
Exploration and Synthesis of Dynamic Data Sets in Telecom Network
Applications

Ch. Ykman-Couvreur, J. Lambrecht, D. Verkest
IMEC, Kapeldreef 75, Leuven, Belgium

F. Catthoor, H. De Man
IMEC, Kapeldreef 75, Leuven, Belgium. Also prof. at Katholieke Univ. Leuven

Abstract
We present a new exploration and optimization

method to select customized implementations for dy-
namic data sets, as encountered in telecom network,
database and multimedia applications. Our method �ts
in the context of embedded system synthesis for such ap-
plications, and enables to further raise the abstraction
level of the initial speci�cation, where dynamic data sets
can be speci�ed without low-level details. Our method is
suited for hardware and software implementations. In
this paper, it mainly aims at minimizing the memory
power consumption, although it can also be driven by
other cost functions such as area or performance. Com-
pared with existing methods, it can save up to 2/3 of
the memory power consumption and 3/4 of the memory
area.

1 Introduction
To cope with the increasing complexity, the drastic in-

crease in communication speed, and the shortened time-
to-market of modern telecom network applications, new
system synthesis approaches are needed. The challenge
is now to design systems e�ciently, fast, and �rst-time
right. To this end, the abstraction level of the initial sys-
tem speci�cation must be raised, so that the designer is
not burdened unnecessarily by low-level details of the
�nal design. Also more e�cient system designs must
be achieved. This implies that e�cient exploration and
speci�cation re�nement must be provided at the system
level where the impact on area, performance, and power
is the most important.
For telecom network applications, as encountered in

middle layer protocol processing, the behavior is often
characterized by algorithms that operate on large and
irregular data structures, dynamically allocated and
stored in sets, as bu�ers or association tables. These
sets are called dynamic data sets in the sequel.
In embedded implementations of such telecom net-

work applications, a dominant bottleneck is the imple-
mentation of the used dynamic data sets. Indeed, to
store these sets, large storage capacities are required
and a large part of the design area is due to memory
units [2, 19]. Combined with these sets several basic
services such as set management (to insert, locate, or
remove data from a set) and memory management (to
dynamically (de)allocate memory) play a very impor-
tant role too. These services may consume up to 80%

of the processing time of the design [4, 22]. Finally,
due to intensive data storage and transfer required by
these services, the power consumption of the design is
dominated by the huge amount of memory accesses, as
demonstrated by recent work at IMEC [3], at Princeton
University [20], at Stanford University [14], and in the
IRAM project [15]. However this bottleneck is not su�-
ciently addressed in a systematic way in current system
design practice.

Association tables of records indexed by keys are typ-
ical dynamic data sets encountered in telecom network
applications. They can be implemented in many di�er-
ent ways. Primitive data structures (i.e. array, pointer
array, linked list, and binary tree) can be used. These
can also be combined into more complex layered imple-
mentations. More details can be found in [24]. In terms
of area, performance, and power, and dependent on the
application characteristics, a huge di�erence in cost be-
tween all these implementations has been experimented.
Therefore, to �nd the best implementation for an asso-
ciation table in terms of some cost function, the designer
has to explore the complete search space. This is not
possible without system-level estimations based on the
application characteristics, an e�cient exploration and
optimization method, and tool support.

To overcome this bottleneck, we propose a new ex-
ploration and optimization method at the system level
to select customized implementations for dynamic data
sets, especially oriented to association tables of records
indexed by keys. This method is suited for both hard-
ware and software implementations. It extends the pre-
liminary approach of [24]. It �ts in the context of our
Matisse system synthesis approach [5], where it is shown
that incorporation of dynamic data set synthesis allows
to achieve more e�cient system designs. Three telecom
network applications are used to illustrate the e�ciency
of our method. Two of them are components in ATM
switches: the multiplexer (MUX) core [11], and one op-
eration and maintenance component [9], called F4. The
third one is an important component in ATM backbone
networks: the Segment Protocol Processor (SPP) [19].
However, we believe that our method is general enough
to be applied not only to telecom network applications,
but also in many other domains, such as database and
multimedia applications, where dynamic data sets are
used to specify the data storage at a high abstraction

level.

