3.1.2). In Section 5.2, we shows the
experiment of mapping MC8051 (with a CISC-like instruction
set) assembly program to HT48100 (with a RISC-like instruction
set). And finally, in Section 5.3, we show that the retarget system
can be easily adapted to perform mapping between different
instruction sets, PIC (RISC-like), MC8051 and HT48100. All
microcontrollers used in the experiments have 8-bit data path.

5.1 Example Mapping: HT48100 to HT48100
with Optimization
To illustrate the inherent optimization benefit of our state
abstraction, we abstracted three basic blocks in HT48100
instruction set into machine states and then mapped the states
back to HT48100 for comparison, as shown in Table 1. The first
column lists the case number. The second column presents the
original code. The third column shows the translated optimized
code.

The first case shows that the redundancy of move data around is
automatically removed during the retargeting process. The
second case shows that the ACC is written twice and only the
effect of second instruction remains, so the first instruction’s
effect is automatically eliminated. The third case shows that the
true dependence relationship on ACC is removed and the code is

removed and the code is improved after the retarget process.

5.2 Example: MC8051 (CISC-like) to
HT48100 (RISC-like)
Table 2 shows an example of mapping an MC8051 keyboard-
scan program to HT48100. The second column is the MC8051
program, partitioned into basic blocks. The third column is the
mapping result of each basic block on HT48100 platform. The
basic blocks 4, 6, 8, 11, 13, 14 and 16 contain MC8051
instructions with richer semantics and are thus mapped into
larger number of HT48100 instructions.
There is a complex MC8051 instruction CJNE in the basic block
16. This instruction performs multi-way branching, depending on

the result of comparison (greater, less, or equal). Multiple
conditional states are necessary to model this instruction. Each
state is mapped to several HT48100 instructions. We see that two
labels exit1 and exit2 are automatically inserted to the target
assembly program by our retargeting engine. This case
demonstrates one of the challenges in assembly translation: the
basic block structure might not be preserved during translation.
The basic block 16 of the MC8051 assembly, containing seven
instructions, is mapped into twenty-two HT48100 instructions,
which correspond to ten basic blocks.

Basic
Block
ID

Processor : MC8051
(Original Code)

Processor:HT48100
(Translated Code)

1 START:
 MOV SP,#30H mov mem_sp, 030h

2 MAIN:
 CLR PSW.5 Clr mem_psw.5

3 S1:
 ACALL KSCAN Call kscan

4 JNB PSW.5,S1 Snz mem_psw.5
 Jmp s3

5 S2:
 ACALL KSCAN Call kscan

6 JB PSW.5,S2 Sz mem_psw.5
 Jmp s2

7 MOV P1,A
 LJMP MAIN

 mov mem_p1, a
 jmp main

8 KSCAN:
 JB PSW.5,S3 Sz mem_psw.5

 Jmp s3
9 MOV R1,#0FEH

 MOV R4,#04H
 MOV A,R1
 MOV R2,#00H

 Mov mem_r1, 0feh
 Mov mem_r4, 04h
 Mov a, mem_r1
 Mov mem_r2, 00h

10 COLLUM:
 MOV PP2,A
 MOV R3,#04H
 MOV A,PP2
 ANL A,#0F0H
 MOV 20H,A

 mov mem_pp2, a
 mov mem_r3, 04h
 mov a, mem_pp2
 and a, 0f0h
 mov mem_20h, a

11 JUG:
 JB ACC.4,NT1 Sz [05H].4

 Jmp nt1
12 MOV A,R2

 SETB PSW.5
 RET

 Mov a, mem_r2
 Set mem_psw.5
 Ret

13 NT1:
 INC R2
 RR A
 DJNZ R3,JUG

 Inc mem_r2
 rr [05H]
 dec mem_r3
 sz mem_r3
 jmp jug

14 MOV A,R1
 RL A
 MOV R1,A
 DJNZ R4,COLLUM

 Mov a, mem_r1
 rl [05H]
 mov mem_r1, a
 dec mem_r4
 sz mem_r4
 jmp collum

15 RET ret
16 S3:

 MOV A,#00H
 MOV P1,A
 MOV A,R1
 MOV PP2,A
 MOV A,PP2
 ANL A,#0F0H
 CJNE A,20H,S4

 mov a, 00h
 mov mem_p1, a
 mov a, mem_r1
 mov mem_pp2, a
 mov a, mem_pp2
 and a, 0f0h
 mov mem_tempA, a
 sub a, mem_20h
 mov a, mem_tempA
 sz reg(c)
 jmp exit1
 sz reg(z)
 jmp exit1
 jmp s4
exit1:
 mov,mem_tempB, a
 sub a, mem_20h
 mov a, mem_tempB
 snz reg(c)
 jmp exit2
 sz reg(z)
 jmp exit2
 jmp s4
exit2:

17 JMP S3 Jmp s3
18 S4:

 CLR PSW.5
 MOV A,R2
 RET

 Clr mem_psw.5
 Mov a, mem_r2
 Ret

Table 2. Mapping from MC8051 assembly code to HT48100

Case Original code Optimized code

1 Mov ACC, mem(m1)

Mov mem(m1), ACC

Mov ACC, mem(m1)

2 Mov ACC, mem(m1)

Mov ACC, mem(m2)

Mov ACC, mem(m2)

3 Mov ACC, immed(10)

Mov mem(m1), ACC

Mov ACC, immed(10)

Mov mem(m1), immed(10)

Table 1. Inherent optimization due to state abstraction

6

code

5.3 Mapping between multiple instruction
sets
We further conducted an experiment by mapping several
assembly programs from PIC and MC8051 to HT48100. Since
both PIC and HT48100 have the similar RISC architecture, the
translated code has the same size as the original code. On the
other hand, the code size gets expanded when a MC8051 (CISC-
like) code is translated into HT48100 code.

