
Bit-Width Selection for Data-Path Implementations�

Carlos Carreras Juan A. L´opez Octavio Nieto-Taladriz
Dept. Ingenier´ıa Electrónica, E.T.S.I. Telecomunicaci´on

Universidad Polit´ecnica de Madrid
Ciudad Universitaria s/n, 28040 Madrid, Spain

carreras@die.upm.es, juanant@die.upm.es, nieto@die.upm.es

Abstract

Specifications of data computations may not necessar-
ily describe the ranges of the intermediate results that can
be generated. However, such information is critical to de-
termine the bit-widths of the resources required for a data-
path implementation. In this paper, we present a novel ap-
proach based on interval computations that provides, not
only guaranteed range estimates that take into account de-
pendencies between variables, but estimates of their prob-
ability density functions that can be used when some trun-
cation must be performed due to constraints in the specifi-
cation. Results show that interval-based estimates are ob-
tained in reasonable times and are more accurate than those
provided by independent range computation, thus leading
to substantial reductions in area and latency of the corre-
sponding data-path implementation.

1. Introduction

The silicon area and the latency of a data-path implemen-
tation depend directly on the bit-widths of its functional,
communication and storage resources. While input ranges
or bit-widths may be part of the specification, it is usu-
ally the case that the designer has to select the bit-widths
of the remaining variables. Eventually, when allowed by
the specification, this selection may imply range truncations
due to area constraints (e.g. fixed-point implementation of
a floating-point algorithm).

Computing the exact ranges in a sequence of operations
is a complex task when there are dependencies between
them. The only general method is the exhaustive simulation
of all the possible input vectors. However, this is usually
unfeasible due to the size of the input space,S =

QI

i=1Ni

vectors, whereI is the number of inputs andNi is the num-
ber of possible values of inputi assuming integer arithmetic.

�This work was funded in part by projects ESPRIT 24137 and CICYT
TIC97-0928.

Estimates of the ranges can still be obtained through partial
simulation of the input space, but these estimates are not
guaranteed to include all possible results (e.g. worst case),
and it must be assumed that the stimuli vectors truly repre-
sent the expected input values [8].

Another common approach is to compute the range of
each operation from the ranges of its operands. This does
not consider the dependencies between the values of the
operands. This method is fast and guaranteed, but produces
significantly oversized bit-widths [6]. It is used for worst
case estimation in the in [9], and it is applied in [5] com-
bined with the partial simulation technique.

This paper presents a novel approach which uses interval
computations for bit-width dimensioning in data-path im-
plementations. In particular, we consider the general prob-
lem of obtaining estimates of the probability density func-
tions (PDFs) of the intermediate and output variables in a
sequence of arithmetic operations from estimates of the in-
put PDFs. Such estimates are represented in the form of
histograms where each bar describes the probability mass
associated with a particular range of values. Considering
PDFs instead of ranges allows evaluating the impact of bit-
width truncations, prepares the road for future tools capable
of estimating the execution flow in algorithms that include
data-dependent control constructs [3].

Interval computations have been used extensively to deal
with uncertain data, including methods to find the enclo-
sures of real functions [1, 7]. Approaches that consider
PDFs instead of ranges are less frequent [2]. They are aimed
to obtain exact probabilistic results in the form of cummula-
tive distribution functions, and use predefined partitions of
the input and ouput domains to represent the PDFs as his-
tograms. Instead, we develop approximations that allow the
analysis of sequences of dependent operations and provide
guaranteed ranges with approximate PDFs of all intermedi-
ate and output results. In particular, the contributions in this
paper include the formal definition of the interval models
used in the computation, a new geometric model that pro-
vides several advantages over previous linear models, and



the application of the interval method to bit-width dimen-
sioning in data-paths which may result in substantial area
and latency reductions for guaranteed implementations.