The paper is organized as follows. Section 2 sum-
marizes the related work. Section 3 overviews the cost
function used to drive our exploration and optimiza-
tion. Section 4 characterizes the association table im-
plementations considered in our search space. Section 5
presents our method, and illustrates it on MUX core,
whereas Section 6 discusses the results. Section 7 ap-
plies our method to both other applications mentioned
above, F4 and SPP. Finally conclusions are drawn in
Section 8.

2 Related work

2.1 Dynamic data set synthesis

In programming theory [1], the primitive data struc-
tures (i.e. array, pointer array, linked list, and binary
tree) and hashing considered in our search space are
well-known. They are used in order to reach implemen-
tations either with high performance, or with low mem-
ory, but not with low power requirements. Moreover
neither exploration nor optimization is automated.

For telecom network applications, the overall search
space and a preliminary exploration and optimization
method are presented in [24]. This selects layered im-
plementations for association tables of records indexed
by keys, obtained by combining the primitive data
structures previously mentioned, optimized for power,
and suited for hardware and software implementations.
However this still has several major limitations:

� The search space considered in the method is too re-
strictive, and in several telecom network applications,
the selected implementation is far from being optimal.
Although hashing and key splitting/merging are intro-
duced to characterize the search space, they are not
supported by the method, and the maximum number
of layers in the derived implementations is limited by
the number of keys in the initial application speci�ca-
tion.

� The cost of any implementation in the search space
can be incorrectly estimated, and erroneous decisions
can be taken through the exploration. This is due to
the following reasons:

- Dependencies between keys in the initial application
speci�cation are not taken into account.

- All key values are assumed to be uniformly dis-
tributed. If not, keys must be hashed before applying
the method.

- Any key, any pointer is assumed to occupy one mem-
ory word. This assumption has become unnecessary. In-
deed, our synthesis of dynamic data sets �ts in the con-
text of Matisse, and relies on the subsequent optimiza-
tion method for data splitting/merging into memory
words [6], before generating an optimized distributed
memory architecture wherein dynamic data sets are
stored.

- The cost function relies too much on the storage
e�ciency, compared to the memory accesses, and does
not exactly model the relative power consumption.

2.2 System design practice
For control dominated applications, support for dy-

namic memory management is lacking. For data
ow
applications, current approaches namely concentrate on
synthesis of data
ow arithmetic. The array signal
streams present in DSP applications can be largely ana-
lyzed at compile time, and the proposed memory man-
agement techniques are not directly suited.
For dynamic data dominated applications, several

system synthesis approaches are available. Among
[7, 8, 10, 16, 17, 18, 21], several aspects are considered,
but no support for system-level synthesis of dynamic
data set is provided. Only Matisse [5] supports mem-
ory management for dynamic data sets, wherein [24] is
�tting.
In this paper, a new exploration and optimization

method is proposed, which extends the previous method
[24] as follows. It supports hashing and key split-
ting/merging, takes key dependencies into account, and
removes all previous assumptions on the keys. It is
driven by a cost function that estimates at the system
level the relative average power consumption of an im-
plementation alternative. This cost function takes the
application characteristics into account, and e�ciently
trades o� memory size and memory access in order to
select an implementation optimized for power.

