
AUTOMATIC PARTITIONING FOR EFFICIENT

COMBINATIONAL VERIFICATION

Rajarshi Mukherjee Jawahar Jain Koichiro Takayama

Masahiro Fujita

frmukherj,jawahar,ktakayam,fujitag@fla.fujitsu.com
Fujitsu Laboratories of America

595 Lawrence Expressway

Sunnyvale, CA 94086

Abstract

A majority of the state-of-the-art combinational
veri�cation techniques are based on the extraction
and use of internal equivalences between two cir-
cuits. Veri�cation can become di�cult if the two
circuits have none or very few internal correspon-
dences. In this paper we investigate automatic cir-
cuit partitioning as a methodology to make other-
wise intractable circuits relatively tractable to the
veri�er. We show that given any two circuits to be
veri�ed, �nding the best partitions that minimize
the veri�cation runtime is NP-hard. Therefore, we
propose e�cient heuristics to utilize certain charac-
teristics of typical circuit design styles to �nd good
partitions for the circuits. A key di�erence between
our approach and earlier approaches to circuit par-
titioning is that ours is fully automated and does
not require any prior knowledge of the type of func-
tion being implemented by the circuit. Using circuit
partitioning we are able to verify several hard indus-
trial circuits that could not be veri�ed otherwise.

1 Introduction

Automatic combinational veri�cation or Boolean
comparison (BC) is central to the successful design
of any complex digital system. The BC problem
can be stated as follows: Given two Boolean net-
works, check whether the corresponding outputs of
the two networks are equivalent for all possible input
combinations.

Ordered Binary Decision Diagrams (OBDDs) [4]
are frequently employed as one of the primary tools
for automating combinational veri�cation [6, 9].
However, due to the OBDD blowup problem, an

OBDD-based veri�cation tool is not very robust.
The e�ciency of a combinational veri�er can be en-
hanced by exploiting many relationships that ex-
ist among internal nodes of the two networks being
veri�ed [2, 3, 5, 7, 8, 12, 18, 19]. However, these
tools often fail to verify circuits if the number of
correspondences found is inadequate. In this pa-
per we study circuit partitioning as a technique to
simplify a given veri�cation problem. Given two
circuits to be veri�ed, we show that the problem
of �nding partitions that minimize the veri�cation
time is NP-hard. Therefore, we study typical circuit
design styles and propose e�cient heuristics to au-
tomatically create \good" partitions that simplify
the veri�cation problem. The e�cacy of our pro-
posed methodology is demonstrated by the veri�-
cation of several hard industrial circuits that could
not be veri�ed by the veri�er alone.

2 Use of Partitioning in Combina-

tional Veri�cation

An e�cient, robust and extensible framework for
combinational veri�cation based on �lter-theory has
been proposed in [19]. This methodology depends
on the extraction and use of correspondences among
internal nodes in the two circuits being veri�ed.
Therefore, its performance can deteriorate in cases
where there are very few correspondences. Circuits
with very few internal correspondences can be cre-
ated in many circumstances. For instance, if a cir-
cuit undergoes rigorous optimization, many of the
internal correspondences may be lost. Also, if two
circuits are designed in di�erent ways, (for example,
an array multipler and a Booth multipler) internal
correspondences can be very few in number. Since



the type of circuits encountered in industry is not
known a-priori, it is very important that the BC
tool is capable of handling circuits with few inter-
nal correspondences. In order to achieve this goal,
a veri�cation tool should have the following capa-
bilities: (1) The tool should be able to analyze the
two circuits being veri�ed, estimate the number of
internal correspondences among the nodes of the
two circuits, and estimate the ease of veri�cation
using these correspondences, (2) If the number of
internal correspondences is found to be inadequate,
the tool must be able to transform the given circuits
to create additional internal correspondences in or-
der to simplify veri�cation. In this work we propose
several automatic heuristics to partition the given
circuits in order to simplify veri�cation.

Next, we de�ne the notion of circuit partitioning
used in this work.

De�nition 2.1 Circuit partitioning of a single-
output circuit involves Shannon's expansion of the
function realized by the primary output based on a
set of k primary input variables. As a result, 2k

functions (circuits) are created. Each of these new
circuits is called a partition of the original circuit.
Veri�cation of the original circuit can now be done
by verifying each partition separately.

