
Hardware-Software Cosynthesis for Run-time Incrementally

Recon�gurable FPGAs �

Byungil Jeong Sungjoo Yoo Sunghyun Lee Kiyoung Choi

Design Automation Lab.
School of Electrical Engineering

Seoul National University
Seoul 151-742, Korea

e-mail: fbijeong,ysj,pontneuf,kchoig@poppy.snu.ac.kr

Abstract

This paper presents a method for hardware-software

cosynthesis with run-time incrementally recon�g-

urable FPGAs. To reduce the run-time overhead of re-

con�guring FPGAs, we present a concept called early

partial recon�guration (EPR) which minimizes the

overhead by performing recon�guration for an opera-

tion (or a task in our terms) mapped to an FPGA as

early as possible so that the operation is ready to start

when its execution is requested. For further reduction

of the overhead, we integrate the incremental recon-

�guration (IR) of FPGAs with the EPR concept. We

present an ILP formulation and an eÆcient heuristic

algorithm based on the EPR and IR concepts. Exper-

iments on embedded system examples and synthetic

examples show the eÆciency of the proposed method

I. Introduction

As multi-million gate FPGA era is expected, the integra-
tion of FPGA with CPU, DSP, and memory is an appeal-
ing solution to the implementation of embedded systems.
Especially, by integrating FPGAs into a system on a chip
(FPSC: Field Programmable System on a Chip), we can
achieve performance and
exibility at the same time. We
can achieve performance through parallel and accelerated
execution of operations on the FPGAs. We can achieve

exibility through recon�guration of the FPGA.

However, we can expect a problem due to the limited
FPGA resource that can be integrated on a chip. Such
a problem can be alleviated by increasing the utilization
of the limited FPGA resource through dynamic change
of the FPGA con�guration for newly requested opera-
tions. However, changing the con�guration of an FPGA
requires mega bits of con�guration data and can consume
most of system cycles (25 % to over 70 % [1]), which we
call recon�guration time overhead. Thus, to fully utilize
the computing power of recon�gurable FPGAs, we need

�This work was supported in part by KOSEF, Korea.

to devise new methods that minimize the recon�guration
time overhead.
In designing a system having a recon�gurable FPGA

and processor core(s), the problem that which part of the
system functionality should be mapped to the recon�g-
urable FPGA (i.e. the HW part) or the processor core(s)
(i.e. the SW part(s)) is a well-known HW-SW partition-
ing problem. To minimize the recon�guration time over-
head and to better utilize the recon�gurable computing
power of FPGA, the recon�guration time overhead should
be considered in the HW-SW partitioning and scheduling,
i.e. cosynthesis step.
To minimize the recon�guration time overhead we

apply two concepts called early partial recon�guration
(EPR) and incremental recon�guration (IR) to the cosyn-
thesis step. With the EPR concept, we perform recon-
�guration for an operation mapped to an FPGA as early
as possible so that the operation is ready to start when
its execution is requested. This strategy saves much time
compared to the lazy recon�guration which starts recon-
�guration of an operation when its execution is requested.
The idea of reducing the recon�guration time overhead

by performing con�guration earlier than when computa-
tion is required is similar to that of Hauck's work [2].
The target architecture of his approach has a processor
and a recon�gurable FPGA as a coprocessor. He per-
forms the next needed recon�guration in advance to over-
lap the computation of the processor and the recon�gura-
tion of the FPGA. The approach assumes single context of
FPGA con�guration, i.e. there are no multiple computa-
tions running concurrently on the FPGA. In addition, the
computation of the FPGA and that of the processor do
not run concurrently. We apply the notion of prefetching
con�guration to the target architecture that is composed
of a CPU and a recon�gurable FPGA, where multiple
computations can run concurrently on the FPGA along
with the computation of CPU.
With incremental recon�guration, we can reduce the

amount of recon�guration data required during the recon-
�guration. Dick and Jha [3] present a scheduling method
which tries to schedule the tasks of the same type con-

v2SW

HW v3

v4

SW

HW

rc3

rc4

(a) An example task graph

(c) EPR w/o separating RC jobs

(b) Lazy reconfiguration

time

SW

HW

(d) EPR w/ separating RC jobs

v3rc3

v2

rc4 v4

v3rc3

v2

rc4 v4

slack interval

slack interval

v2

v3 v4

v0 v1

v1

v1v1

v0

v0v0

Fig. 1. Early partial recon�guration and splitting recon�guration
jobs.

