
Efficient Scheduling of DSP Code on Processors with Distributed Register Files

Bart Mesmanyz Carlos A. Alba Pintoz Koen van Eijkz

y Philips Research Laboratories, WAY4, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
z Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands

Abstract

Code generation methods for digital signal processors
are increasingly hampered by the combination of tight tim-
ing constraints imposed by the algorithms and the limited
capacity of the available register files. Traditional meth-
ods that schedule spill code to satisfy storage capacity have
difficulty satisfying the timing constraints. The method pre-
sented in this paper analyses the combination of limited reg-
ister file capacity, resource- and timing constraints during
scheduling. Value lifetimes are serialized until all capacity
constraints are guaranteed to be satisfied after scheduling.
Experiments in theFACTS environment show that we effi-
ciently obtain high quality instruction schedules for inner-
most loops of DSP algorithms.

1. Introduction

The exponential growth in the number of gates that can
be integrated on a single chip has made the subject of em-
bedded systems the central focus of many design and re-
search groups. Next to commonly used microprocessors
such as MIPS and ARM, embedded digital signal proces-
sors (DSPs) comprise the performance backbone for ap-
plication domains such as communication and multimedia.
There are roughly two communities that attempt to design
embedded DSP processors: the people involved in applica-
tion domain specific instruction set processors (ASIPs) [9]
and retargetable compilers, and the companies that make
stand-alone DSPs such as TI and Motorola. Both commu-
nities have their specific ‘cultural heritage’:

ASIPs, primarily driven by criteria as code size, power
dissipation, and performance, often embed architectures
with highly irregular data-paths and relatively few registers.
Far from an ideal compiler target, 800% overhead in sched-
ule length and code size is not exceptional for ASIP com-
pilers [12]. Clearly there is a need for compilation methods
that can deal with such irregular data-paths, and especially
with a limitednumber ofdistributedregisters.

For stand-alone DSPs, performance and high-level pro-
grammability are considered most relevant. For compiling
high-level code, a relatively simple machine model is es-
sential, preferrably comprising an orthogonal instruction set
and a single large register file [1] that takes care of all com-
munication between functional units. Power dissipation,
code size, and required clock frequencies have made some
DSP companies topartition this register file in a number of
files [6] with a limited number of registers, and compilers
will have to be able to cope with that.

In both cases, scheduling and register binding fordis-
tributed, fixed register fileshas to be performed such that
potentially severetiming andresourceconstraints are satis-
fied. Traditional approaches deal with scheduling and reg-
ister binding in separate stages to reduce the complexity of
the problem. This introduces the problem ofphase cou-
pling: If register binding is performed before scheduling,
it is difficult to satisfy tight timing constraints, while if it
is performed after scheduling, there is not much freedom
anymore to reduce register pressure. Therefore, although
the separation of scheduling and register binding results in
methods that are run-time efficient, it makes it much more
difficult to cope with the interaction of timing, resource, and
register file capacity constraints.

The accepted way to deal with fixed register files in a
compiler is to do register spilling [3]: When the register
pressure is too high, values are selected that are written to a
(background) memory. The additional load and store opera-
tions require rescheduling and complicate satisfaction of the
timing constraints. Many designers schedule time-critical
code completely by hand. This requires extensive knowl-
edge of the processor architecture and instruction set and is
very time consuming.

In this paper, we present a new method to combine reg-
ister binding and scheduling that reduces the problem of
phase coupling. The general idea is to ‘alternate’ between
the two sub-problems of scheduling and register binding by
making a decision in the register binder and subsequently
analysing how that prunes the search space for schedul-
ing. This paper extends previous work [2] by also allowing

pipelined schedules.
Our method selectively serializes the lifetimes of values

residing in overloaded register files until it can guarantee
that any completion of the schedule will result in a feasible
register binding for every register file. Therefore it does not
unnecessarily reduce the freedom to also satisfy resource
and timing constraints. Also, more schedule freedom will
be sacrificed for register files that are more severely con-
strained (either by a small capacity or by a large number of
assigned values).

