
Offline Program Re-mapping to Improve Branch
Prediction Efficiency in Embedded Systems

Stephen S. Brown, Jeet Asher, and William H. Mangione-Smith

The Department of Electrical Engineering - The University of California at Los Angeles

Abstract – This work presents a technique for improving the efficiency of hardware branch predictors. The key
approach is to apply techniques of off-line re-mapping of the program-space in order to reduce the incidence of
conflict misses in the branch hardware. This work also presents a new model for organizing temporal
information between blocks in the address space, which can be applied effectively to previous re-mapping
systems as well. The increased efficiency can be translated to improved performance for fixed hardware
specifications, or used to reduce the hardware cost for achieving targeted performance during the design cycle.

1 Introduction

The work presented in this paper can be beneficially applied to
both embedded and desktop/server computer systems. We
consider it to be embedded-systems research for two reasons.
First, that is the context out of which the work was developed.
Second, and more importantly, as the code base and working
characteristics of a particular system become more stable over
time, the profile-based optimizations developed here become
more effective. Clearly, embedded systems have more stable
applications and use patterns than general-purpose systems,
even when they allow the introduction of third-party software
in an after-market fashion (e.g. PDAs).

This work focuses on methods for improving the efficiency of
branch prediction hardware. While dynamic branch prediction
hardware has been far more common in desktop and server
systems, the features are becoming more common in embedded
microcontrollers, particularly as relatively high-performance
32-bit RISC processing cores are moved down into embedded
applications.

One important observation with respect to branch prediction
hardware is that it is a form of caching. The hardware attempts
to synthesize dynamic state information that can be used to
predict branch outcomes. For the most part, this state
information consists of simple saturating up-down counters
that track recent branching decisions, though more
sophisticated techniques have been developed. Much of the
innovation in branch prediction hardware, and the consequent
increase in prediction accuracy, come as a result of the
methods used for accessing this cached state information.
While early techniques were generally based on direct indexing
based on bits from the branch address [1, 2], in a method that is
analogous to a direct mapped cache, more recent efforts have
incorporated global recent branch results to achieve higher
performance [3].

Nonetheless, the branch prediction hardware is fundamentally
a cache, and it can fail to produce a correct prediction for four
reasons: capacity misses, compulsory misses, conflict misses,
and incorrect state information. The first three conditions

correspond to failures of the caching mechanisms, while only
the last is a unique component of branch prediction.

There are no known techniques for reducing the incidence of
compulsory misses that have proven to be effective. The
solution to capacity misses is well known: increase the size of
the cache. This solution is particularly unappealing to the
designers of embedded systems, where cost pressure is
significant and thrift is at a premium. Consequently, most
research in this area has focused on reducing conflict misses or
improving the quality of the state information [4-7].

The approach that is used here to reduce conflict misses
involves making sure that branches that are active close in time
do not map to the same entries in the branch predictor cache.
As almost all forms of branch predictions use some bits from
the address of the branch to index into the branch prediction
cache, we can control the mapping by controlling these bits.
While the actual bits used are implementation dependent,
embedded systems designers frequently turn to platform-
specific optimizations to improve performance.

2 Previous Work

Pettis and Hansen [8] proposed one of the earliest pieces of
research to increase performance by remapping the address-
space. The authors constructed a graph, where vertices
corresponded to basic blocks. An edge was placed between
two vertices whenever the corresponding code blocks followed
directly in sequential execution. The edge weight captured the
number of such events. Thus, making sure that vertices with
high edge weight would be unlikely to conflict in the
instruction cache produced an optimized program. Pettis and
Hansen developed a series of heuristics that attempted to either
move high edge weight nodes to the same cache line, or
guarantee that they had different set numbers. Hashemi et al.
[9] applied graph-coloring techniques to improve the
utilization of scarce cache set numbers, though without
changing the method used for constructing the graph.