Several forms of functional partitioning tech-
niques such as those based on partitioning a circuit
structure (circuit partitioning) [13, 15], and BDD
partitioning [13, 14] have been developed. Circuit
partitioning can help veri�cation by : (1) Reducing
the size of the circuits being veri�ed. (2) Creating
new conditional equivalences - For example, some
gates ga; gb may be only equivalent when variable
xi = 0. On the other hand, some gates gc; gd may
be equivalent only when xi = 1. (3) Creating new
conditional indirect implications (learnings) - For
example, a learning ga �! gb may exist only when
xi = 1. (4) Allowing veri�cation to be parallelized
- Each partition can be veri�ed on a separate ma-
chine.

De�nition 2.2 Given two circuits C1 and C2 to
be veri�ed, a composite network C is created by
connecting their corresponding primary inputs and
by feeding each pair of corresponding primary out-
puts to two-input XOR gates. Veri�cation of C con-
sists of checking the satis�ability of the primary out-
puts of C. If all the primary outputs are unsatis�-
able, C1 � C2.

Fig. 1 shows how a composite network is created
from two given networks. Let C be a given compos-
ite network and T (C) be the time required to verify
C with a veri�cation algorithm T .

Circuit 1

PI

PO 1

PO 2
Circuit 2

Y = 0 ?

n

m

m

Figure 1: Composite Network

De�nition 2.3 Let S = fC1; C2; : : : ; Ckg be a set
of k partitions of C. S is called a complete set of
partitions (CSP) if and only if the veri�cation of
all the circuits in S implies the veri�cation of C.

Let S = fC1; C2; : : : ; Ckg be a CSP of C. Let �
be the set of all possible CSPs of C. Let T (S) =
T (C1) + T (C2) + : : : + T (Ck)). Now, let us pose
a problem P as follows: Is there a CSP S 2 � j
(T (S) < T (C))?

Theorem 2.1 Problem P is NP-hard.

Proof Sketch: Combinational veri�cation is an
NP-hard problem. Therefore, in order to solve
P , we have to solve several NP-hard problems.
2

Let us pose a second problem Q as follows: Find
a CSP Si 2 � j 8j; j 6= i; (T (Si) � T (Sj )).

Theorem 2.2 Problem Q is NP-hard.

Proof Sketch: As in the previous theorem, we
have to solve several NP-hard problems to solve Q.
2

The two theorems prove that an exact solution
of the partitioning problem is not possible. In this
work, we design several e�cient heuristics to create
good partitions of given circuits. We take advantage
of the fact that most large designs typically con-
sist of smaller functional units that are combined
by some control constructs like if-else-if, if-then-
else and case statements. We can use the control
variables to appropriately partition the circuit into
smaller functional units which can be veri�ed sep-
arately. Identi�cation of these control constructs is
relatively easy in HDL descriptions of designs. How-
ever, it is not an easy task in gate-level descriptions
of designs. In the next section we present e�cient
heuristics to identify good partitions in given cir-
cuits so that the veri�cation problem is simpli�ed.



3 E�cient Partitioning Heuristics

During veri�cation the partitioner is invoked at
two di�erent places: (1) pre-veri�cation partitioner
(PRPT) on primary outputs that need partitioning
(2) post-veri�cation partitioner (POPT) on primary
outputs that are aborted by the veri�er. The 
ow
diagram for veri�cation with partitioning is shown
in Fig. 2.

Verification 
Core

Checking
phase

Verification 
Core

Checking
phase

END

Random 
pattern 

simulation

START

Pre-verification

Partitioner

All
POs verified

?

Post-verification

Partitioner

YES

NO

Initial 

Filters

Figure 2: Veri�cation with Partitioning

The pre-veri�cation partitioner is invoked im-
mediately after the collection of potential equiv-
alent nodes with random pattern simulation (see
[18] for details). Two nodes g and h are called po-
tentially equivalent if they are assigned the same
boolean value for all the random vectors applied
during random pattern simulation. In other words,
nodes g and h have a very good chance of being
proved functionally equivalent by a BC tool. The
pre-veri�cation partitioner is targeted towards cre-
ating partitions that can minimize the number of
nodes which do not belong to any list of potentially
equivalent nodes. The post-veri�cation partitioner
is speci�cally targted to primary output pairs that
have been aborted by the BC tool. It attempts
to create partitions to facilitate the veri�cation of
these aborted outputs.