secutively thereby eliminating the recon�guration of the
successor tasks of the same type. We further reduce the
recon�guration time overhead by performing incremental
recon�guration of tasks which partially share con�gura-
tion data with tasks that have already been con�gured.

In this paper, we present an Integer Linear Program-
ming (ILP) formulation and an eÆcient heuristics for the
HW-SW cosynthesis exploiting the EPR and IR concepts.
In Section II, we describe the EPR and IR concepts. We
de�ne the cosynthesis problem and give a brief descrip-
tion of our ILP formulation in Section III. We present
a cosynthesis heuristics in Section IV. We compare the
experimental results of the heuristics and the ILP formu-
lation in Section V. We conclude in Section VI.

II. Motivation

A. Early Partial Recon�guration

Figure 1 illustrates our basic idea of EPR. We assume
that a task graph is given as a part of the system speci-
�cation as shown in Figure 1 (a). An acyclic task graph
G(V,E) consists of V (set of tasks) and E (set of edges).
An edge between two tasks vi and vj represents that the
execution of vj gets ready to start only after that of vi
�nishes. The computation time of a task graph is the
time duration it takes to perform the computations of all
tasks in it. We also assume that there is only one recon-
�guration controller which performs recon�guration jobs
(in our example, rc3 and rc4).
Figure 1 (b) shows an example of mapping tasks to

recon�gurable HW or SW and scheduling them. In the
�gure, blank and shaded rectangles represent recon�gura-
tion and computation jobs of tasks, respectively. In this
example, task v2 is assumed to be mapped to SW (prob-
ably due to the high HW implementation cost of v2) and
tasks v0, v1, v3 and v4 to HW (probably thanks to their
shorter computation times when mapped to HW). Since
tasks v3 and v4 are recon�gured in a lazy manner, there
is a slack interval in HW during the computation of SW

task v2 as shown in Figure 1 (b).
The EPR concept exploits such slack interval. Figure 1

(c) shows that early execution of the recon�guration job
rc3 of task v3 during the slack interval can hide the recon-
�guration time of task v3. For further reduction of recon-
�guration time, as shown in Figure 1 (d), we separate the
recon�guration jobs and their corresponding computation
jobs, to allow another recon�guration job to be performed
utilizing the remaining slack interval. In our example, we
separate rc3 and v3 to execute rc4 during the remaining
slack interval.

B. Incremental Recon�guration

In Figure 1 (d), to further reduce the recon�guration time
overhead, we can perform recon�guration of task v3 or v4
incrementally. To do that, we should consider the previ-
ous con�guration of the FPGA (v0 and v1 in this exam-
ple) before v3 or v4 can be recon�gured. In the example of
Figure 1 (d), if we assume that task v3 shares more con-
�guration data, for example, 70 % of con�guration data
of task v3 with task v1 than task v4 (for example, 20 %),
we can reduce the recon�guration time overhead of task
v3 by recon�guring only the remaining 30 % of its con-
�guration utilizing the con�guration of task v1, i.e. by
incremental recon�guration.
In our work, we incorporate the EPR and IR concepts

into the trade-o� calculation of hardware-software parti-
tioning thereby the early partial and incremental recon-
�guration of FPGA can be best exploited.

III. Problem Definition and An ILP Formulation

A. Problem De�nition

We assume that the target architecture has a processor
and a recon�gurable FPGA both of which are connected
by a communication bus. The FPGA can be an isolated
chip or a core in an FPSC (Field Programmable Systems
on a Chip) implementation. We also assume that recon-
�guration is performed by an independent controller.
In this section, we present an ILP formulation to solve

the following HW-SW cosynthesis problem.