The following sections introduce the computation
method, the interval models, and some other applications of
the interval approach. Then, experimental results of range,
PDF and bit-width computations are presented, with con-
clusions following.

2. Basic Computation Method

Considering a sequence of dependent integer arithmetic
operations with known independent input PDFs in the form
of histograms, the goal is to obtain histogram descriptions
of the output PDFs. Histogram descriptions favour an in-
terval approach. It has been mentioned that exhaustive inte-
ger simulation is exact but usually unfeasible. On the other
hand, independent range computation leads to oversized re-
sults because it ignores dependencies. An interval approach
fills the gap between these two extremes by providing the
means of computing the operations in terms of subranges
(bars), thus reducing the size of the input space, and consid-
ering dependencies between intervals. Histogram bars are
described in terms of the following definition.

Definition 1. An interval[a; b]=p is the set of integersx that
verify a � x � bwith an associated probabilityp uniformly
distributed inside the interval, so the probability of anyx is
p=(b� a+ 1).

Considering a uniform PDF inside each interval allows
that approximate PDFs can be computed through a se-
quence of operations. This is different from [2] where noth-
ing is said about the shape of PDFs in the intervals so only
bounds for the cummulative distributions can be obtained.
In our case, uniformity is an assumption based on the uncer-
tain nature of the input data, where bit-widths are frequently
the only available information, and the goal of obtaining
only approximate output PDFs.

The basic algorithm to compute histograms is adapted
from [2] as:

1. Consider the input spaceN1 � : : : � NI whereNi is
the set of intervals describing the histogram of inputi.

2. For each vector(: : : ; [aij ; bij ]=pij ; : : :) of the input
space, where[aij ; bij ]=pij represents thej-th bar of
the histogram describing inputi:

(a) Compute its probabilityP =
QI

i=1 pij .
(b) Execute the operations using interval arithmetic.
(c) AssignP to each resulting interval.
(d) Collect the results in output histograms using

(split and)mergeoperations (see below).

The key approximation for computing sequences of oper-
ations is thatP is also uniformly distributed in the output

intervals. Interval operations are computed from the end-
points of the interval operands [4]. Addition, subtraction,
multiplication, division, and exponentiation with constant
positive exponents are considered here. Division by 0 is a
special case that can occur due to the approximations. In
the current implementation it is automatically transformed
into a division by 1.

The process that collects results from each input vector
into global histograms (2.d) uses the uniformity assumption
to collect two overlapping intervals, for example[ai; bi]=pi
and [aj ; bj ]=pj with ai < aj < bi < bj . An exact result
generates three disjoint intervals[ai; aj � 1]=(aj � ai)p,
[aj ; bi]=(bi � aj + 1)p, and[bi + 1; bj ]=(bj � bi)p, where
p = pi=(bi � ai + 1) + pj=(bj � aj + 1). However, this
procedure tends to increase the number of output intervals
so the complexity of the collection process can also increase
to unfeasible proportions. Instead, amergeoperation is ap-
plied so the overlapping intervals are collected as one inter-
val with probabilities added,[ai; bj ]=(pi + pj).

The problem with this approach is that PDF information
is lost in the merge operation and output histograms tend to
flatten. One way to reduce this effect is to use predefined
bars for the output histograms. First, the meaning of the
merge operation is modified so that any two interval results
falling inside the same predefined output bar are represented
by the minimum interval that contains them with probabili-
ties added,[min(ai; aj);max(bi; bj)]=(pi + pj). This pro-
vides a mechanism to control the number of intervals in the
output histogram so it corresponds to the number of prede-
fined bars. Second, asplit operation is applied before the
merge when an interval result overlaps several predefined
output bars. The split operation divides the original interval
into as many subintervals as overlapped bars, with probabil-
ities proportional to the overlaps. This allows maintaining
part of the PDF information in the output representation.
A similar operation calledproportional assignmentis used
in [2] to transform continuous PDFs into user-defined his-
tograms. However, user-defined partitions (bars) of the out-
put histograms are not practical when ranges are unknown,
so predefined fixed partitions are preferred here, and the ob-
vious choice is to use predefined intervals (bars) of equal
size. This leads to the class oflinear models described
in the next section. However, if the specification includes
multiplications or exponentiations, the intervals resulting
from the computation will span over many of such equal-
sized intervals, so the collection process becomes ineffi-
cient. Therefore, new models are required to achieve a good
compromise between accuracy and computation times.