Concurrent research by Gloy et al. [10] and Kirovski et al. [11]
advanced the approach by bringing increased information into
the graph. The original work by Pettis and Hansen only



introduced an edge in the graph between basic blocks that
followed directly in sequence. This approach works well when
branch points are strongly biased. Consider a case where a
branch occurs with equal probability down both paths. If all of
the activations on one path are taken before any of the
activations on the other, then the two targets can share
locations in the cache without causing conflict misses.
However, if their activations are interleaved in time then they
should be mapped to separate sets in the cache. Both Gloy et
al. and Kirovski et al. address this problem by introducing
temporal information regarding activations between a broader
set of vertices. Each approach has a goal of producing a heavy
weight edge between the two target vertices above for the case
when their executions are interleaved in time and a low weight
edge between the nodes when they are not interleaved in time.

The work presented here contributes to the field in two distinct
ways. First, the application of address space remapping to
branch prediction is unique. Second, a new approach to
incorporating temporal information in the graph is introduced
that achieves significantly improved results.

3 Approach

A four-stage approach is used for optimizing branch predictor
performance. First, the application programs must be compiled
into their final basic blocks. Second, sets of training data sets
are used to collect profile information. Third, the temporal
correlation graph is constructed based on the profile
information. Fourth, the graph is colored to reduce conflicts in
the hardware. Finally, the address space is remapped to
produce an optimized binary file.

3.1 Compilation and Profiling

Compilation is accomplished using the IMPACT compiler
suite from Professor Hwu’s group at the University of Illinois
[12]. IMPACT is used to produce a load-map that ties basic
blocks to addresses, as well as to produce an instrumented
binary that can be used for acquiring runtime data. Running
the instrumented binary, which produces a series of events
directed to an architectural simulator, collects profile
information. This simulator, LSIM, has been modified to
produce a sequence of basic block activations.

3.2 Construct Temporal Correlation Graph

The system used here is able to construct three types of graphs,
corresponding to the original approach developed by Pettis and
Hansen, the temporal approach developed by Gloy et al., and
the new approach being proposed here.

Pettis and Hansen graphs are constructed by processing the
trace of basic block activations and keeping track of two
distinct vertices, i.e. the current block and the last block. If the

current vertex does not exist in the graph it is added. A clean
up phase will account for all vertices that do not occur in the
trace, by leaving their locations unmodified. If there is no edge
between the current vertex and the last vertex then the edge is
created. Finally, the edge weight between the two vertices is
incremented. This process repeats until all blocks are
processed.

Gloy et al. originally proposed to construct their graphs
specifically for the target instruction cache configuration.
They keep track of block (or procedure) sizes, and remember a
set of the most recently seen blocks. The number of entries in
this set varies over time, and is kept just small enough that the
sum of the size of all of the entries will fit in the target cache.
Thus, the size of the set of remembered blocks varies over
time, as the dynamic average block size over the recent time
neighborhood varies. This approach attempts to remember the
state of any seen blocks that can usefully guide cache
management, while reducing the overall amount of state saved.

We have made a number of modifications to the original Gloy
et al. approach in order to apply it to branch prediction. First,
notice that the size of the interfering object varies in the cases
of instruction caches, according to the size of the basic block
that is being cached. On the other hand, the size of the
interfering object is always the same for branch prediction, as
it is simply the state associated with branch outcomes for a
particular branch instruction. Thus, it is natural when
constructing Gloy et al. graphs for branch prediction to have a
fixed size remembered set. Second, we have de-coupled the
size of the remembered set from the size of the branch
prediction cache (i.e. the number of available colors). This
approach allows us to vary the amount of program state
represented in the graphs and evaluate the marginal benefit of
increased history.

The Gloy et al. graphs are constructed using the following
pseudo-code:

1. while (n = next trace node) != EOF
2. delete n from N if present
3. for first < i < last
4. N[i+1] = N[i]
5. add n to graph if not previously seen
6. N[first] = n
7. for first < i < last
8. E[N[first]:N[i]]++;

The process begins at line 1 by iterating over all of the vertices
(branch instructions) that occur in the dynamic trace. The
array N holds the set of most recently seen vertices in the trace,
and the set size is determined by the value of first-last. Lines 3
through 6 reorder the set N so that LRU order is maintained.
Finally, lines 7 and 8 add one to the weight of each edge
between the first vertex in the set and all other vertices.