This paper is organized as follows. In Section 2 we will
start with some basic definitions and assumptions. In Sec-
tion 3 the problem statement is given, and the global solu-
tion strategy is proposed consisting of bottleneck identifica-
tion and lifetime serialization. These two components are
explained in more detail in the subsequent sections. Section
5 shows some experimental results.

2. Definitions and assumptions

A DSP application can be expressed as a data flow graph
(DFG) [7], which describes the primitive operations per-
formed in the algorithm, and the dependencies between
those operations.

Definition 1 (Data Flow Graph) A data flow graph DFG
is a triple (V,Ed [Es, w), where

� V is the set of vertices (operations),

� Ed � V �V is the set of data precedence edges,

� Es � V �V is the set of sequence precedence edges,
and

� w : Ed [Es ! Z is a function describing the timing
delay associated with each precedence edge.

For reasons of simplicity, we assume that all operations
have an execution delay of 1 clock cycle. In [11] it is shown
how pipelined and multi-cycle operations can be modeled
using precedence constraints.

The task of scheduling is to assign each operationv 2 V

a start times(v). These start times are constrained by the
precedences. A precedence edge(vi; vj) 2 Ed [Es states
thats(vj) � s(vi)+w(vi; vj). A chain of precedence edges
vi ! vk ! :::vl ! vj with total added weight d is called a
path, implyings(vj) � s(vi) + d.

Definition 2 Distance. The distanced(vi; vj) from opera-
tion vi to vj is the length of the longest path fromvi to vj .

A path in the graph thus represents a minimum tim-
ing delay. These distances are stored in adistance matrix,
which is calculated using a longest-path algorithm [4].

A schedule also has to satisfy the resource constraints.
In our approach, these constraints are modeled by introduc-
ing functional resources and associating a certain resource
usage with each operation [13]. We will not formalize these
resource constraints, because the focus of this paper is on
register binding. In our work we also considerpipelined
schedules [8] that execute with a period called theinitiation
interval II, whereII � l, the latency of the schedule.

3. Problem statement and global approach

In this section we will define our scheduling and regis-
ter binding problem. We will decompose the problem and
construct a block diagram of the global approach.

We assume a given binding of values to register files,
which is often implied by the binding of operations to fun-
tional units, and depends on the specific architecture of the
data-path. The binding of values to specific registers re-
mains and is the topic of this paper.

Problem Definition 1 Constrained Register Binding and
Operation Scheduling Problem. Given a cyclic data flow
graph (DFG), the resource constraints, a binding of values
to register files, for each register fileRF a fixed capacity
c(RF), an initiation interval II, and a latency l. Find an as-
signment of values to registers and a schedules that satisfy
the precedence constraints, the resource constraints, the ca-
pacity constraint, and the timing constraints II and l.

Because decisions have to be made that effect the feasi-
ble search space in both the domain of register binding and
the domain of scheduling, we decompose the problem in
separate phases as depicted in Figure 1.

The left part, the constraint analyzer, generates addi-
tional precedence constraints that are implied by the combi-
nation of all constraints, including the given register bind-
ing. These additional precedences refine the ASAP-ALAP
intervals, thus providing a much more accurate estimate of
the set of feasible start times. It consists of two different
analysis methods:execution interval analysis[13] andreg-
ister constraint analysis[10] and [11].

lifetime
sequencer

register
binder

constraint
analyzer

scheduler
values
fit in
regs?

no

yes

timing
precedence
resource constraints

Figure 1. Global approach

Cu

Pu

same reg

Cv

Pv
u u

v

v

Pu

Cu Pv

Cv

Figure 2. Value u must precede value v

The execution interval analysis considers precedence
and resource constraints. It refines each operation’s execu-
tion interval (the time interval in which the operation must
start its execution) from the initial ASAP-ALAP interval
by matching this interval to an interval in which the cor-
responding resources are available to this operation.