3. Complex Interval Models

Interval models are classified here intosimpleandcom-
plex. A simple model only uses the merge operation for

2



overlaps, so it is fast but output histograms tend to flat-
ten. Its accuracy with respect to dependencies is controlled
through the number of bars used to represent the inputs.

Complex models are based on predefined fixed partitions
of the integer axis and use the split and merge operations to
represent histograms in terms of the model. A partition of
the integer axis is an infinite set of disjoint intervals that
we call maxintervalswhose union gives the axis. A class
of complex models is described by its set of maxintervals.
A particular model within a class is identified by a grain or
granularityg and a center of symmetryc. The value ofg is
related to the sizes of the maxintervals. A granularity 1 cor-
responds to the standard integer partition of the axis (one in-
teger per maxinterval) so, in general,g takes integer values
greater than 1. The centerc is always an interval with only
one integer, so using a center[c; c] different from the origin,
[0; 0], provides greater accuracy aroundc in the PDF. There-
fore, the accuracy of a complex model is tuned through its
class, grain and center. The two classes of complex models
used here are based on the following definitions.

Definition 2. The class oflinear interval models has max-
intervals[A;B], uniquely identified by integern, that verify
one of the following identities:

[A;B] =

8>>>><
>>>>:

[c+ gn+ 1; c+ g(n+ 1)] (n < �1)
[c� g + 1; c� 1] (n = �1)
[c; c] (n = 0)
[c+ 1; c+ g � 1] (n = 1)
[c+ g(n� 1); c+ gn� 1] (n > 1)

Linear models provide intervals of equal size (except
around the center) and are recommended for sequences of
additions and subtractions. However, it has been mentioned
that multiplications and exponentiations can make the col-
lection process inefficient. So a newgeometricclass of
models is defined. It describes a partition using maxinter-
vals with increasing exponential sizes as they separate from
the center of symmetry.

Definition 3. The class ofgeometricinterval models has
maxintervals[A;B], uniquely identified by integern, that
verify one of the following identities:

[A;B] =

8<
:

�
c� g�n + 1; c� g�(n+1)

�
(n < 0)

[c; c] (n = 0)�
c+ g(n�1); c+ gn � 1

�
(n > 0)

Geometric models allow for large reductions in the size
of the input space and compensate for the range expansion
produced by multiplications and exponentiations, at the cost
of coarser probabilistic descriptions for values away from
the center. It should be noticed that the model with grain 2
and center 0 is closely related to the binary representation
of numbers and, thus, to bit-widths.

0
0.005
0.01

0.015
0.02

0.025
0.03

-30 -20 -10 0 10 20 30

Original histogram

0
0.005
0.01

0.015
0.02

0.025
0.03

-30 -20 -10 0 10 20 30

Linear (grain = 5; center = 0)

0
0.005
0.01

0.015
0.02

0.025
0.03

-30 -20 -10 0 10 20 30

Geometric (grain = 2; center = 0)

Figure 1. Linear and geometric models

Complex models with intervals bounded by maxintervals
facilitate the automatization of the estimation process (the
user selects a model instead of defining a custom axis par-
tition), and avoid in part the flattening that appears in sim-
ple models, thus gaining accuracy at the cost of some more
computational complexity. So they provide clear advan-
tages when input space sizea are dominated by large ranges.

Figure 1 contains examples of representations using a
linear and a geometric model. It can be observed that both
models, but specially the geometric one, are more accurate
around the center of symmetry than in the rest of the axis.