This approach captures the temporal correlation effectively, by
keeping a longer memory than Pettis and Hansen’s approach
and thus managing to distinguish between subtle variations in
execution conditions. In fact, Pettis and Hansen’s approach
can be considered a degenerate form of the Gloy et al.
algorithm with the remembered set limited to a single vertex.

One shortcoming of this approach is that the graphs generated
do not distinguish between remembered vertices that have been
seen recently and those that are close to being removed from
the remembered set. Our proposed modification involves
changing the function in line 8 for increasing the weight of a
specific edge. Instead of simply adding a constant term (i.e.
one), we believe it is more advantageous to add a term that
decreases with the value of first-i, thus giving more weight to
edges where vertices occur more closely in time. We have
experimented with two functions, a simple linear form that
adds the value last-i, and a logarithmic form 2last-i. Results for
the linear approach will be presented in Section 4, the
logarithmic approach achieved essentially the same
performance.

3.3 Graph Coloring

Once the interference graph is constructed from the dynamic
trace, it is colored using techniques developed in [16]. The
algorithm is a hybrid of several known techniques, and in the
correct combination it has outperformed all other approaches
reported in the literature by an order of magnitude. Heuristics
and meta-algorithmic approaches are necessary, as graph
coloring is known to be NP-complete.

Three key techniques are essential to improving the results and
reducing the runtime of the coloring algorithm:

1. Estimated values that are semi-stable over time are
calculated and stored on individual vertices or edges of
the graph. This allows local decision making to occur
quickly, without sacrificing much useful information.

2. A global approach of assigning the most-constrained
vertices to the least-constrained colors provides the
essential driving force.

3. A weighted lottery scheme (again using pre-computed
values), is employed to introduce statistical variance and
robustness in the face of the driving function.

The graphs are colored by assigning one color to each entry in
the target branch prediction hardware. Thus, a four-entry
branch predictor would have four colors with which to color
the graph.

3.4 Remapping

Remapping consists of assigning binary values to the colors
used in graph coloring, and producing a remapping table. This

table is used to translate the original branch address into a new
branch address. A binary rewriting tool is used to produce the
optimized output.

4 Results

As mentioned above, the compiler and profiling tool are
provided by the IMPACT compiler infrastructure. A custom
implementation of the graph-coloring algorithm was developed
in order to facilitate a broad range of experiments. A highly
parameterized branch predictor was constructed that can be
used to implement the gshare model [7].

For the purposes of this paper we have adopted the
MediaBench benchmark suite [17]. These benchmarks
encompass most of the media applications in use today. The
original MediaBench application suite has been extended to
provide two data sets for each program. This enhancement
allows realistic profile-based optimization, which is the core of
the research presented here.

After modifying the approach developed by Gloy et al. to use a
fixed size history set, the graph topology is identical to the new
method. However, the specific edge weights differ
significantly, and this is where we hope to achieve improved
performance.

The most time consuming component of the tool set involves
processing the trace to produce the final graphs. While the
time involved is linear in the size of the history set, the sizes of
the data sets often cause memory thrashing (even on 128MB
PCs) which results in sub-linear performance. The time
required to construct a typical graph was 4 hours, while the
time required to collect the trace, color the graph and execute
one pass through the branch simulator was less than 20
minutes. We briefly considered doing periodic pruning of
graph edges that fall below some threshold. This approach is
particularly appealing as a post-processing step to clean up the
graphs prior to coloring. Pruning was ultimately rejected as
inappropriate, however, because it could cause relatively
isolated regions of the graph with relatively low edge weights
to be completely pruned. As these regions are isolated they
can be optimized without significant impact on other regions.
Clearly, pruning them would result in a performance loss when
operating in those regions of code, with relatively little
commensurate return on software development time.

All of the branch predictors considered here use the gshare
design with four bits of global history. Address bits are
colored if they fall into the fields used for indexing the branch
predictor but are not covered by the XORed global history bits.
While an increased coloring range could be used that covered
these additional bits, it seems counter productive to reduce the
control over layout by applying a runtime XOR operation.



