
An Application Specific Java Processor with Reconfigurabilities

Shinji Kimura Hiroyuki Kida† Kazuyoshi Takagi‡ Tatsumori Abematsu∗ Katsumasa Watanabe

Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0101, JAPAN

†: Presently NIIT at Nara; ‡: Presently Nagoya University;∗: Presently SHARP Corporation

Abstract— The paper presents an application specific Java
processor including reconfigurabilities, which is a DLX like
pipeline processor with 5 stages and executes Java byte codes di-
rectly. Reconfigurabilities are the key technologies for application
specific operations. We have introduced two reconfigurabilities:
(1) a mechanism to override the control signals for a specific in-
struction, (2) external components can be attached with the same
input and output ports as the internal ALU.

I. I NTRODUCTION

With the recent advance in the VLSI technology, embed-
ded systems can include network interfaces and communica-
tion capabilities. Java language is one of major programming
languages for such applications.

Java programs are converted to Java byte codes and executed
by the Java virtual machine ([1], [2]). The Java virtual machine
is implemented as interpreters or byte code compilers on many
platforms, and Java byte codes have high portability. Java pro-
cessors are direct implementations of the Java virtual machine,
and are suitable for executing Java byte codes under limited
hardware resources such as in embedded systems.

The paper presents a pipeline Java processor with reconfig-
urabilities for installing application specific instructions and
application specific hardware modules.

II. JAVA VIRTUAL MACHINE AND JAVA BYTE CODE

The Java virtual machine is a virtual computer which exe-
cutes Java byte codes directly using the internal stack. Each
instruction has a one byte operation code and data operands
with variable length (0 to 4 bytes). Up to 256 instructions can
be specified and 201 instructions are specified at present ([2]).

Instructions are classified into 3 categories: (1) stack op-
erations: push constants, load and push, pop and store, du-
plication of stack; (2) arithmetic operations for operands on
the stack: addition, subtraction, multiplication, division, shift,
logical operation, etc.; (3) execution control operations: jump,
conditional branch, call and return for Java methods.

Basic data types manipulated by the Java virtual machine are
int (32 bit), long (64 bit), float (32 bit) and double (64 bit). The
internal stack with the 32 bit width is used to store intermediate
results. The depth of the stack is not specified.

III. R ECONFIGURABLEJAVA PROCESSOR

A. Architecture

We have designed a reconfigurable pipeline Java processor
(R-Java processor) for embedded systems. The processor has
a pipeline structure with 5 stages like the DLX ([3]): IF stage,
ID stage, EX stage, MEM stage and WB stage. The processor

External Module(FPGA)

IF ID EX MEM WB

C D

B

A

E

Memory ControlPC Base Addr

pre-fetch
queue
8 bit x 8

Instruction
counter

Data forwarding Unit

F

M
U
X

M
U
X

M
U
X

M
U
X

Main Memory

M
U
X

Internal Stack
32 bit x 16

Ctrl
Sig

Ctrl
Sig

Ctrl
SigDecode

Override

3232

32

64

32

32

32

3218 DataAddress

64

Fig. 1. Architecture of Java Processor

also includes a memory control unit, a data forwarding unit and
an internal stack as shown in Fig. 1.

The width of the internal stack and other data path is 32
bit. The depth of the stack is 16 since the intermediate results
are usually not so large. To cope with the stack overflow and
underflow, we have installed a control mechanism to transfer
data in the stack to and from the external memory. Logically,
the depth of the stack is infinite.

Because of the limitation on the hardware resources, we
have only implemented 117 instructions among 201 instruc-
tions. Un-implemented instructions invokes the internal trap
and are executed by the operating software.

B. Execution Control
Instructions are fetched from the memory to the prefetch

queue. 4 bytes of data are fetched with one clock. IF unit de-
cides the end of each instruction and transfer the instruction to
the ID stage. Note that the maximum length of an instruction
is 5, and the length of the prefetch queue is set to 8 bytes.

ID unit generates 30 bit control signals and transfers the sig-
nals to the following units:
• type of operation (5 bits) to EX unit,
• information (14 bits) to Data forwarding unit,
• memory access information (2 bits) to MEM unit,
• stack push information (5 bit) to WB unit,
• Jump information (1 bit) to PC control unit, and
• information (3 bits) to prefetch instruction control.
In Fig. 1, “Ctrl Sig” denotes the transfered signals.

C. Reconfigurability in the Execution Control
The pipeline stages are controlled by signals generated by

ID unit, and the interpretation of an instruction can be changed



Fig. 2. Layout and a test board of Java LSI chip.

by overriding the generated control signals.
We have implemented the override module as in Fig. 1. The

module has registers to keep overrode instructions and over-
rode control signals. For the module, we introduce special in-
structions for setting values for special registers. The module
compares the executed instruction and the overrode instruc-
tion, and transfers overrode control signals when matched.