The register constraint analysis considers precedence, re-
source, and register binding constraints. It makes heavy use
of the distance matrix, introduced in section 2, in the fol-
lowing way: Often the minimum delay between two oper-
ations is not only constrained by the precedences but also
by resource or register constraints. A series of rules rec-
ognize the most occurring of these situations, and increase
the minimum delay in the distance matrix correspondingly.
These rules thus provide conditions (in terms of minimum
distance) that are necessary for the feasibility of the register
binding constraints. One such rule is graphically depicted in
Figure 2. If valuesu andv must be allowed to use the same
register and there is a precedence between the producers of
u andv, then the lifetimes ofu andv can only be serialized
in the way indicated in Figure 2.

These analyses will guide the decisions made in the reg-
ister binder and the scheduler and often prevent them from
making decisions leading to infeasibility.

Based on the constraint analysis in Figure 1 an upper
bound on the required number of registers is computed for
a each register file (an exact figure is unknown because a
complete schedule is not yet determined). When the upper-
bound for each register file already respects the file’s capac-
ity, the additional precedences are transferred to a simple
off-the-shelf scheduler and register binder for completion.
However, in most cases and especially in the beginning of
the process, the schedule freedom of the operations will be
relatively large, resulting in many potential lifetime over-
laps, thus inevitably violating some register file’s capacity.
In this case the lifetime sequencer in Figure 1, discussed in
section 4, has to reduce the maximum number of overlap-
ping values, by identifying one or more pair(s) of values that
can be serialized. The constraint analyser subsequently cal-
culates the effect of this serialization on the schedule free-
dom of all operations. This is necessary to prevent the life-
time sequencer (in subsequent iterations) from making seri-
alizations that are not possible. The lifetime sequencer and

the constraint analyser alternate until the capacity of each
register file matches the worst-case requirements.

An advantage of this new approach is that in practice
a simple off-the-shelf scheduler and register binder can be
used to complete the schedule. As the scheduler and its
heuristics are not critical in this approach, we will not focus
on them in this paper.

4. Lifetime sequencing

In this section we show how potential conflicts between
pairs of values can be analysed before a complete sched-
ule is known. This analysis uses the distance matrix to de-
termine the ‘worst case’ lifetime overlap between values.
These potential conflicts are used to identify and solve a
bottleneck when some register file is in danger of being
overloaded. The bottleneck identification is based on a col-
oring of a ‘worst-case’conflict graph. Unlike traditional
methods, our method does not require that all lifetimes are
fixed when constructing the conflict graph.

4.1. Constructing a conflict graph

A conflict graph is an undirected graph CG(RF) =
(Vc;Ec), where the nodes inVc represent the values in reg-
ister file RF. There is an edge (u,v)2 Ec if the lifetimes
of u andv overlap, and there isno edge (u,v)2 Ec if the
lifetimes of u andv do not overlap. The triviality of the
latter remark soon fades when we try to construct a conflict
graph when the lifetimes are not fixed yet. Consider Fig-
ure 6 without folding (II� l); not two, but three different
relations may exist between two values:

� There is no overlap. This is the case e.g. for values a
and c. We say that a and c haveno conflict.

� There is overlap for sure. This is the case e.g. for val-
ues a and b in the clock cycle that operation C executes.
We say that a and b have astrongconflict.

� Unknown. This is the case e.g. for values b and e: if
operation E precedes operation C by at least one clock
cycle, b and e overlap. If not, b and e have no over-
lap. Since it is not yet determined whether or not E
precedes C, it is simply unknown if b and e overlap.
We say that b and e have aweakconflict.

For our purposes the following is the essential difference
between a strong and a weak conflict: Values with a strong
conflict can never reside in the same register, but values with
a weak conflict can still be serialized. Serializing does have
the drawback that schedule freedom is taken away: because

some distances increase (some paths get longer), the mobil-
ity of individual operations is affected. This is disadvanta-
geous because intuitively it becomes ’harder’ to find a fea-
sible schedule. Therefore we want to select carefully which
values to serialize, such that on the one hand, the number
of weak conflicts in a potentially overloaded register file is
reduced, and on the other hand, enough schedule freedom
is left for processing subsequent overloaded register files.
For this purpose it is convenient to have a clear criterion for
each of the three possible relations between valuesu and
v. Suppose that valueu is produced by operationPu and
consumed byCu, and valuev is produced by operationPv

and consumed byCv . In order to use the same rule both
for the non-folded and the folded case, we also assume the
following; There is always a latency constraintl, no matter
how weak. For every A2 V and B2 V n sink, d(A,B) is re-
stricted to�l � d(A;B) � l� 1, and if there is no folding
II is set atl.