The following e�cient heuristics have been de-
signed to create good partitions:

1. Sim: In this heuristic Boolean 0 and 1 are
assigned to each primary input of the circuit
and the circuit is simulated. After each simu-
lation, the following parameters are collected:
(1) # of nodes set to a constant as a result
of simulation (2) # of nodes that do not have
any candidate for equivalence check that be-
come constants (Nodes that do not belong to
any list of potential equivalent nodes can cause
problems for a BC tool. Hence, forcing them
to boolean constants can potentially simplify

veri�cation.) (3) Disjointness of the partitions
that this variable creates (Each variable can
create two partitions. If a majority of nodes
that occur in the �rst partition also occurs in
the second partition, then the partitions are
not disjoint. Disjoint partitions allow the BC
tool to avoid repetition of work and thus make
the veri�cation more e�cient.). The primary
input for which each of these parameters is
maximized is considered the best partitioning
signal.

2. Dfs: In this heuristic a guided depth-�rst
traversal is started from the primary output
to be partitioned. The circuit is levelized. The
fanin nodes that are closer to the primary in-
puts are traversed �rst. The primary inputs
are arranged in the order they are seen. The
primary input that is highest in the order is
considered the best partitioning signal. It is
important to note that most control signals
would be reached early in Dfs.

3. Rev-dfs: In this heuristic, the order of the
primary inputs is the reverse of their order in
Dfs. The primary input topmost in the order
is chosen to partition the output.

4. Max-tfo: The primary input that has the
largest transitive-fanout (TFO) cone is chosen
to partition the output. This heuristic tries
to capture the e�ect a particular signal has on
the functionality of the circuit by counting the
number of gates it might a�ect.

5. Mixed: We run at most two partitioning
passes on each primary output in both PRPT
and POPT. In the �rst pass the partitioning
signal is chosen using Dfs. In the second pass
it is chosen using Sim. Therefore, the �rst pass
tries to identify a control signal, while the sec-
ond pass tries to identify a signal that has max-
imum control on the data-path functionality.

6. Dfs-sim: In this heuristic, we use Dfs in
PRPT and Sim in POPT. This heuristic is an-
other way to capture the e�ects of both Dfs
and Sim, and thus combine the advantages of
both those heuristics.

Note that in an automatic application of the par-
titioning heuristics, partitions can often be created
in an unbalanced manner (number of partitions cre-
ated is not a power of 2) as shown in Fig. 3. In
the �gure, two primary inputs x1 and x2 have been
used to create three partitions P1, P2 and P3 of a
given composite circuit.



Ckt. No-Part Sim Dfs Rev-dfs Max-tfo Mixed Dfs-sim

1 abort 3348.39 762.18 794.48 852.98 2400.72 771.08
2 abort 4149.85 abort abort abort 1559.36 abort
3 abort abort 1440.90 1190.35 1279.23 3170.14 1165.24
4 abort 6952.62 1282.00 2186.66 1462.39 2372.96 1336.05
5 abort abort 600.14 659.47 819.21 2945.95 636.91
6 abort 1650.84 738.82 759.24 815.43 862.16 729.23

Table 1: Veri�cation with partitioning

Ckt. Sim Dfs Rev-dfs Max-tfo Mixed Dfs-sim

1 7(0) 4(0) 4(0) 4(0) 4(0) 4(0)
2 7(0) 6(4) 5(2) 5(2) 4(0) 5(2)
3 8(2) 4(0) 4(0) 4(0) 4(0) 4(0)
4 7(0) 4(0) 7(0) 4(0) 4(0) 4(0)
5 8(2) 4(0) 4(0) 4(0) 4(0) 4(0)
6 4(0) 4(0) 4(0) 4(0) 4(0) 4(0)

Table 2: Number of Partitions Created and Aborted

X1

X2P1

P2 P3

0 1

0 1

Figure 3: Creation of Partitions

4 Experimental Results

The partitioning algorithm has been imple-
mented in C++ within ASSURE1, which is the
combinational veri�cation tool of Fujitsu. All our
experiments have been carried out on a Sun SPARC
20 with 512 MBytes of memory. The runtimes are
reported in seconds. In Table 1 we present veri�-
cation results (runtimes) on 6 di�cult primary out-
puts of an industrial circuit. In these experiments
one circuit was veri�ed against another copy that
had undergone synthesis and engineering change.
Each circuit has 317 primary inputs and 232 pri-
mary outputs. The two circuits have 15242 and
14737 internal nodes respectively.