Problem 1 Given G(V,E) and HW resource constraint
AHW , map tasks to HW and SW and schedule them to
minimize TG the computation time of G.

B. An ILP Formulation

In this subsection, we give a brief explanation of our ILP
formulation. We formulate the ILP solution with con-
straints on (1) task start time and �nish time constraints,
(2) data dependency constraints, (3) serialization con-
straints on the SW processor, the communication bus,
and the recon�guration controller, and (4) FPGA resource

constraint. In this paper, we explain a key constraint re-
lated to the EPR and IR concepts. [4] gives a detailed
description of the ILP formulation.
Since the EPR concept permits recon�guration jobs to

be separated from computation jobs and to be placed in
advance, we set constraints on the start/�nish time when
each task starts/�nishes occupying the computation re-
source (HW or SW). For example, in Figure 1 (d), task
v3 has the following constraint.

TF (3)� TS(3) � rc(3) � s(3) + CH(3) �m(3) +

CS(3) � (1�m(3))� 1 (1)

In Inequality (1), TS(3), TF (3), rc(3), CH(3), and
CS(3) represent, respectively, start time of resource occu-
pation, �nish time of resource occupation, recon�guration
run-time, HW computation time, and SW computation
time of task v3, m(3) is a binary variable representing that
task v3 is mapped to HW (m(3) = 1) or SW (m(3) = 0).
If a task vi is mapped to HW, its start time of resource
occupation TS(i) is the time when the recon�guration of
the task begins. In Inequality (1), s(3) represents the per-
centage of incremental recon�guration to be performed for
task v3. For example, if s(3) = 0.3, only 30 % of the con-
�guration of task v3 needs to be recon�gured. For a task
vi, s(i) is de�ned to be m(i) �

P
j 6=i �(j; i)�(j; i), where

�(j; i) is the percentage of shared con�guration data be-
tween two tasks vj and vi in the viewpoint of task vi (in
Figure 1, if �(1; 3) = 0:7, then task v3 shares 70 % of its
con�guration data with task v1), and �(j; i) is a binary
variable representing that task vi can be recon�gured just
after the computation of task vj �nishes (in Figure 1 (b),
(c), and (d), �(1; 3) = 1). If m(i) = 1, only one case
of �(j; i) is set to 1 to allow incremental recon�guration.
Else (i.e. if m(i) = 0), all �(j; i)'s are set to zero. That
is, 8vi;

P
8vj

�(j; i) = m(i).

IV. Proposed HW-SW Cosynthesis Heuristics

with the EPR and IR concepts

In this section, we present a heuristics to solve the HW-
SW cosynthesis problem de�ned in Section III-A.

A. Overall Strategy

To move tasks between HW and SW, we adopt the Fiduc-
cia/Mattheyses (FM) algorithm-based HW-SW partition-
ing [5] as shown in Figure 2. We apply the EPR and IR
concepts to the scheduling step of GetScheduleLength()
(on line 24 in Figure 2). In GetScheduleLength(), we
perform a list scheduling based on the earliest compu-
tation start times (ECST's) of ready tasks. To be spe-
ci�c, we select the task that can start its computation at
the earliest time, i.e. that has the smallest ECST among
ready tasks (SelectATask()) and schedule its (recon�gu-
ration job, if it is mapped to HW, and) computation job
(ScheduleATask(selected)).

1. currP = bestP = InitialP();

2. IterationLoop: loop

3. everbestP = bestP;

4. while (UnlockedTaskExist) loop

5. moved = SelectNextMove();

6. currP = MoveAndLockTask(moved);

7. bestP = GetBetterPart(currP,bestP);

8. end loop;

9. if no improvement of TG in this pass then

10. return everbestP;

11. else // Do another pass

12. UnlockAllTasks();

13. end loop;

14. SelectNextMove() f

15. best move = 0; best TG = max number;

16. for task vi in all tasks

17. TryMove(vi);

18. TG = GetScheduleLength();

19. if(best TG > TG)

20. best move = vi; best TG = TG;

21. RestoreMove(vi);

22. end for;

23. return best move; g

24. GetScheduleLength() f

25. CalculateECST();

26. while (UnscheduledTaskExist) loop

27. selected = SelectATask();

28. ScheduleATask(selected);

29. UpdateECST();

30. end loop;

31. return TG; g

Fig. 2. A pseudo code of the proposed HW-SW cosynthesis
heuristics.