4. Other Applications of the Interval Approach

When the number of inputs is also an important contrib-
utor to the large size of the input space, interval methods
have a limited impact on the input space reduction. In this
case, the overall simulation time can still be reduced by
avoiding redundant computations. The goal is to identify

3



independent blocks of operations that can be computed sep-
arately. When despite this strategy exhaustive simulation is
still unfeasible even with large granularities in the models,
the partitioning into blocks can be applied further even if
the blocks are not totally independent. Of course, this will
cause oversized results, but the bounds are still guaranteed.
The extreme case is represented by independent range com-
putation, where each operation is treated like a block and all
dependencies are ignored.

Another approach to deal with a situation where exhaus-
tive simulation is unfeasible is to use partial simulation to
obtain hints for bit-width dimensioning, although output
ranges will not be guaranteed bounds in this case. Standard
partial simulation of the integer input space is based on ran-
dom generation of the input vectors to obtain statistical pa-
rameters of the results. When using complex interval mod-
els, the random generation strategy cannot be used because
(1) maxintervals have different sizes (particularly in the ge-
ometric model) and randomness is not easily achieved, and
(2) the number of values involved is greatly reduced so pre-
cise statistical parameters cannot be inferred from the re-
sults. However, complex models allow a different strategy
with more advantages than random input generation. In [4],
the intervals representing each input histogram (a partic-
ular case of the geometric model defined here) are sorted
with decreasing probability masses while input vectors are
generated in an ordered fashion. This causes that the input
vectors with the highest probabilities are simulated first, so
the interval results tend towards their true values faster than
the integer results with random input generation. Conse-
quently, interval simulation yields smaller errors than inte-
ger random simulation when considering a fixed simulation
time. It is clear that this sorting is prohibitive in computa-
tion times when integers are considered.

5. Experiments and Results

The goal of the following experiments is to compare
ranges and PDFs obtained from exhaustive integer simula-
tion, independent range computation, and interval simula-
tion with linear and geometric models. Although it is possi-
ble to assign a different model to each variable in a compu-
tation, the next simulations use a common model for all the
variables so the results can be easily interpreted.

The first experiment evaluates the errors in ranges and
PDFs with respect to the exact results, called reference, ob-
tained from exhaustive simulation of the integer input space.

If Rr is the reference range which includesnr integers,
andRa is the approximate range withna integers, it is ver-
ified thatRr � Ra, and the range error is computed as
�r = (na � nr)=nr.

Two types of errors are defined to evaluate PDF results.
The first one,�m, represents the difference of bar probabil-

ity masses between the exact and approximate PDFs when
compared in terms of the particular interval model. It is
computed with the following algorithm:

1. Represent the reference in terms of the interval model
as histogramh1.

2. Multiply by -1 the bar probabilities of the histogram
obtained using the interval model to build a histogram
h2 with negative bars.

3. Merge the intervals ofh1 andh2 to obtain a difference
histogramh3.

4. Compute�m = 1=2
P

N j prob j, whereN is the set
of model maxintervals andprob is the probability of
each bar ofh3.

The factor1=2 in step 4 accounts for the fact that each mis-
placed result causes a difference in the histograms of twice
its probability. The relative error introduced by independent
range computation is obtained similarly but overall ranges
are considered instead of theN maxintervals. The previous
algorithm compares histograms in terms of the probability
of each output bar, so�m is relative to the model under con-
sideration and values from different models cannot be com-
pared.

The other type of PDF error,�i, is defined in order to
compare results from different models. It is computed using
a similar algorithm, but instead of representing the reference
in terms of the interval model, the histogram obtained using
the interval model is represented in terms of the reference
(individual integer values) before obtaining the difference
histogramh3. Of course, this yields large errors because
the interval models are not expected to be accurate at the
level of individual integers, but allows comparison across
models. It should be noted that in the case of independent
range computation�m = �i.