This reconfigurability is useful to install new instructions,
such as un-specified instructions at present and instructions on
using application specific hardware modules.

D. Interface to External Hardware Modules

On embedded systems, application specific hardware mod-
ules would be attached for speed-up. Thus input ports for ALU
in the processor are passed to an external hardware module and
the output port of ALU is multiplexed with that of the external
module. We have also implemented a mechanism to stall the
pipeline for multi-cycle external modules.

To cope with the cost for application specific modules, we
recognize that the external module should include the reconfig-
urability such as in Field Programmable Gate Arrays (FPGAs).
In our present state, we cannot include FPGA modules within
the LSI and FPGA modules are attached outside the Java pro-
cessor at the board level.

IV. I MPLEMENTATION AND EVALUATION

We have designed our reconfigurable Java processor using
VHDL and implemented via VDEC Rohm LSI with 4.5 mm
× 4.5 mm size, 0.6µm process, 2 PolySi layers and 3 metal
layers. The VHDL source includes about 4000 lines, and the
LSI chip includes about 110000 transistors (28000 elements).
Fig. 2 shows the chip layout.1

We have also implemented a test board for VDEC Rohm
LSI as shown in Fig. 2. The Java LSI is in the left side socket
and there is an FPGA in the right side socket. All I/O pins
of the LSI are passed to FPGA. FPGA works as memory units,
connections between LSI pins and peripherals such as switches
and 7 segment diodes, and external hardware modules.

We have evaluated the correct behavior of the Java processor
with 50 MHz clock on this board. Note that any VDEC-Rohm
LSI chip with the same package can be tested on this board.

The execution time has been measured using the repetition
of the following butterfly operation on integer variables in the
Discrete Fourier Transform (DFT).

1 The VLSI chip in this study has been fabricated in the chip fabrication pro-
gram of VLSI Design and Education Center(VDEC), the University of Tokyo
with the collaboration by Rohm Corporation and Toppan Printing Corporation.

TABLE I
CPU SECONDS FOR EXECUTING THE BUTTERFLY OPERATIONS

Processor type clock cycle 106 25×106

R-Java wo ext. module 50 MHz 0.8 20.0
R-Java with ext. module 50 MHz 0.4 10.0

Pentium II Interpreter 412 MHz 1.8 27.4
Pentium II JIT 412 MHz 0.8 1.4

dr = s * iy + c * ry; di = c * iy - s * ry;
rx += dr; ry = rx - dr; ix += di; iy = ix - di;

After the compilation, the function consists of 32 Java in-
structions with 8 pipeline hazards, and is executed with 40
clocks. On the other hand, we can construct a hardware mod-
ule computing the above operation with 120 ns delay on Altera
FPGA FLEX10K70. With this module, the function consists
of 13 Java instructions with 1 pipeline hazard and 6 clock wait
for the external module execution; total 20 clocks.

We have obtained 2 times speed-up for the DFT operation
with the external module. Note that the invocation of the exter-
nal module and the data acquisition from the external module
are implemented as the instruction override mechanism.

We show the execution time of the above butterfly operation
on our Java processor and other general processors. We have
varied the number of repetitions of the above operation with 1
million and 25 million. Table I shows the result.

Note that R-Java 50 MHz with an external module is faster
than the software interpreter on Pentium II 412 MHz and is
competitive with Pentium II Just In Time Compiler. By JIT, the
Java instructions are reduced to only 10 Pentium instructions.

Just In Time mechanism would also be useful in the R-Java
processor. R-Java processor loads 8 instructions and we have
a chance to execute several instructions as 1 instruction. This
would be one of future works.

V. CONCLUSION

We have presented a reconfigurable Java processor for em-
bedded systems. The processor has a pipeline modules with
5 stages and executes Java byte codes directly. The processor
includes a mechanism to change the execution control for one
(but any) specified instruction. The processor also includes I/O
interfaces to use an external reconfigurable module.

Acknowledgments
We would like to thank members of Watanabe-lab at NAIST for

their discussions. The work is supported in part by the NAIST IS fund
1998, by Grants in Aid for Scientific Research in Aid for Scientific
Research from the Ministry of Education, Science, Sports and Culture
(09245101, 11480068), and by a grant from Fujitsu Laboratory.

REFERENCES

[1] T. Lindholm and F. Yellin.The Java Virtual Machine Spec-
ification. Addison Wesley, 1996.

[2] B. Venners. Inside the Java Virtual Machine. McGraw-
Hill, 1998.

[3] D. A. Patterson and J. H. Hennessy.Computer Architec-
ture (2nd Ed.), A Quantitative Approach. Morgan Kauf-
mann, ISBN 1-55860-329-8, 1996.


	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


