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ABSTRACT

Transitions on high capacitance busses in VLSI systems result
in considerable power dissipation. Various coding schemes have
been proposed in literature to encode the input signal in order
to reduce the number of transitions. Reducing number of transi-
tions comes in exchange for redundancy in data transferred over
the busses. For a given amount of redundancy there exists a lower
bound on the average number of transitions. In recent times noise
and reliability problems have brought the peak/instantaneous
power consumed in VLSI systems in to prominence. There has
been limited study done on reducing the number of instantaneous
transitions and hence the peak power consumed in busses. In this
paper we model a bus with a limit on the maximum instanta-
neous transition activity as a constrained channel and derive an
upper bound on the data-rate obtainable using the capacity of
the underlying channel. We then demonstrate that some exist-
ing bus encoding schemes are near-optimal with respect to the
derived bounds thus, perhaps, obviating the need to search for
newer more complicated coding schemes. Also considered is a
bus with a constraint on number of transitions in a fixed number
of (k) bus transmissions. The capacity of such a bus is derived
in the same manner as a bus with a constraint on maximum
instantaneous transition activity.

1. INTRODUCTION

Busses constitute an important resource for addressing and
data transfer in VLSI systems implementation. Reducing
the power consumed in busses while transferring data is
therefore a high priority objective in minimizing power con-
sumption for the entire system. The fact that the power
consumed in bus accesses account for a significant fraction
of the total power consumed in VLSI systems has been in-
dependently established by many researchers, [1], [2]. The
primary reason for this happens to be the fact that the
capacitance of shared busses is quite large in comparison
to the capacitance of other data-path units. There are es-
sentially two ways to reduce average power consumption in
busses. The first one involves minimizing bus accesses by
either reducing the number of data-path units connected
to large busses [2] or reducing the number of accesses of
READ/WRITE busses for large memory units by algorithm
transformations [3]. The second way to reduce power con-
sumed in busses is to reduce the effective capacitance of
busses by reducing bus transition activity. In this regard
many researchers have studied reduction of bus transition
activity by resorting to coding, much in the vein of error-
correcting codes, [4], [5], [6].

While the previously stated methods except [5], [6] target
average power consumed in data-busses another important
metric coming in to prominence these days is peak power
consumption. There are cases when the peak power can
be much higher than the average power, and this leads to
an undesired increase in simultaneous switching noise [7],
metal electro-migration problems [8], and local physical de-
formations due to nonuniform temperatures on the die.

In [4] lower/upper bounds are established on the average
power consumed in data-busses using Shannon’s channel
coding theorem and the concept of Entropy. However, these
bounds do not give much information on the peak transition

activity and thereby the peak power consumption. In this
paper we will model a bus with a limit on the maximum
number of instantaneous transitions as a constrained chan-
nel. The capacity of the constrained channel then gives us
the maximum data-rate possible for data transmission over
this bus.

In section 2 past work is put in perspective. In section 3
an upper bound is derived on the maximum possible data
transmission rate over a bus that has an arbitrary limit
on the instantaneous switching activity. Also considered in
section 3 is a bus with a constraint on number of transitions
in a fixed number of (k) bus transmissions. The capacity
of such a bus can be derived in the same manner as a bus
with a constraint on maximum instantaneous transition ac-
tivity. Analytical results showing maximum transmission
rates for several busses with various limits on the instanta-
neous switching activity is tabulated in section 4. In section
5 it is shown that an existing coding scheme called limited-
weight coding [5] is near-optimal with respect to the capac-
ity bounds derived in this paper. Finally in section 6 the
paper is summarized with conclusions.

2. PAST WORK

In the past there has been one significant contribution on
studying the average power consumed in data-busses [4]. In
this section, we will give a brief outline of this technique.

2.1. Bounds on Bus Transition Activity

2.1.1. Random Variables and Entropy

Let X be a discrete random variable with alphabet X
and probability mass function p(x) = Pr(X = x), x ∈ X.
A measure of the information content of X is given by its
entropy H(X), which is defined as follows [9],

H(X) = −
∑
x∈χ

p(x)log2p(x) bits. (1)

This definition of the measure of information implies that
the greater the uncertainty in the source output, the higher
is its information content. In a similar fashion, a source
with zero uncertainty would have zero information content
and therefore its entropy, from (1), would be equal to zero.

In [4] it is shown that if we use M bits on an average to
transmit data-words of size W from a source with entropy
of H bits per word then the average transition activity T is
bounded on both sides as,

H−1(
H

M
)M ≤ T ≤ (1−H−1(

H

M
))M, (2)

and the bounds in (2) are asymptotically achievable.

3. CAPACITY OF A CONSTRAINED BUS

The bounds in [4] which were discussed in the last section
are for average number of transitions for data-transmission
over a data-bus. These bounds give no information about



the peak transition activity in the transmission process.
The peak power consumed in transmitting data over a data
bus is directly dependent on the peak transition activity.
Also, this quantity is completely independent of the statis-
tical characteristics of the data-source at the transmitting
end. The peak transition activity is a function of the chan-
nel (bus) characteristics alone. In order to limit peak tran-
sition activity we must completely eliminate bus transitions
which result in exceeding a desired number of transitions.