4.1.1 No conflict

Valuesu andv have no conflict if their lifetimes can never
overlap. There is no overlap between valuesu andv if and
only if the lifetime ofv is exactly contained in the interval
in between two successive lifetimes ofu. This is depicted
graphically in Figure 3. This situation is recognized by the
following lemma:

Lemma 1 Valuesu and v have no conflict iff there ex-
ist iterations i and j such that d(Cu

i ;P
v
j) � 0 and

d(Cv
j ;P

u
i+1) � 0.

For the non-folded case we have eitheri = j or i = j+1.
This corresponds to the case that eitherCu precedesPv

by at least 0 clock cycles (a value may be read and subse-
quently overwritten in the same clock cycle) orCv precedes
Pu by at least 0 clock cycles. Because we like to use the
distance matrix for checking a conflict, we derive Lemma 2
which is equivalent to Lemma 1, as proven in the appendix.

Lemma 2 Valuesu andv have no conflict iff�
d(Cu;Pv)

II

�
+

�
d(Cv ;Pu)

II

�
� �1 (1)

time

Pi
v

Ci
v

vi

Pi 1–
u

Ci 1–
u

Pi
u

Ci
u

Pi 1+
u

Ci 1+
u

Figure 3. Values u and v have no conflict

time

Pi
v

Ci
v

vi

Pi 1–
u

Ci 1–
u

Pi
u

Ci
u

Pi 1+
u

Ci 1+
u

Figure 4. Values u and v have a strong conflict

4.1.2 Strong conflict

Valuesu andv have a strong conflict if their lifetimes over-
lap for sure. There is overlap between valuesu andv if and
only if the lifetime ofv can never be exactly contained in
the interval inbetween two successive lifetimes ofu. This
is depicted graphically in Figure 4. This situation is recog-
nized by the following lemma:

Lemma 3 Valuesu and v have a strong conflict iff there
exist iterationsi and j such thatd(Pu

i ;C
v
j) � 1 and

d(Pv
j ;C

u
i) � 1.

For the non-folded case we havei = j. This corresponds
to the case wherePu precedesCv by at least one clock cy-
cle and Pv precedesCu by at least one clock cycle. In
Figure 6 for example, values a and b have a strong conflict,
as depicted in Figure 5. Because we like to use the distance
matrix for checking a conflict, we derive Lemma 4 which is
equivalent to Lemma 3, as proven in the appendix.

Lemma 4 Valuesu andv have a strong conflict iff
�
d(Pu;Cv)� 1

II

�
+

�
d(Pv ;Cu)� 1

II

�
� 0 (2)

4.1.3 Weak conflict

There is weak overlap if the inequalities 2 and 1 are invalid.
In Figure 6 for example, values a and e weakly overlap, as
depicted in Figure 5.

4.2. Coloring and bottleneck identification

In the previous subsection we showed how to construct a
conflict graph with three possible relations between values.
In this subsection we use the conflict graph to identify two
valuesu andv that should be serialized in order to reduce
the potential overload on the corresponding register file.

a b

c

de

f

a b

c

de

f

a) b)

Figure 5. Conflict graph for Figure 6. A drawn
edge means strong overlap. A dashed edge
means weak overlap. All values are mapped
on one register file. a) not folded b) II=2

We make two different conflict graphs: a weak conflict
graph WCG, that includes both weak and strong conflicts,
and a strong conflict graph SCG, that includes only strong
conflicts. We color both conflict graphs by applying the
exact sequential coloring algorithm from [5]. Coloring the
weak conflict graph gives a ’worst case’ coloring based on
the worst case overlap. Coloring the strong conflict graph
gives a ’best case’ coloring based on the minimum overlap.
From this coloring we extract for each nodew in the conflict
graph thesaturation number, the number of different colors
in the neighbourhood ofw (the nodes connected tow in the
conflict graph).