The benchmarks used in this experiment are the follow-
ing simple arithmetic expressions frequently used in data
computations.

f1 = a(a+ b)

f2 = (a+ b)(a� b)

f3 = K(a� b) + ab

f4 = (a+ b)2 � ab

Moderate integer input spaces must be considered so ex-
haustive simulations to obtain the references can be per-
formed in reasonable times. Expressions with only two in-
puts are used, so ranges are the dominant factor in the in-
put space sizes and results are not masked by the effect of
more inputs. 8-bit inputs uniformly distributed in the range
[�128; 127] are used. The constantK in f3 is also set to
128.

Output results are collected in table 1. Intermediate re-
sults are not included due to space limitations. Model cen-

4



fi;g Range �r �m �i Time
f1;ref [�4096; 32768] - - - 99.6
f1;10 [�4692; 32768] 0.02 0.14 0.57 18.8
f1;100 [�12573; 32768] 0.23 0.29 0.67 0.4
f1;2 [�8128; 32768] 0.11 0.08 0.60 0.4
f1;4 [�8128; 32768] 0.11 0.12 0.61 0.1

f1;ind [�32512; 32768] 0.77 0.83 0.83 0.0
f2;ref [�16384; 16384] - - - 127.5
f2;10 [�17399; 17399] 0.06 0.18 0.64 31.5
f2;100 [�28829; 28829] 0.76 0.34 0.77 0.6
f2;2 [�18336; 18336] 0.12 0.16 0.68 0.6
f2;4 [�21392; 21392] 0.31 0.13 0.70 0.2

f2;ind [�65280; 65280] 2.98 0.93 0.93 0.00
f3;ref [�48896; 16384] - - - 179.6
f3;10 [�48896; 18416] 0.03 0.19 0.62 70.4
f3;100 [�48896; 28956] 0.19 0.25 0.70 1.2
f3;2 [�48896; 28416] 0.18 0.16 0.66 0.7
f3;4 [�48896; 28544] 0.19 0.06 0.67 0.2

f3;ind [�48896; 49024] 0.50 0.82 0.82 0.0
f4;ref [0; 49152] - - - 180.5
f4;10 [�77; 51136] 0.04 0.24 0.79 88.6
f4;100 [�9797; 55536] 0.33 0.29 0.83 1.8
f4;2 [0; 60420] 0.23 0.05 0.80 0.8
f4;4 [�2945; 61440] 0.31 0.10 0.83 0.2

f4;ind [�16384; 81920] 1.00 0.93 0.93 0.0

Table 1. Range and PDF errors

ters are always[0; 0], so models are identified by their gran-
ularities,g, which are included as an index in the name of
the benchmark,fi;g . In the table, granularities 10 and 100
correspond to linear models, while 2 and 4 correspond to ge-
ometric models. The wordsref andind are used to identify
exhaustive integer simulation and independent range com-
putation respectively. CPU times are expressed in seconds.
They are given only for relative comparison since new de-
velopments in the tool are showing that these values can be
substantially reduced.

It is observed that independent range computation gen-
erates oversized ranges that can be very costly in data-path
implementations. Although the impact on bit-widths is rel-
atively small when these expressions are evaluated alone,
it is clear that the differences can increase when these ex-
pressions are part of more complex computations. Results
also show that linear models have small range errors ifg

is also small, but they are inefficient during the collection
process due to multiplications and exponentiations, leading
to long simulation times. Errors increase substantially if
larger granularities are used. On the other hand, geometric
models provide great reductions in computation times while
preserving some of the features of the output PDFs, despite
the approximations in the split and merge operations and
the uniformity assumption. This PDF information can be
used to evaluate the impact of truncations. For example, the
range [0,60420] provided byf4;2 requires 16 bits. If a trun-
cation to 15 bits (range [0,32767]) is performed, the PDF
of f4;2 indicates that the probability mass being discarded
is 0.064, which is an acceptable approximation of the exact