Each entry in the branch predictor uses two bits to store branch
state information. Results in the following figures are arranged
to focus on the number of colors available for optimization.
Thus, while the range is from 2 to 4096 colors, the number of
branch predictor entries ranges from 32 to 64k (due to the 4
bits of global history). Clearly, the lower range values are of
most interest.

Figure 1 illustrates the resulting raw performance on the cjpeg
application. Four categories of results are shown

1. The original performance without modification

2. The approach developed by Gloy et. al, which is
indicated by the sc prefix. The number after sc
indicates the size of the history set. An x after the
history set size indicates that the system trained on
one data set and was evaluated on the other, while a
missing x indicates both sets were the same.

3. The new graph construction approach, which is
indicated as new and follows the modifiers in 2
above.

4. The original Pettis and Hansen approach, which uses
the x modifier to indicate cross training using
separate data sets and is identified as ph.

The cjpeg data begins to bring out several important trends.
First, as the degree of sophistication used to construct the
graphs increases, the knee of the performance curve shifts to
the left. Second, there is a significant amount of difference
between training and testing on the same data set or different
data sets. For this reason, we will provide no further
discussion of results based on self-training. It is interesting to
notice than even on self-trained data a number of cases fall
below the original performance once the size of the branch
predictor exceeds a particular size. For example, consider the
case of unmodified Pettis and Hansen compared to the original
performance. Pettis and Hansen performs significantly better
for the extremely small 32-entry branch predictor (55% vs.
80%), is essentially equal for the 64-entry branch predictor,
and trails in performance for all other cases.

The problem with considering data for individual applications
on a small number of data sets is that idiosyncratic conditions
can obscure important general behavior. Thus, we were driven
to consider methods for aggregating results across the set of
benchmarks. The problem with direct aggregation is that some
benchmarks are much more predictable than others, thus
skewing results in any simple mean of the prediction accuracy.
Our solution to this problem has been to first normalize the
results for each application against the best branch prediction
seen under any circumstances for that application, considering
only cross-trained conditions. For example, consider the raw
data for cjpeg, which is show in Figure 1. All of individual
data points will be normalized against the value of new 64x at

the 4096-color mark. We then average these normalized
values.

Figure 2 shows the aggregate results for the cross-trained data.
Observe that the knee of the performance curve is shifted even
more dramatically to the left, i.e. performance benefits of
increased hardware are greatly reduced. While there was some
advantage to considering branch predictors with 256 colors
when reviewing the cjpeg performance, apparently there is no
benefit to considering greater than 128 colors when
considering the overall performance. In fact, very little benefit
can be found for more than 64 colors.

The remapping methods almost always outperform the original
(for the aggregates), suggesting that the cases for cjpeg where
performance dropped are likely due to idiosyncratic behavior.
The one exception to this trend is new 16, which generally
achieves approximately 1% lower performance than the
original code.

sc 32 and sc 64 achieve essentially the same performance,
while sc 16 is close with approximately 1% higher miss
prediction rate. On the other hand, new 32 and new 16 are
close in performance and approximately 2% higher than the
Gloy et al. method and 3% higher than the original gshare
hardware. One conclusion that can be drawn from this data is
that no more than 32 values are likely to be needed to achieve
all available optimization. This observation is important for
reducing the time spent optimizing the overall program.

One interesting perspective from which to consider this data
involves the relative differences in hardware resources needed
to reach some specific performance goal. This approach to
design is becoming more common in embedded systems that
adopt techniques of high-level synthesis for SOC design. If the
designers judge that meeting 96% of the available performance
is sufficient, then the new graph algorithms can be used to
justify a 256 entry branch predictor (16 colors), while the
methods of Gloy et al. would requires 512 entries. Pettis and
Hansen would not be able to achieve this performance target.

5 Conclusion

This paper has made two specific contributions to the research
community.

First, we have shown that the techniques of profile-driven
address space remapping can be extremely effective at
improving the performance of stock branch prediction
hardware. This capability can be used to either improve the
performance of an existing system, or reduce the cost of a
system that is being designed.