The entry \abort" indicates that the circuit
could not be veri�ed completely because memory
or time limits were exceeded. From Table 1 it can

1For details on ASSURE, please refer to [18, 19]

be seen in the second column that ASSURE was
unable to verify these circuits without partitioning.
The subsequent columns tabulate the veri�cation
runtimes of ASSURE when the primary inputs to be
partitioned on were selected using di�erent strate-
gies. Both Dfs and Dfs-sim have similar runtimes.
But fewer partitions were aborted when Dfs-simwas
used. Mixed combines the ability to identify both
control signals as well as signals that have maxi-
mum e�ect on the data-path function. Using Mixed
we could verify all the circuits. Rev-dfs andMax-tfo
had similar performance. ASSURE did not perform
well with Sim. In Table 2 we tabulate # partitions
created (# partitions aborted).

5 Conclusions

Veri�cation methodologies based on extraction
and use of internal correspondences can become in-
e�cient if correspondences are few in number. In
this paper we propose e�cient heuristics which take
advantage of known circuit design styles to auto-
matically create good partitions for given circuits
and thus transform several previously intractable
veri�cation problems into tractable ones. Results
of veri�cation (with partitioning) of several hard in-
dustrial circuits which could not be veri�ed without
partitioning, have been presented. Our future work
includes further strengthening of the partitioning
techniques, and application of partitioning to accu-
rate error diagnosis.



References

[1] J. Burch, \Using BDDs to verify multipliers",
Int'l Workshop On Formal Methods in VLSI
Design, Jan., 1991.

[2] C. L. Berman, L. H. Trevyllian, \Functional
Comparison of Logic Designs for VLSI Cir-
cuits", ICCAD 1989.

[3] D. Brand, \Veri�cation of Large Synthesized
Designs", ICCAD 1993.

[4] R. E. Bryant, \Graph-Based Algorithms for
Boolean Function Manipulation", IEEE Trans-
actions on Computers, vol. C-35, no. 8, Aug.
1986.

[5] E. Cerny, C. Mauras, \Tautology Checking Us-
ing Cross-Controllability and Cross- Observ-
ability Relations", ICCAD 1990.

[6] M. Fujita et al., \Evaluation and Improve-
ments of Boolean Comparison Method Based
on Binary Decision Diagrams", ICCAD 1988.

[7] J. Jain et al., \Advanced Veri�cation Tech-
niques Based on Learning", DAC 1995.

[8] W. Kunz, \HANNIBAL: An E�cient Tool for
Logic Veri�cation Based on Recursive Learn-
ing", ICCAD 1993.

[9] S. Malik et al., \Logic Veri�cation using Bi-
nary Decision Diagrams in a Logic Synthesis
Environment", ICCAD 1988.

[10] R. Mukherjee et al., \VERIFUL : VERI�ca-
tion using FUnctional Learning", EDAC 1995.

[11] S. Reddy et al., \Novel Veri�cation Framework
Combining Structural and OBDD Methods in
a Synthesis Environment", DAC 1995.

[12] Y. Matsunaga, \An E�cient Equivalence
Checker for Combinational Circuits", DAC
1996.

[13] J. Jain et al., \Functional partitioning for ver-
i�cation and related problems", MIT VLSI
Conference 1992.

[14] A. Narayan et al., \Partitioned ROBDDs - A
Compact, Canonical and E�ciently Manipu-
lable Representation for Boolean Functions",
ICCAD 1996.

[15] M. Fujita, \Veri�cation of Arithmetic Circuits
by comparing two similar Circuits", CAV 1996.

[16] R. Mukherjee et al., \E�cient Combina-
tional Veri�cation Using Cuts and Overlap-
ping BDDs," Int'l Workshop on Logic Synthe-
sis 1997.

[17] A. Kuehlmann et al., \Equivalence Checking
Using Cuts and Heaps", DAC 1997.

[18] R. Mukherjee et al., \An E�cient Filter-
Based Approach For Combinational Veri�ca-
tion", DATE 1999.

[19] R. Mukherjee et al., \An E�cient Filter-Based
Approach For Combinational Veri�cation", to
appear in Transactions on Computer-Aided
Design, November 1999.


	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