0.035 obtained from the PDF off4;ref .
The next experiment compares the interval approach

based on geometric models (grains 2, 3 and 4) with the in-
dependent range computation method. In this case, larger
input spaces with more inputs are evaluated since no ex-
act reference is obtained and only range reductions are ana-
lyzed. The following expressions are estimated.

f5 = (a+ b)2=ab

f6 = (a� b)(b� c)(c� a)=K

f7 = (a+ b+ c+ d)(a+ b� c� d) + c(a+ b)

f8 = (ab+ c)(ad+ e)=a(b2 + d2)

Table 2 describes the input ranges used in the computation
and the corresponding integer input space sizes. The inter-
val input space sizes are presented in table 3. All these sizes
are given in vectors and provide an indication of the simu-
lation time and storage requirements for each method. The
value ofK in f6 is set to20482.

f Inputs Input Ranges Integer Vectors
f5 2 [-65536,65535] 1:7� 1010

f6 3 [-2048,2047] 6:8� 10
10

f7 4 [-512,511] 1:1� 10
12

f8 5 [-16,15] 3:3� 107

Table 2. Input characteristics

f g = 2 g = 3 g = 4

f5 1156 529 324

f6 13824 3375 2197

f7 8000 2197 1331

f8 100000 16807 7776

Table 3. Input space sizes

Again, uniform distributions in the input ranges are as-
sumed. As the number of inputs increases, smaller reduc-
tions of the input space size can be achieved and larger gran-
ularities must be used. An alternative approach would be to
divide the algorithm into blocks to be computed indepen-
dently as mentioned in the previous section.

The simulation results are shown in table 4. Independent
range computation produces oversized results in all cases.
In particular,f8 shows very significant differences due to
the fact that a division is included in the expression, as divi-
sions can cause large errors when the divisor includes small
values around 1 (the division does not reduce the range of
the dividend while, in reality, reductions might occur due to
dependencies). Inf7, granularity 4 provides better results
than granularity 3. This situation is not unique and has ap-
peared in some other tests showing that, in some cases, there
are granularities that seem more appropriate to estimate a

5



fi;g Range Time
f5;2 [�131064; 4:295 � 10

9
] 3.9

f5;3 [�177135; 4:295 � 10
9
] 1.7

f5;4 [�262128; 4:295 � 10
9
] 1.0

f5;ind [�1:718 � 10
10; 1:718 � 10

10
] 0.0

f6;2 [�4603; 4603] 81.9
f6;3 [�5273; 5273] 20.6
f6;4 [�5371; 5371] 11.9
f6;ind [�16372; 16372] 0.0
f7;2 [�1:766 � 10

6; 2:159 � 10
6
] 1365.7

f7;3 [�1:808 � 106; 2:195 � 106] 237.9
f7;4 [�1:768 � 10

6; 2:161 � 10
6
] 110.9

f7;ind [�4:713 � 10
6; 4:715 � 10

6
] 0.0

f8;2 [�272; 272] 749.9
f8;3 [�320; 320] 124,4
f8;4 [�465; 465] 52.6
f8;ind [�73441; 73441] 0.0

Table 4. Geometric models vs. ranges

particular expression. So, in general, it is recommended to
try several grains in the estimation process.