The choice of valueu is based on the highest satura-
tion number in WCG, the weak conflict graph. Since there
may be a lot of values with the same saturation number in
WCG (especially in the beginning of the search process, see
Figure 5b), highest saturation number in the strong conflict
graph is used as a second criterion. This yields a valueu

that is a bottleneck in the coloring.
The first criterion for choosing valuev is also the highest

saturation number in WCG, because we are only interested
in potential bottlenecks. The second criterion however is the
lowestsaturation number in the strong conflict graph, SCG.
The rationale behind this last criterion is that valuev should
be such that it has a lot of freedom to serialize with other
values. The alternative is that both valuesu andv are fun-
damental bottlenecks, which would imply that two values
with long lifetimes are pushed in the same register, which is
clearly not a wise decision. Furthermore, we maintain the
restriction thatu andv have a weak conflict, because strong
conflicts cannot be serialized, and values having no conflict
need not to be serialized.

We will use the example in Figure 6 to illustrate the bind-
ing process. The distance matrix after resource constraint
analysis is given in the same figure. It is used to construct
the conflict graph in figure 5b). Because the worst case con-
flict graph is complete, the priority function will generate a
choice ofu andv which is as sensible as any other. Suppose

BA

C

G

sink

source

ED

F

a b

c

d e

f

II=2
latency=7

Resource conflicts:

A-D
B-E
C-F
D-G

-7

A B C D E F G
A
B
C
D
E
F
G

0
-1
-2
-3
-4
-5
-6

0
0
-2
-3
-3
-5
-6

1
1
0
-2
-2
-3
-5

3
2
1
0
-1
-2
-3

3
3
1
0
0
-2
-3

4
4
3
1
1
0
-2

6
5
4
3
2
1
0

Figure 6. Example of a precedence graph and
the corresponding distance matrix after re-
source constraint analysis

0
1
2
3
4
5
6

time
0
1
2
3
4
5
6

A B
C

DE
F

G

A
B

C
D

E
F

G

reg1: a,e
reg2: b,d
reg3: c
reg4: f

OR

reg1: a,d
reg2: b,e
reg3: c
reg4: f

reg1: a
reg2: b,c
reg3: d
reg4: e,f

OR

reg1: a
reg2: b,e
reg3: c,f
reg4: d

a) b)

Figure 7. The only two feasible schedules for
the example of Figure 6

that values b and e are chosen. The constraint analysis ap-
plies the rule shown in Figure 2 on the distance B! E of 3
(k=1) to serialize C! E with a delay of 2 clock cycles, and
on the distance E! B of -3 (k=-2) to serialize F! B with
a delay of -4 clock cycles. The effect is that the four num-
bers that are printed in bold in the distance matrix in Figure
6 are increased by one clock cycle, and the conflict graph
is updated. Subsequently, values c and f are chosen. The
constraint analysis now reduces the mobility to zero, so the
schedule is fixed, as depicted in Figure 7b). There is also
another schedule with the initial choice to serialize b and
e, which explains the fact that there was still schedule free-
dom after this initial choice. For this particular example, the
choice of which values to serialize is not very crucial.

4.3. Decisions in serialization

Suppose that the decision is made that valuesu andv are
serialized. Let value u be produced by operationPu and
consumed byCu, and let value v be produced by operation
Pv and consumed byCv . Serializingu andv can be done
in two ways:Cu

! Pv orCv
! Pu. Often the constraints

are such that the constraint analyzer is able to exclude one of

these possibilities. If this is not the case, a decision should
be made. This decision is based on sacrificing the least pos-
sible schedule freedom; Let x=d(Cu;Pv) and y=d(Cv;Pu).
Thenx � 0 andy � 0, otherwiseu andv would already
have been serialized. Making a decision amounts to increas-
ing either x or y to zero. The least schedule freedom is sac-
rificed when the smallest increase is made, so if x�y we
serializeCu

! Pv, otherwiseCv
! Pu. If the constraint

analyzer detects infeasibility as a result of this choice, the
alternative serialization is taken. If that also yields infea-
sibility, extra sequence edges are introduced to explicitly
model thatu andv have a strong conflict, and another pair
of values is chosen to repeat the process.