3 Cost function
3.1 Cost model
In our embedded application domain, performance is

a hard constraint to be met, whereas area and power are
crucial cost factors and must be optimized. For many
of our applications, the major area and power are not
involved in the data paths and the controllers, but in
the global communication and the memory organization
[3, 23]. So it is important to focus on memory area and
power in system synthesis of such applications.
For on-chip memories, the power consumption of one

memory access increases with the memory size, i.e.
bitwidth and number of words. The dependency is be-
tween linear and logarithmic depending on the library
used. Several power models exist like capacitance mod-
els [12] and empiric models provided by memory man-
ufacturers. The power of the internal interconnect and
of the address calculation is still small (less than 20%)
compared to that of the internal memories and it can be
neglected in the system-level power estimations. For o�-
chip memories, the power consumption of one memory
access can be considered more or less independent from
the memory size, and a signi�cant portion goes into the
o�-chip communication. Hence power can be saved ei-
ther by reducing the number of memory accesses, or by
storing data into smaller on-chip memories [25].

3.2 Table implementation cost
The cost of any explored table implementation should

be a weighted sum of area and power of the correspond-
ing memory architecture. In the paper we focus on
power optimization.
For any table implementation, the average power con-

sumption depends on the record size, the average mem-

ory size of the table, the operations performed on the
table, and the average memory access number in ac-
cessing any table data. The power model we use is very
simple, but good enough for system-level estimations,
as illustrated in Section 6. Our method is driven by
a cost function, that estimates at the system level the
relative average power consumption of a table imple-
mentation using the formula: average memory size of
the table � (1+ average number of memory accesses to
locate any record in the table). Since in contrast to [24]
a key or pointer is not assumed to occupy one memory
word any more (see Section 2), the used memory size
unit is either the bit or the byte, not the memory word,
which allows �ner cost estimations.

3.3 Application characteristics
The main application characteristics relevant for our

method are available either at compile time or derived
from pro�ling information at the system level. For any
used association table of records indexed by keys, these
characteristics are: (1) The record size, the average
number of records stored in the table, and the average
number of accesses to any record in the table during its
lifetime. (2) The number of keys in the initial appli-
cation speci�cation, their size, their value distribution,
the average number of their active values in the table,
and the key dependencies. These application character-
istics are used to prune the exploration and to compute
the cost of any table implementation considered in our
search space, as illustrated in Sections 5 and 7.
MUX core experiments In this representative ap-

plication, one table is used, whose records (32 bit size)
are indexed by three keys independent from each other:
VPI (8 bit size), VCI (16 bit size), and port (8 bit
size). In the sequel, experiments are reported related to
two di�erent telecom networks where such MUX cores
are implemented: in network 1, the table contains 210

records, whereas in network 2, the table contains 213

records on average. Only the 10 least signi�cant bits
are used in VCI, and only one port is needed. Both
VPI and VCI (restricted to 10 bits) values are uniformly
distributed.

4 Table implementations
This section characterizes the layered implementa-

tions considered in our search space, with their respec-
tive cost function. To this end, the following notations
are used: sizerec = the record size, avgrec = the average
number of records stored in the table, sizek = the size
of key k, maxk = the maximum number of possible k
values in the table, avgk = the average number of active
k values in the table, avgk1jk2 = the average number of
active k1 values per k2 value in the table, sizeptr = the
pointer size.

4.1 One-layer implementations
Currently in our search space, the one-layer imple-

mentations cover the following primitive data struc-
tures: unordered linked lists, pointer arrays, or arrays
(see Figure 1). Ordered linked lists and binary trees give
rise to signi�cant performance overhead during record
insertion/removal in the table. They are not well-suited

record record record record...

key

NULL...

key key key

record record record record

record record record record

...
NULL NULLNULL

LL(key)

PA(key)

AR(key)

Figure 1: One-layer implementations

...

k2

LL(k1)

...

k2

PA(k1)

...

k2

AR(k1)

LL(k2)−LL(k1) LL(k2)−PA(k1) LL(k2)−AR(k1)

...

Indexed by k2

LL(k1)

...

Indexed by k2

PA(k1)

...