Imagine a data-bus which is W -bits wide, in addition, let
the peak instantaneous transition activity on this data-bus
be limited to d-bits with d ≤W . Such a bus will from now
onwards be referred to as a d peak limited W -bit bus. Such
a bus can be described by a constraint graph G = (V,E) as
follows. There is a vertex corresponding to every possible
state of the bus. The state of a bus is determined by the
data pattern being transmitted over it. A W -bit bus, for
example, has 2W states. Now there is an edge euv ∈ E
provided the states corresponding to nodes u and v have
a Hamming distance ≤ d. We number these vertices in
such a manner that a vertex u corresponds to a unique
number iu ∈ {0, · · · , 2W }. The adjacency matrix A(G) of
this constraint graph is a |V | × |V | (0, 1) matrix that has
an entry of 1 in the (iu, iv)th location provided there is an
edge euv ∈ E and an entry of 0 otherwise. It can be shown
[10] that for this matrix the eigenvalue with largest absolute
magnitude is real and positive. Let the largest positive real
eigenvalue corresponding to A(G) be λ. Then the maximum
data-rate that can be sustained over this data-bus is upper
bounded by log2(λ).

Example 1 Consider data transmission over a 2-bit bus.
Assume that there is a limit of one on number of peak in-
stantaneous transitions. The constraint graph correspond-
ing to this bus has 4 states as shown in Fig. 1. Also the
adjacency matrix for this graph, shown in Fig. 1 has a max-
imum positive real eigenvalue of 3 so the channel capacity
of this channel is log2(3) = 1.585 bits/transmission.

Another way of modeling a peak limited data bus is by
means of a trellis diagram which can be derived from the
constraint graph. The trellis diagram for the bus whose
constraint graph is depicted in Fig. 1 is shown in Fig. 2.

We will now show that the capacity of a d peak limited
W -bit bus is log2(λ) where λ is the maximum positive eigen-
value of the adjacency matrix A of the constraint graph of
this bus. Now the capacity of such a bus can be expressed
in terms of bits per word (transmitted). Denoting by N(n)
the number of allowed word sequences of length n. We have
the capacity C is given by,

C = limn→∞
log2N(n)

n
. (3)

The matrix An can be used to find the capacity. Intu-
itively, we choose the number of stages n to be quite large
and count the number of paths of length n through the trel-
lis from any initial state to any final state. This is the sum
of the elements in An. Therefore,

C = limn→∞
log2

∑
ij

(An)ij

n
, (4)

where (An)ij is the ijth entry of An. Now we can express A
as A = UDU−1 using the Jordan Canonical form of A [11],
with U being an unitary matrix and D a diagonal matrix.
Hence, An = UDnU−1, which implies that the elements
of An are fixed linear combinations of the elements of Dn.

The sum
∑

ij
(An)ij will include the term µλn where µ is a

constant independent of n and λ is the largest eigenvalue of
A. Asymptotically, the sum will be dominated by the term
µλn. Then,

C = limn→∞
1

n
log2

∑
ij

(An)ij ,

= limn→∞
1

n
log2µλ

n. (5)

The terms (1/n)log2(µ) can be dropped as n goes to infinity.
Thus C = log2λ.

A maximal capacity peak limited bus is one which allows
all transitions except the ones where all the bits in the bus
switch simultaneously. That is, a W −1 peak limited W -bit
bus is a maximal capacity bus. The capacity of such a bus
can be shown to be log2(2W − 1). Here we will just show
that 2W − 1 is an eigenvalue of the adjacency matrix of the
constraint graph corresponding to such a bus.

Example 2 The adjacency matrix, A, of the constraint
graph for a W−1 peak limited W -bit bus has 1s every where
except in the principle anti-diagonal. If we add all columns
in A together then we get a column vector with all entries
= 2W−1. Now, consider the matrix A−(2W−1)I where I is
the identity matrix of appropriate dimensions. If we add all
columns of A− (2W − 1)I together then we get a 0 column
vector as the sum of all columns for any row of A yields
2W − 1. Therefore the determinant of A − (2W − 1)I = 0.
Hence, 2W − 1 is an eigenvalue of A.

A minimal capacity peak limited bus is one which allows
only those transitions where at most a single bit on the bus
switches in successive transitions. That is, a 1 peak limited
W -bit bus is a minimal capacity bus. The capacity of such
a bus can be shown to be log2(W + 1). The bus whose
constraint graph is depicted in Fig. 1 is both a maximal
and a minimal capacity peak limited bus.

Example 3 The adjacency matrix, A, of the constraint
graph for a 1 peak limited W -bit bus has precisely W + 1
1s in every row. If we add all columns in A together then
we get a column vector with all entries = W + 1. Now con-
sider the matrix A − (W + 1)I where I, as before, is the
identity matrix of appropriate dimensions. If we add all
columns of A − (W + 1)I together then we get a 0 column
vector as the sum of all columns for any row of A yields
W + 1. Therefore the determinant of A − (W + 1)I = 0.
Hence, W + 1 is an eigenvalue of A.

