
Design of Self-timed Asynchronous Booth’s multiplier

Tin-Yau TANG, Chiu-Sing CHOY, Pui-Lam SIU, Cheong-Fat CHAN

Department of Electronic Engineering
The Chinese University of Hong Kong
Tel: (852) 2609 8272, Fax (852) 2603 5558

Abstract

This paper presents a design of multiplier for the
multiplication of two 8-bit two-complement numbers. The
multiplier applies the self-timed asynchronous methodology
such that the multiplier can be assumed to operate on average
case delay. And also, modified booth’s algorithm [1] is used
to reduce the number of partial product generated. As a
result, the speed of the multiplier can be improved.

1. Introduction

Asynchronous design methodology has been studied
actively in recent years. The main characteristic is using local
distributed handshake signals instead of a global clock to
control the operation of each function block in the system.
Asynchronous methodology has certain advantages over its
counterpart, the synchronous design [2]. It does not have the
problem of clock skew since it does not have global clock.
Other potential advantages include low power consumption
and average-case delay performance.

In self-timed asynchronous circuits, each functional
block is controlled by some handshake circuit such that each
functional block is operated in correct order. Each functional
block should also be able to acknowledge the completion of
its operation to the handshake control circuit. The
acknowledgement of the completion can be inherent in data
signals or separated as a “complete” signal. In our multiplier
design, SCCVSL (single-rail CMOS cascode voltage switch
logic) [3] is used to generate the necessary “complete” signal.

The main advantage of using modified booth’s
algorithm [1] is that it generates fewer partial products. In
ordinary multiplier, it is required to generate n partial
products for n-bit multiplication. In our multiplier, only 4
partial products will be generated. Less partial product means
less addition is needed to add up the partial products. As a
result, it will have faster speed than the ordinary multiplier.

2. Implementation

2.1 Modified Booth’s Algorithm [1]
In the modified booth’s algorithm, an encoding

technique is used to reduce the number of partial products.
Different encoding techniques result different reductions of

number of partial product. In our 8 × 8 multiplier, the
multiplier (B) is divided into 4 substrings of 3 bits, with
adjacent groups sharing a common bit. A ‘0’ is also padded
to the right of the multiplier B such that 4 complete
substrings can be formed. Each substring is then decoded to
give Y from the multiplicand (A) according the Table 1. With
the above encoding scheme, 4 partial product will be
generated for 8-bit × 8-bit signed multiplication. Each partial
product is equal to Y multiplied by a scaling factor F. The
scaling factor is equal to 1, 4, 16, 64 for the first, second,
third and forth operation respectively. The final product is
equal to the sum of the four partial products.

If B=b7b6b5b4b3b2b1b0, B1=b1b00, B2=b3b2b1,
B3=b5b4b3, B4=b7b6b5

∑
=

×=×=
4

1n
nn YFBAP

where F1=1, F2=4, F3=16, F4=64

Bit pattern (Bn) Operation (Yn)
000 +0
001 +A
010 +A
011 +2A
100 -2A
101 -A
110 -A
111 -0

Table 1: Decoding table of 3-bits substring

2.2 hardware design
Fig. 1 shows the block diagram of the self-timed

asynchronous booth’s multiplier. The multiplier requires 4
cycles of operation to generate the final product. Each cycle
generates one partial product and accumulates it with the
partial product generated in pervious cycles. The multiplier is
divided into two stages. The first stage mainly contains
load/shift registers and booth’s decoder. This stage is used to
generate the partial product. The second stage mainly
contains a 16-bit ripple-carry adder. This is used to add up all
the partial products generated in each operation cycle.
Besides the two stages, a central handshake controller is also
included. It not only generate the internal request and reset
signal for the two stages, but also handles the external request
and complete signal.



Fig. 1: The block diagram of the multiplier

Before the two 8-bit input data and the external
request signal is received, all register and the adder will be
cleared. The register for the multiplier is 9 bits long and the
8-bit multiplier will be loaded to the most significant 8 bits of
the register. The register for the multiplicand is 16 bits long
and the 8-bit multiplicand will be converted to 16-bit data by
sign extent before loaded to the register. When the external
request signal is received, the first operation cycle of the
multiplier is started and the controller sends a signal to stage
1 such that the register in the stage 1 will load the two input
data. As the same time, the booth’s decoder decodes the least
significant 3-bit of the register for multiplier. The decoder
result is used to control the operation (double and/or
negation) of the multiplicand to generate the correct partial
product. The booth’s decoder also indicates to the controller
whether the partial product is zero or not.

After the stage 1 operation (generate partial product)
has been finished, the stage 2 operation (addition) should be
started. In the stage 2, an asynchronous version of ripple-
carry adder is used. Although ripple-carry adder has large
worst-case delay, its average case delay is approximately
equal to or smaller than other adder such as carry look-ahead
adder [1,4,5]. And also it requires less silicon area to
implement. As we are using asynchronous methodology,
average case delay can be assumed and so ripple-carry adder
is used in our design.

According to our encoding method (Table 1), we can
notice that there is about 25% of probability that the partial
product is zero. No addition is needed for zero partial
product. As a result, when the booth’s decoder indicates to
the controller that the partial product is zero, the operation of
stage 2 will be aborted and directly enter into next operation
cycle after the stage 1 operation. And so, the speed of the
multiplier can be improved on average.

The second, third and forth operation cycle is similar
to the first one. The content of the register for multiplier will
shift right by 2 such that another 3-bit substring will be
decoded. The content of the register for the multiplicand will
also shift left by 2. This operation is equal to multiply 4 to the
multiplicand and is necessary for the scaling factor of our
modified booth’s algorithm. The final product can be
obtained in 4 operation cycles and the controller will send a
complete signal when the final product comes out. The
multiplier will reset to idle when the external request signal is
inactive.

The multiplier is implemented by using AMS 0.6 µm
technology. The chip size is about 2.2mm × 2.6mm. A
number of full custom cells are first designed and whole
layout is generated by automatic place and route. By
simulation, the average evaluation time (request to complete)
of the multiplier is about 90 ns in normal condition.

3. Conclusion

A self-timed asynchronous multiplier had been
implemented. It performs average case delay. And also, by
using modified booth’s algorithm, the number of partial
products is reduced. As a result, the speed of the multiplier is
improved.

4. Reference

[1] Shlomo Waser and Michael J. Flynn, “Introduction to
Arithmetic for Digital Systems Designers”, CBS
College Publishing.

[2] Scott Hauck, “Asynchronous Design Methodologies:
An Overview”, Proceedings of the IEEE, Vol. 83, No.
1, pp. 69-93, January 1995.

[3] Feng LI, Oliver Chiu Sing CHOY and Cheong Fat
CHAN, “SCCVSL: A Single-Rail CMOS Cascode
Voltage Switch Logic”

[4] Bruce Gilchrist, J.H. Pomerene and S.Y. Wong, “Fast
Carry Logic for Digital Computers”, IRE Transactions
on Electronic Computers, Vol EC-4, pp 133-136,
December 1955.

[5] George W. Reitwiesner, “The Determination of carry
Propagation Length for Binary Addition”, IRE
Transactions on Electronic Computers, Vol EC-9, pp
35-38, 1960.

Load/shift
register

Load/shift register
(X4)

Operation (Yn)Booth’s
decoder

16-bit ripple-carry adder

Central Handshake
Controller

complete

request 8-bit multiplier 8-bit multiplicand

16-bit data out


	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