In our cosynthesis heuristics, since the key point is ap-
plying the EPR and IR concepts to the calculation of the
ECST of each task, we focus on the description of calcu-
lating the ECST.

B. Calculating Earliest Computation Start Time

To exploit the EPR and IR concepts, we de�ne a present
HW con�guration set PCSHW as the set of HW tasks
which currently occupies HW resource. For example, in
Figure 3 (a), since tasks v0 and v1 (in the task graph of
Figure 1 (a)) are mapped to HW, PCSHW = fv0; v1g. In
Figure 3, the height of each rectangle represents the size,
i.e. the implementation cost of each HW task.

The ECST of task vi is determined by the maximum of the
time when data from its direct predecessors are ready to
be used (which we call data ready time DRT (i)) and the
time when the computation resource (HW or SW) is ready

SW

HW
v1

v0

v2

AHW

time

v1

v0

v2

rc3

v1

v0

v2

rc4

∆0,4

(a) (b)

(c)

SW

HW

SW

HW
v1

v0

v2

rc3

SW

HW

v3

RRT(3)

DRT(3)

(d)

Fig. 3. Examples of scheduling HW tasks.

to be used (which we call resource ready time RRT (i)).
For HW task vi, RRT (i) is the time point when the recon-
�guration of HW task vi is completed. Note that when
DRT(i) � RRT(i), the recon�guration overhead of

HW task vi is totally hidden by EPR.
Figure 3 (b) illustrates examples of DRT and RRT val-

ues for task v3 in the task graph of Figure 1 (a). In the
�gure,DRT (3) is the �nish time of the predecessor task v2
and RRT (3) is the �nish time of recon�guration job rc3
of task v3 assuming communication time between tasks
v2 and v3 is zero. Since DRT (3) > RRT (3), ECST (3) =
maxfDRT (3); RRT (3)g = DRT (3), i.e. the recon�gura-
tion time overhead for task v3 is totally hidden by EPR
as shown in Figure 3 (b).
For a task vi, DRT (i) is determined as follows.

DRT (i) = max
vj2Pred(i)

fTF (j) + comm(j; i)g (2)

where Pred(i) is the set of direct predecessor tasks of
task vi and comm(j; i) is the communication time between
task vj and vi. Since the predecessor task vj is already
scheduled, its �nish time TF (j) is obtained.
If task vi is mapped to SW, RRT (i) is determined to

be the maximum of �nish times of tasks scheduled on SW
before task vi. If task vi is mapped to HW, we should
consider PCSHW in the computation of RRT (i) as fol-
lows.

RRT (i) =

min
vj2PCSHW

fTF (j) + (1� �(j; i)) � rc(i) + �j;ig (3)

where rc(i) is the recon�guration time of task vi. In the
equation, the term (1 � �(j; i)) � rc(i) implies the recon-
�guration time overhead when task vi is incrementally
recon�gured utilizing the con�guration of task vj . �j;i is
exempli�ed in Figure 3 (c). In the �gure, if task v4 shares
more con�guration data with task v0 than with task v1,
we can try recon�guring task v4 just after the computa-
tion of task v0 �nishes. However, in this case, since the

(a) (b)

sink

src
i th iteration i-1 th iteration

Preshit(i) Preshit(i-1)

Dct(i) Dct(i-1)

Bound(i)

Quantize(i)

Zigzag(i)

Encode(i)

Bound(i-1)

Quantize(i-1)

Zigzag(i-1)

Encode(i-1)

1

2 3

4

5 6 7 8

10 9

(c)

sink

src
i th iteration i-1 th iteration

Dct(i) Dct(i-1)