In the last experiment, the specification of a block from
a phase equalizer used in communication circuits (see ta-
ble 5) is synthesized with no optimization. The goal is
to evaluate the impact of bit-width estimates from (1) in-
dependent range computation and (2) the interval method
with a geometric model of grain 2 as they evolve in a spec-
ification. Table 5 shows the bit-widths estimates of some
of the variables involved when the inputs are modeled as
xi = x + �i, wherex 2 [�13; 12] and�i 2 [�3; 3], and
K = 16. The results from the synthesis show that using

Block Ind. g = 2

f1 = (x21 + x22 + x23)=K 8 8
f2 = (x1x2 + x2x3 + x3x4)=K 8 8
f3 = (x1x3 + x2x4 + x3x5)=K 8 8
g1 = (f21 � f22 )=K 10 10
g2 = f2(f3 � f1)=K 11 9
g3 = (f22 � f1f3)=K 11 9
g4 = (f21 � f23 )=K 10 10
h1 = (g1x3 + g2x2 + g3x1)=K 12 11
h2 = (g2x3 + g4x2 + g2x1)=K 11 10
h3 = (g3x3 + g2x2 + g1x1)=K 11 10
z1 = (h3x2 � h2x3 � h1x4)=K 14 12
z2 = (�h3x3 � h2x4 � h1c5)=K 14 12

Table 5. Expressions and bit-width estimates

the estimates from the interval method allows a 7.6% area
reduction and a 8.8% latency reduction in the implementa-
tion. While these numbers can be different when consider-
ing other inputs or other specifications, it is clear that esti-
mates from interval methods can improve significantly the
synthesized data-path.

6. Conclusions

We have presented an interval method for fast estima-
tion of ranges and histogram PDFs of arithmetic functions.
It is based on the definition of specific interval models, in-
cluding new geometric models that reduce the complexity
of the computation while keeping the errors in the estimates
within acceptable margins. The interval method computes
guaranteed bounds for intermediate and output ranges much
more accurate than those obtained from the independent
range computation of each operation. PDF information is
also provided and can be used when evaluating the impact
of range truncations. On the other hand, computation times
are significantly reduced with respect to times required for
exhaustive simulation using integers. Further research in
the application of the interval method in conjuntion with
the partitioning of the arithmetic specification is proposed
to achieve even shorter simulation times. Results show that
bit-width selections based on the range estimates provided
by this interval method can clearly improve the area and the
latency of data-path implementations with respect to those
based on independent range computations.

References

[1] N. Asaithambi, S. Zuhe, and R. Moore. On Computing the
Range of Values.Computing, 28:225–237, 1982.

[2] D. Berleant. Automatically Verified Reasoning with Both In-
tervals and Probability Density Functions.Interval Computa-
tions, 1993(2):48–70, 1993.

[3] C. Carreras, J. C. L´opez, M. L. López, C. Delgado-Kloos,
N. Martı́nez, and L. S´anchez. A Co-Design Methodology
Based on Formal Specification and High-Level Estimation.
In Proc. Workshop on HW/SW Co-Design, 1996.

[4] C. Carreras, I. Walker, O. Nieto, and J. Cavallaro. Robot Re-
liability Estimation Using Interval Methods. InMISC’99 In-
ternational Workshop on Applications of Interval Analysis to
Systems and Control, Girona, Spain, Feb 1999.

[5] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and
I. Bolsens. A Methodology and Design Environment for DSP
ASIC Fixed Point Refinement. InProceedings of the DATE,
pages 271–276, Paris, 1999.

[6] Eero Hyvonen. Evaluation of Cascaded Interval Functions. In
Proceedings of Intervational Workshop on Constrain-Based
Reasoning, 8th Florida AI Research Symposium, April 1995.

[7] H. Ratschek and J. Rokne.Computer Methods for the Range
of Functions. Ellis-Horwood, Chichester, 1988.

[8] W. Sung and K. Kum. Simulation-Based Word-Length Op-
timization Method for Fixed-Point Digital Signal Processing
Systems.IEEE Transactions on Signal Processing, 43:3087–
3090, 1995.

[9] M. Willems, V. Bursgens, H. Keding, T. Grotker, and
H. Meyr. System Level Fixed-Point Design Based on an In-
terpolative Approach. InProceedings of the DAC, pages 293–
298, Anaheim, CA, 1997.

6


	Main Page
	ISSS'99
	Front Matter
	Table of Contents
	Session Index
	Author Index