Indexed by k2

AR(k1)

PA(k2)−LL(k1) PA(k2)−PA(k1) PA(k2)−AR(k1)

Figure 2: Two-layer implementations

for applications characterized by stringent real-time re-
quirements and frequent data insertions/removals.
In the unordered linked list, denoted by LL(key), el-

ements are dynamically (de)allocated. Each of them
contains the key, the record itself, and a pointer to the
next element of the linked list. Within a long linked
list, a large number of memory accesses can be re-
quired to locate a record. The average memory size
is (sizeptr + sizek + sizerec) � avgrec, and the aver-
age number of memory accesses to locate a record is
avgrec� 11, so that the cost function is: cost(LL(k)) =
(sizeptr + sizek + sizerec) � avg

2
rec.

The pointer array, denoted by PA(key), is an array of
pointers to records. The pointer array stores a pointer
for each active key value. Key values don't need to be
stored since the key value corresponds with the position
of the pointer in the array. The average memory size is
sizerec � avgrec +2sizek � sizeptr, and only one memory
access is required to locate a record, so that the cost
function is: cost(PA(k)) = (sizerec � avgrec + 2sizek �
sizeptr) � 2.
The array, denoted by AR(key), reserves memory for

each record it can contain. Hence many memory lo-
cations are wasted if the average number of records
stored in the array is relatively small. The memory
size is 2sizek � sizerec, and no memory access is re-
quired to locate a record, so that the cost function is:
cost(AR(k)) = 2sizek � sizerec.
4.2 Two-layer implementations
They are obtained by combining primitive data struc-

tures, as illustrated in Figure 2. AR(k2)-LL(k1),
AR(k2)-PA(k1), and AR(k2)-AR(k1) are not considered:
they are indeed equivalent or even worse than those
shown in Figures 1 and 2. For each two-layer imple-
mentation, the cost function can be easily derived. As

1avgrec=2 key accesses + avgrec=2� 1 pointer accesses.

illustration, cost(LL(k2)-LL(k1)) = [avgk2 �(2�sizeptr+
sizek2)+ avgrec � (sizeptr+ sizek1 + sizerec)] � (avgk2 +
avgk1jk2).

4.3 r-layer implementations

They are also obtained by combining primitive data
structures, similarly to the two-layer implementations.
A general r-layer implementation is denoted by Lr(kr)-
Lr�1(kr�1)-...-L1(k1), where L1(k1) is the lowest layer,
Lr(kr) is the highest one, L1(k1) is either LL(k1), or
PA(k1), or AR(k1), and Lj(kj); 2 � j � r, is either
LL(kj) or PA(kj) (AR(kj) is not considered as for the
two-layer implementations). Its cost function can also
be derived in the same way.

5 Exploration and optimization method

For any association table of records indexed by n keys
k1, k2 ..., kn in the initial application speci�cation, the
problem is to �nd the best r-layer implementation in
terms of the cost function characterized in Section 3.
Exhaustive exploration of the complete search space of
multi-layer implementations is not possible. An e�cient
exploration and optimization method based on heuris-
tics and tool support is needed to derive at least near
optimal solutions.

Our method is described below. The �rst three steps
initialize the search space exploration. The next steps
successively explore one-layer implementations, two-
layer ones, three-layer ones, ..., until either the opti-
mal or a near optimal implementation is reached. Let
Spacer denote the search sub-space of r-layer implemen-
tations explored in our method. Each Spacer is exhaus-
tively explored, but for the reasons given below, Spacer
becomes more and more restricted, while r increases:

� As illustrated in our applications, the probability is
very high that the optimal implementation is either a
one- or a two- or a three-layer implementation. Hence
for 1 � r � 3, Spacer consists of all possible r-layer
implementations.

� From r � 4, even when the r-layer implementation
cost can still be minimized, the decrease is not signif-
icant any more. Indeed the memory access number is
still increasing, and is hardly compensated by a su�-
cient decrease of the memory size. Hence exhaustive
exploration becomes useless.

�Moreover the number of all possible r-layer implemen-
tations is increasing exponentially with r. Depending on
sizeki ; 1 � i � n, Spacer must be accordingly restricted
to keep our exploration tractable.