Bound(i)

Quantize(i)

DeQuant(i)

IDct(i)

Bound(i-1)

Quantize(i-1)

DeQuant(i-1)

IDct(i-1)

diff(i) diff(i-1)

Fig. 4. Task graphs : (a) a synthetic task graph, (b) the JPEG
example, and (c) the H.263 example.

sum of the size of task v4 and that of task v1 exceeds the
given HW cost constraint AHW . Thus, the recon�gura-
tion of task v4 is delayed by the amount of �0;4 until task
v1 releases the HW resource. For another example, in the
case of Figure 3 (b), since the size of task v3 is smaller
than that of task v1, �1;3 = 0.
As shown in the above examples, to determine �j;i,

we should consider two cases. Case I (II) represents a
case where task vi shares con�guration data with task vj
2 PCSHW and the HW cost of task vj is larger than
or equal to (smaller than) that of task vi. In Case I,
�j;i = 0. In Case II, �j;i is calculated as the time interval
for which we have to wait to obtain enough HW area for
recon�guring task vi. Figure 3 (d) depicts the result of
scheduling the recon�guration and computation jobs of
task v3.

V. Experiments

We applied the ILP formulation and the proposed heuris-
tics to a set of synthetic task graphs and two real examples
(a JPEG encoder [6] and an H.263 encoder [7]).

A. Synthetic Task Graphs

We used synthetic task graphs to investigate (1) the per-
formance gain obtained by applying the EPR and IR con-
cepts varying HW resource constraints and recon�gura-
tion time overhead and (2) the run-time of the heuris-
tics for large task graphs. To generate synthetic task
graphs, we used a task graph generator, TGFF [8]. TGFF
also generates parameters for each task (HW and SW
computation times, HW implementation cost, etc.). We
added recon�guration time to each task in the gener-
ated task graphs. Since recon�guration time is gener-
ally proportional to the hardware resource usage, recon-
�guration time was assigned to each task in proportion
to the hardware implementation cost of the task. We
used recon�guration-to-computation ratio denoted by R
to vary the recon�guration time overhead in the synthetic
task graphs. We set �(j; i) for each pair of tasks vj and
vi to a value between 0 % and 40 %. We also varied the
value of AHW .

P

RP

TP

VP

XP

QPP

QRP

QTP

QVP

QXP

RPP

TP WP QPP RPP

P

RP

TP

VP

XP

QPP

QRP

QTP

QVP

QXP

RPP

TP WP QPP RPP AHW

AHW

TG

TG
(a) R = 25 %

(b) R = 100 %

1

2
3 4 5 6 7

Fig. 5. Comparison of the �nish times of a synthetic task graph.

We applied the ILP formulation to the generated task
graph under six di�erent conditions. Table I shows the
condition of each case. In Table I, RRC represents run-
time recon�guration. In the cases that run-time recon�g-
uration is not exploited, we used static con�guration i.e.
HW resource occupied by a HW task is not recon�gured
for another HW task throughout the run-time. However,
HW resource occupied by a HW task may be re-used by
another task of the same type if the Same Type condition
is `Yes' (fourth column in the table). To solve ILP prob-
lems, we used a commercial ILP solver, CPLEX. We also
applied the proposed heuristics (case No. 7 in Table I).
Figure 5 (a) and (b) show the comparison of the �nish

time (TG) of a synthetic task graph (shown in Figure 4
(a)) for two cases of R (=25 % and 100 %). R=25 %
represents the average recon�guration time of a HW task
is 25 % of its HW computation time. Each vertical bar
represents TG for each of the seven cases with given AHW .

TABLE I
Types of HW-SW cosynthesis.