In general a d peak limited W -bit bus can be shown to

have a capacity of log2(
∑d

k=0

(
W
k

)
). As before the adja-

cency matrix, A, of the constraint graph for a d peak limited

W -bit bus has precisely
∑d

k=0

(
W
k

)
1s in every row. If we

add all columns in A together then we get a column vector

with all entries =
∑d

k=0

(
W
k

)
. Hence as for the case with a

maximal and minimal capacity W -bit bus
∑d

k=0

(
W
k

)
is an

eigenvalue of A.
So, we have completely characterized the maximum data-

rate for all peak limited data-busses.

3.1. Minimizing Transition Activity over a few
Transmissions

Sometimes it is desirable to limit the power consumed over
a few clock cycles than the peak instantaneous power. This
is particularly true if limiting the peak power results in
extremely low data-rates.
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Figure 1. The constraint graph and adjacency matrix of a 2-bit bus with a peak limit of 1 transition between successively
transmitted data words.
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Figure 2. Trellis for corresponding to the constraint graph in Fig. 1.
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Figure 3. Constraint graph of a 1-bit bus with a limit of 1 transition in four successively transmitted data words.

Table 1. Capacity of busses for a variety of peak limits. The first column tabulates the bus width. The second to ninth columns
show the peak limit (P. L.) in bits and the capacity (C) in bits/transmission. Bus widths ranging from 4-64 and peak limits
ranging from 1-8 have been tabulated.

Bus Width P. L./ C P. L./ C P. L./ C P. L./ C P. L./ C P. L./ C P. L./ C P. L./ C
bits bits/Trans.

4 1/2.3219 2/3.4594 3/3.9069
8 1/3.1699 2/5.2095 3/6.5392 4/7.3487 5/7.7748 6/7.9484 7/7.9944
16 1/4.0875 2/7.0980 3/9.4450 4/11.2975 5/12.7492 6/13.8623 7/14.6846 8/14.7609
32 1/5.0444 2/9.0471 3/12.4223 4/15.3390 5/17.8896 6/20.1320 7/22.1063 8/23.8416
64 1/6.0224 2/11.0231 3/15.4168 4/19.3733 5/22.9853 6/26.3114 7/29.3920 8/32.2565



Rather than limiting the number of transitions between
successive words transmitted on a bus to be ≤ d we can
limit the number of transitions over a few bus transmissions
(say k) by requiring that the number of bus transitions for
k consecutive bus transmissions is always ≤ k × d (a fixed
number). The constraint graph for such busses can be con-
structed in the same manner as for busses restricting peak
transition activity. Calculating the number of states and
the edges is, however, more complicated. An example of
the partial constraint graph for a 1-bit bus having a limit
of at most 1 transition in four successive bus transmissions
is shown in Fig. 3. Also, to be noted is the fact that the
capacity of such busses can once again be computed as for
the busses with peak limited transition activity.

4. ANALYTICAL RESULTS

In Table 1 we show the capacity of busses for several bus
widths and various peak limits. As can be observed even
for severe peak limits amazingly high maximum data-rates
are possible, e.g., for a peak limit of 8 in a 64-bit bus max-
imum data-rate/capacity = 32.2565. While the data in Ta-
ble 1 gives very useful information about maximal data-
rates achievable for various peak limits on busses, we now
show that the limited weight coding scheme described in [5]
are near-optimal codes in terms of efficiency.

5. NEAR-OPTIMAL LIMITED WEIGHT
CODES

This method uses a M bit bus to transmit W bit data
with M − W bits serving as steering bits which serve to
reduce the Hamming distance between successively trans-
mitted words to be under a predetermined constant d. In
order to limit the Hamming distance between successively
transmitted words to be ≤ d we must satisfy the following
inequality,

d∑
i=0

(
M

i

)
≥ 2W . (6)

The minimum value M satisfying (6) dictates the most
efficient word size to be used for transmitting the data-
words over the data-bus. Clearly a limited weight code is
optimal with respect to the bus capacity derived previously
if and only if the capacity of the bus = W . The capacity of

the bus is given by log2(
∑d

i=0

(
M
i

)
). It turns out that the

only limited weight coding scheme that is efficient is the so
called bus-invert coding scheme derived in [6] which leads
to a W/2 peak limited (W + 1)-bit bus. This follows from

the fact that for even values of W ,
∑W

2
i=0

(
W+1
i

)
= 2W . All

other limited weight coding schemes are sub-optimal.

6. CONCLUSIONS

In this paper we have derived the maximal transmission
rate for a bus of arbitrary width that has an arbitrary limit
on the number of bits that can switch between successively
transmitted words. Analytical results shown in this paper
seem to indicate that even with very tight limits on the
instantaneous switching activity a high data transmission
rate is possible. We then demonstrated that an existing
coding scheme called limited-weight coding [5] does indeed
come close to achieving the capacity bounds derived in this
paper, thus, perhaps, obviating the need to design more
complicated coding schemes.
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