5. Results

In this section, we present the experimental results ob-
tained with the proposed method. All experiments are run
on a machine with a 233 MHz Pentium II processor.

The proposed techniques are especially intended to han-
dle inner loops from DSP algorithms under tight timing con-
straints. As examples, we use the inner loop of a fast fourier
transform (FFT) algorithm, a fast discrete cosine transform
(FDCT) algorithm and a Loeffler algorithm that performs
an 8-point 1-dimensional inverse discrete cosine transform.
Each example is mapped to a relatively simple architec-
ture in which each resource type has a dedicated register
file. The characteristics of the various examples are shown
in Table 1. The latency shown in the third column is the
minimum latency obtainable for that constraint set. The ta-
ble also shows the results obtained by a branch-and-bound
scheduler [13] followed by a register binder based on ex-
act minimum graph coloring. These results are used as a
reference point for the method proposed in this paper.

To evaluate the proposed method, we have applied it to
the examples of Table 1 with various register file capac-
ity constraints. The branch-and-bound scheduler is used to
complete the partial schedule resulting from value lifetime
serialization. The results are shown in Table 2

For each problem instance, Table 2 lists the register
file capacity constraints, the run time (including the time
needed for scheduling), and the impact of serialization on
the mobility of the operations (the numbers before respec-

Table 1. Examples and reference results

example jV j, jEdj II / lat. time (s) RF sizes

fft256 30, 43 4 / 13 0.1 3, 3, 1, 2
fdct 42, 43 18 / 18 0.1 9, 4
loef 56, 57 26 / 28 0.4 8, 4, 10

Table 2. Results of proposed method

example RF caps time (s) mobility

fft256 1, 4, 1, 2 0.1 0:7! 0:3
2, 2, 1, 2 0.4 2:3! 0:0
2, 3, 1, 1 0.8 2:1! 0:0
3, 2, 1, 1 0.9 2:1! 0:0
4, 1, 1, 2 0.1 0:7! 0:4

fdct 9, 4 2.3 9:5! 4:0
6, 4 2.7 9:5! 2:0
8, 2 0.9 9:5! 1:4

loef 8, 4, 10 3.5 14:4! 3:1
4, 3, 8 4.9 14:4! 1:0

tively after the arrow denote the mobility before and af-
ter serialization). The mobility is defined as the average
difference between the as late as possible (ALAP) start
time and the as soon as possible (ASAP) start time of the
operations:1

jVj

P
vi2V

ALAP(vi) � ASAP(vi). Mobility
is a good indication of the schedule freedom.

The experimental results for the example fft256 clearly
show that the proposed method is steered by the individual
register file constraints; despite the presence of tight tim-
ing and resource constraints, the approach is able to gener-
ate many different schedules dependent on the settings of
the individual capacity constraints. We consider this fea-
ture very important for handling heterogeneous register file
architectures. By integrating the phases of scheduling and
register binding our method is also able to significantly re-
duce the register pressure compared to an approach that per-
forms register binding a posteriori. For the example ‘loef’,
this results in a reduction from 22 to 15 in the total number
of registers.

6. Conclusions and further research

In this paper, we presented a new approach for register
binding and scheduling in the context of distributed reg-
ister file architectures. Register file capacity constraints
are taken into account during the first phase of schedul-
ing, while there is still enough freedom to reduce register
pressure. Constraint analysis techniques are used to capture
the interaction between the precedence, timing and resource
constraints. By constructing a conflict graph that models the
strong and weak conflicts between values, the bottlenecks
for register binding are identified. These bottlenecks are
subsequently reduced by serializing value lifetimes. This
results in a partial schedule that can be completed by a con-
ventional scheduler without violating the register file capac-
ities. Although we have not directly addressed the problem

of spilling values to background memory, we feel that the
proposed method can help to avoid unnecessary spill code.

The results in section 5 show that our method is able
to satisfy register file capacities under tight timing and re-
source constraints. The method provides a good balance
between solution quality and run time efficiency.