Our method is characterized by a minimization prob-
lem that can be potentially solved using tools asMatlab,
Simulated annealing, Tempered annealing, Hill climbing,
.... In this paper, our minimization problem is solved
using a symbolic formulation in Matlab [13], because it
is fast and gives very good results (see Section 6).

Step 1 Taking into account that higher keys are

accessed before lower ones while locating records in the
table, order ki; 1 � i � n; into on, ..., o2, o1 as follows:

1. oi depends on oj) i < j. This key ordering2 yields
less memory accesses to locate records in the table.
2. avgoi=maxoi > avgoj=maxoj) i < j. This key
ordering allows to use the memory allocated for the im-
plementation of the lower layers as e�ciently as possi-
ble. Since lower layers generally contain more data than
higher layers, this yields lower memory size of the table.
MUX core experiments The key ordering is ir-

relevant since VPI, VCI, and port are independent from
each other, and their values are uniformly distributed.

Step 2 Hash each key oi; 1 � i � n, whose maxoi <

2sizeoi , or whose values are not uniformly distributed in
the interval [0; 2sizeoi [3. Let hi; 1 � i � n; denote the

hashed keys such that: 2sizehi = maxoi , and any hi
value is in the interval [0; 2sizehi [.
MUX core experiments In both networks 1 and

2, only 10 bits are used in VCI, and only one port is
needed. Hence VCI and port are hashed as follows: 0 �
hash(VCI) < 210, and hash(port) = constant. From now
on, for simplicity in the notations, VCI refers to this
hashed VCI, rather than to the one used in the initial
MUX core speci�cation.

Step 3 Concatenate all keys hn, ..., h2, h1 to form

one super-key K whose sizeK = sizehn + :::+ sizeh2 +
sizeh1, and avgK = avgrec. At the same time, for each
hi; 1 � i � n, derive freqhi such that

avghijhn;::::hi+1 = 2sizehi=freqhi ; 1 � i < n,

avghn = 2sizehn=freqhn ,
taking into account that
avgrec = avghn � ::: � avgh2jhn;::::h3 � avgh1jhn;::::h2 ,

which can be derived from the application characteris-
tics. These freqhi ; 1 � i � n, are needed to compute
the cost of any r-layer implementation.
MUX core experiments sizeK = 18 bits. Since

VPI and VCI values are independent from each other
and uniformly distributed, freqVPI = freqVCI = p, and
for any splitting of K into kr; :::; k2; k1, freqki ; 1 � i �
r;= p too. In network 1,

avgrec = 210 = 28=p � 210=p) p = 18=10 = 1:8,
whereas in network 2,

avgrec = 213 = 28=p � 210=p) p = 18=13 = 1:4.

Step 4 Step 4 successively explores Space1, Space2,

and Space3, which consist respectively of all one-, two-,
and three-layer implementations.
First explore the one-layer implementations among

LL(K), PA(K), and AR(K), as de�ned in Section 4.1,
and select the best one. Then explore the two-layer
implementations L(k2)-L(k1), as de�ned in Section 4.2,
and select the best one, which is the solution of the fol-
lowing minimization problem: MINsizek2+sizek1=sizeK

(cost(LL(k2)-LL(k1)), cost(LL(k2)-PA(k1)),
cost(LL(k2)-AR(k1)), cost(PA(k2)-LL(k1)),
cost(PA(k2)-PA(k1)), cost(PA(k2)-AR(k1))). Finally

2For simplicity in the paper, it is assumed that the key depen-
dency is an anti-symmetric relation.

3In this case further research is still needed to systematically
derive the best-suited hash function.

explore the three-layer implementations L(k3)-L(k2)-
L(k1), as de�ned in Section 4.3, and select the best one.
This is also the solution of a minimization problem, sim-
ilar to the previous one, where sizek3+sizek2+sizek1 =
sizeK.
Let BestImpl and BestCost denote the best imple-

mentation reached so far, and its cost.
MUX core experiments The best one-, two-, and

three-layer implementations for both networks 1 and 2
are reported in Table 1.