No. ILP/Heu RRC Same Type EPR IR
1 ILP No No No No
2 ILP No Yes No No
3 ILP Yes No No No
4 ILP Yes Yes No No
5 ILP Yes Yes Yes No
6 ILP Yes Yes Yes Yes
7 Heu Yes Yes Yes Yes

Figure 5 (a) shows that as the EPR and IR concepts are
applied, we obtain shorter TG, i.e. more performance im-
provement. In some case (AHW=100 and 200) of Figure
5 (b), since the recon�guration time overhead gets com-
parable to HW computation times of tasks (R=100 %)
and large AHW values allow more tasks to be mapped on
HW, when the EPR and IR concepts are not used, run-
time recon�guration yields worse performance than the
static con�guration. However, by applying the EPR and
IR concepts, we could obtain performance improvement.

The algorithm complexity of the proposed heuristics is
O(n5).1 Table II shows the run-times of the proposed
heuristics for large-sized task graphs generated by TGFF
on an Ultra II workstation (200 MHz, 512 MB main mem-
ory). The ILP formulation for EPR and IR concepts
hardly gives solutions for task graphs having more than
10 tasks.

TABLE II
Run-times of the proposed heuristics.

No. of tasks 50 100 150 200
Run-time (sec) 22 930 6,034 16,954

B. JPEG and H.263 Examples

The JPEG and H.263 examples contain, respectively, 6
sequential tasks in each iteration of encoding. Since we
perform two iterations of encoding concurrently, there are
12 tasks as shown in Figure 4 (b) and (c), respectively.
For the JPEG and H.263 examples, we used a 32bit

RISC microprocessor (ARM7 [9]) as the SW processor
and a run-time recon�gurable FPGA (AT40K40 from At-
mel Co. [10]). Table III shows the parameters of tasks
in the JPEG example (and some tasks in the H.263 ex-
ample) : HW cost (size of con�guration data in bytes),
HW computation time (CH), SW computation time (CS),
and recon�guration time (rc). CH , CS and rc are in
microseconds.2 Since the same amount of data (64x16
bits) are transferred between neighboring tasks in the
JPEG and H.263 examples (Figure 4 (b) and (c)), com-
munication time between a SW task and a HW task is
also the same and set to 10 �s. Table IV gives the ra-
tio of con�guration data sharing � between every pair of
tasks (previous tasks are in the �rst column) in the JPEG
example.

TABLE III
Task parameters of the JPEG example.

HW cost CH rc CS

Pre 3,545 16 53 65
DCT 26,203 273 543 355
Bnd 3,689 73 70 98
Qtz 14,107 23 211 233
Zig 6,527 59 97 80
Enc 36,371 62 545 551

Figure 6 (a) and (b) show the comparison of TG in
the JPEG and H.263 examples. For the case of AHW =
37 Kbytes, the proposed heuristics gives up to 41.1 % and

1In Figure 2, since the two while loops (line 4 to 8 and line
26 to 30) and the for loop (line 16 to 22), respectively, have O(n)
complexity and UpdateECST() has O(n2) complexity.

2We set the system clock frequencies of ARM7, FPGA compu-
tation, and FPGA recon�guration to 25 MHz, 5 MHz, and 33 MHz,
respectively. We obtained the HW and SW computation times of
each task and communication times by running the instruction-set
simulation of ARM7 processor [11] and VHDL simulation.

TABLE IV
The ratio of configuration data sharing between every

pair of tasks in the JPEG example.

Pre DCT Bnd Qtz Zig Enc
Pre 1 0 0.09 0.02 0.07 0
DCT 0.35 1 0.32 0.28 0.31 0.21
Bnd 0.33 0.02 1 0.08 0.27 0.02
Qtz 0.27 0.06 0.33 1 0.29 0.08
Zig 0.27 0.02 0.30 0.07 1 0.02
Enc 0.31 0.18 0.37 0.30 0.31 1

37k 42k

1

2 3 4
7

AHW (bytes)

TG (µs)

P

QPPP

RPPP

SPPP

TPPP

UPPP

VPPP

WPPP

7k 15k 37k 42k
P

UPP

QPPP

QUPP

RPPP

RUPP

SPPP

12347

AHW (bytes)

TG (µs)

(a) JPEG (b) H.263

Fig. 6. Comparison of the �nish times of the JPEG and H.263
examples.