Second, we have developed a new method for constructing
profile-based temporal correlation graphs that captures a richer
view of branch interaction than previous techniques. This
approach trivially breaks the equal branching conundrum that



confounds the original Pettis and Hansen approach along with
Trace Selection techniques. The resulting graphs have been
shown to produce significantly better results than previous
results published in the literature.

Bibliography

[1] J. K. F. Lee and A. J. Smith, “Branch Prediction
Strategies and Branch Target Buffer Design,” IEEE
Computer, 1984.

[2] J. E. Smith, “A Study of Branch Prediction Strategies,” in
Proc. 8th Ann. Int'l. Symp. Computer Architecture, 1981,
pp. 135--148.

[3] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training
branch prediction,” Proceedings of the 24th International
Symposium on Microarchitecture, 1991.

[4] E. Hao, C. Po-Yung, and Y. N. Patt, “The effect of
speculative updating branch history on branch prediction
accuracy, revisited,” Proceedings of the 27th Annual
International Symposium on Microarchitecture, 1994.

[5] S. T. Pan, K. So, and J. T. Rahmeh, “Correlation-based
branch prediction,” The Twenty-Sixth Asilomar
Conference on Signals, Systems and Computers, 1992.

[6] G. S. Tyson, “The effects of predicated execution on
branch prediction,” Proceedings of the 27th Annual
International Symposium on Microarchitecture, 1994.

[7] S. McFarling, “Combining Branch Predictors,” Digital
Western Research Laboratory, Technical Report TN-36,
June 1993.

[8] K. Pettis and R. C. Hansen, “Profile guided code
positioning,” ACM SIGPLAN '90 Conference on
Programming Language Design and Implementation,
1990.

[9] A. H. Hashemi, D. R. Kaeli, and B. Calder, “Efficient
procedure mapping using cache line coloring,” ACM

SIGPLAN 1997 Conference on Programming Language
Design and Implementation, 1997.

[10] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder,
“Procedure placement using temporal ordering
information,” Thirtieth Annual IEEE/ACM International
Symposium on Microarchitecture, 1997.

[11] D. Kirovski, C. Lee, M. Potkonjak, and W. Mangione-
Smith, “Synthesis of power efficient systems-on-silicon,”
Proceedings of 1998 Asia and South Pacific Design
Automation Conference, 1998.

[12] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and
W.-m. W. Hwu, “IMPACT: An Architectural Framework
for Multiple-Instruction-Issue Processors,” Proc. of
International Symposium on Computer Architecture,
1991.

[13] W.-m. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E.
Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.
Lavery, “The Superblock: An Effective Technique for
VLIW and Superscalar Compilation,” Journal of
Supercomputing, 1993.

[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R.
A. Bringmann, “Effective Compiler Support for
Predicated Execution Using the Hyperblock,” Proc. of
Micro 25, 1992.

[15] B. Rau, “Iterative Modulo Scheduling,” International
Journal of Parallel Programming, 1996.

[16] D. Kirovski and M. Potkonjak, “Efficient coloring of a
large spectrum of graphs,” Design and Automation
Conference, 1998.

[17] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,
“MediaBench: a tool for evaluating and synthesizing
multimedia and communications systems,” Proceedings
of 30th Annual International Symposium on
Microarchitecture, 1997.



cjpeg

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2 4 8 16 32 64 128 256 512 1024 2048 4096

orig

new 16

new 16x

sc 16

sc 16x

new 32

new 32x

sc 32

sc 32x

new 64

new 64x

sc 64

sc 64x

ph

ph x

Figure 1: Branch prediction accuracy of various remapping schemes for cjpeg.

0.75

0.80

0.85

0.90

0.95

1.00

2 4 8 16 32 64 128 256 512 1024 2048 4096

Number of Colors

A
ve

ra
ge

N
or

m
al

iz
ed

A
cc

ur
ac

y

orig

new 16

sc 16

new 32

sc 32

new 64

sc 64

ph

Figure 2: Average of all results normalized to individual best performance within each application


	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