Selected Average
table memory Table

implementations size (bit) cost
netw1 AR(18) 8 388 608 8 388 608

PA(12)-AR(6) 339 136 678 272
PA(9)-PA(5)-AR(4) 161 513 484 538

netw2 AR(18) 8 388 608 8 388 608
PA(13)-AR(5) 948 639 1 897 277

PA(10)-PA(5)-AR(3) 652 755 1 958 264

Table 1: Selected implementations in Step 4

Step 5 Assume that the selected two- and three-

layer implementations from Step 4 are: Two(k2)-
Two(k1) and Three(l3)-Three(l2)-Three(l1). Then in
contrast to Step 4, Space4 becomes restricted and con-
sists only of the four-layer implementations:
� generated from Two(k2)-Two(k1), by simultaneously
replacing Two(ki); i = 1; 2; into two-layer implementa-
tions L(ki2)-L(ki1), where sizeki2 + sizeki1 = sizeki ;
� generated from Three(l3)-Three(l2)-Three(l1), by suc-
cessively replacing Three(li); i = 1; 2; 3, into a two-layer
implementation L(li2)-L(li1), where sizeli2 + sizeli1 =
sizeli .
Select the best implementation in Space4, which is

again the solution of a minimization problen formulated
and solved in Matlab. If the cost is � BestCost, then
the exploration stops and outputs BestImp as the best
reached implementation. If the cost is < BestCost,
then BestImp and BestCost are updated, and this se-
lected four-layer implementation is the next starting
point for further exploration in Step 6.
MUX core experiments For network 1, the follow-

ing implementations are explored:
L(j2)-L(j1)-L(i2)-L(i1), where sizej2 + sizej1 =

12 bits and sizei2 + sizei1 = 6 bits,
L(j2)-L(j1)-PA(5)-AR(4), where sizej2 + sizej1 =

9 bits,
PA(9)-L(j2)-L(j1)-AR(4), where sizej2 + sizej1 =

5 bits,
PA(9)-PA(5)-L(j2)-L(j1), where sizej2 + sizej1 =

4 bits.
For network 2, similar implementations are explored.
The best implementations reached in each case are re-
ported in Table 2. For both networks 1 and 2, the mem-
ory size is still decreasing, but only slightly, so that the
cost cannot be decreased any more. Hence the explo-
ration stops, and outputs PA(9)-PA(5)-AR(4) for net-
work 1, and PA(13)-AR(5) for network 2. It can be

shown that both implementations are the optimal ones
respectively for networks 1 and 2.

Reached Average
table memory Table

implementations size (bit) cost
netw1 PA(7)-PA(5)-PA(3)-AR(3) 127 844 511 375

PA(5)-PA(4)-PA(5)-AR(4) 149 664 598 656
PA(9)-PA(3)-PA(2)-AR(4) 149 941 599 763
PA(9)-PA(5)-PA(2)-AR(2) 137 920 551 681

netw2 PA(9)-PA(4)-PA(2)-AR(3) 615 624 2 462 497
PA(6)-PA(4)-PA(5)-AR(3) 632 356 2 529 424
PA(10)-PA(2)-PA(3)-AR(3) 623 000 2 491 999
PA(10)-PA(5)-PA(1)-AR(2) 687 721 2 750 885

Table 2: Best reached implementations in Step 5

Step 6 For any r � 4, assume that BestImp

is an r-layer implementation. Then Spacer+1 is re-
stricted to the r+1-layer implementations generated
from BestImp, by successively replacing each layer into
a two-layer implementation. It is similarly explored as
in the previous step. The exploration stops when no
better implementation is found. However, in practice
it is observed that the exploration always stops before
executing this step, and the optimal implementation is
always reached for cases where an exhaustive search is
still feasible to verify this.