Since both PIC and HT48100 have a similar architecture, there is
no need for human help; i.e., no feedback loop in the translation
flow in Figure 7 is taken. On the other hand, some human
intervention is necessary to help the translation of MC8051 to
HT48100. After eight instruction patterns (as discussed in
Section 4.2) are added into the target instruction set specification,

all assembly programs can be completely (100%) automatically
translated, as shown in Figure 10.

6. Conclusions
We have proposed a new approach to translate assembly
programs between different microcontrollers. In the approach,
the specifications of both source and target instruction sets are
represented as machine state transitions. The assembly program
to be translated is first divided into basic blocks. Each basic
block is represented as machine state transition as well. The
retargeting process is then modeled as selecting appropriate
operators (instructions in the target instruction set) to bring target
microcontroller from the same initial state to the same final state

as the original program in the source microcontroller. The state
notation serves as a useful canonic representation for both the
instruction sets and the assembly programs. In addition, many
code optimizations are implicitly achieved during the state
abstraction process.

The proposed technique has been successfully demonstrated by
translating various assembly programs between three industrial
8-bit microcontrollers, including both RISC and CISC styles.

In the future, we will investigate the automatic verification of the
translation results based on the same state notation. In addition,
transformation of the basic block structures is necessary to check
if two groups of basic blocks produce the same machine state
transition.

Reference
[1] W. F. Kao and I. J. Huang, “Instruction Retargeting Based

on the State Pair Notation”, Asia Pacific Conference on
Hardware Description Languages, 1997, page 114-120.

[2] A.V. Aho, M. Ganapathi, S.W.K. Tjiang : “Code
Generation Using Tree Matching and Dynamic
Programming”, ACM Trans. On Programming Languages
and Systems, Vol11, No. 4, pp.491-516, Oct. 1989

[3] Anton Chernoff et al. : “FX!32 A Profile-Directed Binary
Translator”, IEEE Micro, pp.56-64, 1998.

[4] Peter Marwedel, “Tree-based Mapping of Algorithm to
Predefined Structures”, International Conference on
Computer-Aided Design, pp.586-593, 1993

[5] Richard L. Sites et al., “Binary Translation”,
Communication of the ACM, Feb, pp. 69-81, 1993

[6] M. Corazao, M. Khalaf, L. Guerra, M. Potkonjak, J.
Rabaey : “Instruction Set Mapping for Performance
Optimization”, Proc. of ICCAD, Nov. 1993

[7] Clifford Liem, Pierre Paulin, Marco Cornero, Ahmed
Jerraya : “Industrial Experience Using Rule-driven
Retargetable Code Generation for Multimedia
Applications”, TIMA Laboratory and Central R&D

[8] P. Marwedel and G. Goossens, “Code Generation for
Embedded Processors”, Kluwer Academic Publisher,
1995.

[9] C. Cifuentes, “Partial Automation of Integrated Reverse
Engineering Environment of Binary Code,” Proceedings
Third Working Conference on Reverse Engineering, pp.
50-56, IEEE-CS Press, Nov. 1996.

[10] C. Cifuentes and S. Sendall, “Specifying the Semantics of
Machine Instructions,” Proceedings of the International
Workshop on Program Comprehension, pp. 126-133, June
1998.

[11] N. Ramsey and M. Fernández, “Specifying Representations
of Machine Instructions,” ACM Transactions on
Programming Languages and Systems, 19(3):492-524,
May 1997.

[12] C.Monahan and F.Brewer: “Symbolic Modeling and
Evaluation of Data Paths,” Pcoc. ACM/IEEE 32nd DAC,
June 1995.

Programs Source
Architecture

Source
Assembly

Lines

State
Pairs

Target
Architecture

Target Assembly
Lines

1.LED display PIC 25 27 HT48100 25

2.Random
Number PIC 33 35 HT48100 33

3.LED Light PIC 37 43 HT48100 37

4.Keyboard-scan MC8051 42 48 HT48100 65

5.LED display MC8051 13 25 HT48100 25

6.TrafficControl
Signal Light MC8051 45 72 HT48100 63

7.Timer MC8051 21 38 HT48100 45

Table 3. Mapping between PIC, MC8051 and HT48100

Number of Instruction Patterns vs. Mapping Coverage

50%
60%
70%
80%
90%

100%

0 1 2 3 4 5 6 7 8

Numbers of Patterns

M
ap

pi
ng

 C
ov

er
ag

e

Keyboard Scan
LED Display
Traffic Light
Timer

Figure 10. Number of Instruction Patterns vs. Mapping Coverage
(MC8051 to HT48100)

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