A. Strong or no overlap

First we prove Lemma 2. LetPu
i denote theith execution

of Pu, the operation that produces valueu. Then Letk be
the largest value such thatd(Cu;Pv) � k � II and letl be
the largest value such thatd(Cv ;Pu) � l � II. Because
s(Ak) = s(A0)+k� II we have thatd(Cu;Pv) � k� II is
equivalent tod(Cu

k ;P
v
0) � 0, and thatd(Cv ;Pu) � l� II is

equivalent tod(Cv
0 ;P

u
k+1) � (k+1+ l)� II. Now Lemma

1 applies if and only if(k + 1 + l) � II � 0. Because
II� 0 this condition is equivalent tok + l � �1. Now by

definitionk =
j
d(Cu;Pv)

II

k
andl =

j
d(Cv;Pu)

II

k
, so equation

1 follows. Q.E.D.
Now we prove Lemma 4 on strong conflicts. Letk be the

largest value such thatd(Pu;Cv) � 1 + k � II and letl be
the largest value such thatd(Pv;Cu) � 1+ l� II. Because
s(Ak) = s(A0)+k�IIwe have thatd(Pu;Cv) � 1+k�II
is equivalent tod(Pu

k ;C
v
0) � 1, and thatd(Pv ;Cu) � 1 +

l � II is equivalent tod(Pv
0;C

u
k) � 1 + (k + l) � II. Now

Lemma 3 applies if and only if(k + l) � II � 0. Because
II� 0 this condition is equivalent tok + l � 0. Now by

definition k =
j
d(Pu;Cv)�1

II

k
, and l =

j
d(Pv;Cu)�1

II

k
, so

equation 2 follows. Q.E.D.

References

[1] Trimedia TM-1 Media Processor Data Book. Philips Semi-
conductors, Trimedia Product Group, 1997.

[2] C. A. Alba-Pinto, B. Mesman, and K. A. van Eijk. Register
files constraint satisfaction during scheduling of dsp code.
In Symposium on Integrated Circuits and Systems Design,
Natal, Brazil, Oct. 1999.

[3] G. Chaitin. Register allocation and spilling via graph color-
ing. In ACM Symposium on Compiler Construction, pages
98–105, 1982.

[4] T. Cormen, C. Leiserson, and R. Rivest.Introduction to al-
gorithms. MIT Press, 1990.

[5] O. Coudert. Exact coloring for real-life graphs is easy.
In Proceedings of the 34th ACM/IEEE Design Automation
Conference. ACM and IEEE Computer Society, 1997.

[6] P. Faraboschi, G. Desoli, and J. Fisher. Clustered
instruction-level parallel processors. Technical Report HPL-
98-204, Hewlett-Packard, 1998.

[7] D. Ku and G. D. Micheli, editors. High Level Synthesis
of ASICs Under Timing and Synchronization Constraints.
Kluwer Academic Publisher, 1992.

[8] M. Lam. Software pipelining: An effective scheduling
technique for vliw machines. InSIGPLAN Conference on
Programming Language Design and Implementation, June
1988.

[9] R. Leupers, W. Schenk, and P. Marwedel. Microcode gen-
eration for flexible parallel architectures. InWorking Con-
ference on Parallel Architectures and Compiler Technology,
1994.

[10] B. Mesman, M. Strik, A. Timmer, J. van Meerbergen, and
J. Jess. A constraint driven approach to loop pipelining and
register binding. InProceedings of the Design Automation
and Test in Europe, Paris, 1998. IEEE Computer Society
Press.

[11] B. Mesman, A. Timmer, J. van Meerbergen, and J. Jess.
Constraint analysis for dsp code generation.IEEE Transac-
tions on Computer-Aided Design, 18(1):44–57, Jan. 1999.

[12] P. Paulin and C. Liem. Embedded systems: Tools and
trends, tutorial. InProceedings of the European Design and
Test Conference, Paris, Mar. 1996. IEEE Computer Society
Press.

[13] A. Timmer, M. Strik, J. van Meerbergen, and J. Jess. Con-
flict modelling and instruction scheduling in code genera-
tion for in-house dsp cores. InProceedings of the 32nd
ACM/IEEE Design Automation Conference. ACM and IEEE
Computer Society, 1994.

	Main Page
	ISSS'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