27.4 % (70.1 % and 23.4 %) performance improvement for
the JPEG (H.263) example compared to the ILP solutions
of static con�guration without same type (vertical bar
numbered 1) and with same type (vertical bar numbered
2), respectively. Due to the long run-time, we could not
obtain ILP solutions for case No. 5 and 6 where the EPR
and IR concepts are applied.
Figure 7 shows the result of HW-SW partitioning and

scheduling for the JPEG example obtained by the pro-
posed heuristics when AHW = 42 Kbytes. In the �gure,
dashed areas in HW represent recon�guration jobs and
shaded areas in HW represent computation jobs. The
�gure shows that the recon�guration times of HW tasks
Bound(i-1), Quantize(i-1) and Zigzag(i-1) are hidden by
EPR. Note that the recon�guration time of HW task En-
code(i) is eliminated since the con�guration of Encode(i-
1) is re-used for Encode(i). The recon�guration time of
HW task Encode(i-1) is also reduced by IR utilizing the
con�guration of HW task Quantize(i-1) (8 % of con�gu-
ration of Encode(i-1) is shared by Quantize(i-1) as shown

)Preshift(i

1)-Bound(i

1)-Quantize(i

1)-Zigzag(i

1)-Encode(i Encode(i)

1)-Preshift(i
1)-Dct(i Dct(i)

Bound(i)

)Quantize(i

Zigzag(i)

reconfiguration computation

HW

SW

time

Fig. 7. Result of HW-SW partitioning and scheduling of the
JPEG example (AHW=42 Kbytes).

in Table IV). Bold arrows (e.g. the one from the end of
Dct(i-1) computation job to the start of Bound(i-1) com-
putation job) represents communication between SW and
HW.

VI. Conclusion

In this paper, we have presented a new method for HW-
SW cosynthesis with the run-time incrementally recon�g-
urable FPGA. Experiments show the EPR and IR con-
cepts and the proposed heuristics give signi�cant perfor-
mance improvement for synthetic examples and real em-
bedded system examples compared to the optimal solu-
tions without the concepts.
Currently, we are working on extending the EPR and IR

concepts to such systems that have computation-intensive
loops and conditional executions.

References

[1] S. Hauck, \The Future of Recon�gurable Systems", 5th Cana-
dian Conference on Field Programmable Devices, June 1998.

[2] S. Hauck, \Con�guration Prefetch for Single Context Recon�g-
urable Coprocessors", ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pp. 65{74, 1998.

[3] R. P. Dick and N. Jha, \CORDS: Hardware-Software Co-
Synthesis of Recon�gurable Real-Time Distributed Embedded
Systems", Proc. Int. Conf. on Computer Aided Design, Nov.
1998.

[4] B. Jeong, \Hardware-Software Partitioning for Recon�gurable
Architectures", M.S. thesis, School of Elec. Eng., Seoul Na-
tional Univ., Feb. 1999.

[5] F. Vahid, \Modifying Min-Cut for Hardware and Software
Functional Partitioning", Proc. Int. Workshop on Hardware-
Software Codesign, pp. 43{48, Mar. 1997.

[6] Portable Video Research Group, PVRG-JPEG CODEC,
ftp://havefun.stanford.edu/pub/jpeg/JPEGv1.2.1.tar.Z.

[7] Telenor, Telenor's H.263 Software, http://www.nta.no/
brukere/DVC/h263 software/.

[8] R. P. Dick, D. L. Rhodes, and W. Wolf, \TGFF: Task Graphs
for Free", Proc. Int. Workshop on Hardware-Software Code-
sign, pp. 97{101, Mar. 1998.

[9] ARM Ltd., \ARM7 Data Sheet", http://www.arm.com/
Documentation/UserMans/PDF/ARM7vC.pdf.

[10] Atmel Co., \AT40K FPGAs with FreeRAM", http://www
.atmel.com/.

[11] ARM Ltd., Software Development Toolkit, http://www.arm.
com/products/SDT/.

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