6 Discussion of the results
To illustrate that the cost function is a valid estima-

tion of the relative average power consumption in our
method, let us compare this cost function with some
empiric low-level power model4. Results are reported
in Table 3. First estimations derived from this model
are shown for all selected implementations during the
exploration related to both networks 1 and 2. Then
the ratio between table costs (from Table 1 and Ta-
ble 2) and these power estimations is computed, and it
remains relatively constant.

Memory Table cost/
power memory power

netw1 AR(18) 1 901 4 412
PA(12)-AR(6) 154 4 407

PA(9)-PA(5)-AR(4) 110 4 405
PA(7)-PA(5)-PA(3)-AR(3) 116 4 401

netw2 AR(18) 1 901 4 412
PA(13)-AR(5) 430 4 410

PA(10)-PA(5)-AR(3) 444 4 410
PA(9)-PA(4)-PA(2)-AR(3) 558 4 410

Table 3: Comparison between power and cost

To illustrate that optimized implementations are
strongly dependent on the application characteristics,
let us derive from the industrial model both memory
area and power of the best reached implementations

4Industrial memory area/power model from 1996, assuming
an embedded SRAM in 0.7 micron CMOS technology, with 1
read/write port, whose area unit is mm2 and power unit is
mW=sec, and extrapolated above 50 mm2.

when used in both networks 1 and 2. Results are
reported in Table 4. These show that PA(9)-PA(5)-
AR(4) (resp. PA(13)-AR(5)) can really not be used in
network 2 (resp. network 1).

Memory
power

netw1 PA(9)-PA(5)-AR(4) 110
PA(13)-AR(5) 188

netw2 PA(13)-AR(5) 430
PA(9)-PA(5)-AR(4) 459

Table 4: Impact of application characteristics

To illustrate the e�ciency of our method, let us com-
pare it with the one presented in [24]. Results are re-
ported in Table 5. After hashing of both VCI and port,
the best implementations reached by the method [24]
are: PA(VPI)-AR(VCI) for network 1, and PA(VCI)-
AR(VPI) for network 2. Both memory area and power
are derived from the industrial model, for the best im-
plementations reached by both methods. These show
that key splitting/merging in selecting optimized im-
plementations is really a must in our telecom network
applications.

Memory Memory
area power

netw1 Hash + [24] PA(VPI)-AR(VCI) 601 327
Our meth. PA(9)-PA(5)-AR(4) 135 110

netw2 Hash + [24] PA(VCI)-AR(VPI) 1 047 570
Our meth. PA(13)-AR(5) 791 430

Table 5: Comparison between [24] and our
method

To illustrate the e�ciency of our method, CPU time
to run the corresponding Matlab script on a HP 9000
Series workstation has been measured. This takes 1.1
sec to output the optimized implementation for both
networks 1 and 2.

7 Other applications
This section summarizes the results of our method

applied to association tables used in F4 and SPP.

7.1 ATM switch component (F4)
Two small tables are used, whose records (320 bit

size and 56 bit size respectively) are indexed by VPI (8
bit size). Since F4 and MUX core are both ATM switch
components, network 1 fromMUX core experiments can
be considered also here.
VPI should not be hashed, and freqVPI = 1:8 (resp.

1:4) in network 1 (resp. network 2). Exploration results
compared with those obtained from [24] are reported
in Table 6. For both tables, the best implementation
reached by our method is a two-layer one, which also
happens to be the optimal one.

7.2 Segment Protocol Processor (SPP)
One large table is used, whose records (384 bit size)

are indexed by two keys independent from each other:

Memory Memory
area power

Tab1 PA(8) 13 7
PA(7)-AR(1) 11 6

PA(4)-PA(3)-AR(1) 9.3 8
PA(4)-PA(2)-LL(1)-AR(1) 9 10

[24] PA(8) 13 7
Tab2 AR(8) 12 3

PA(5)-AR(3) 3.4 2.0
PA(3)-PA(3)-AR(2) 2.8 2.5

PA(3)-PA(3)-LL(1)-AR(1) 2.7 3
[24] AR(8) 12 3

Table 6: F4 exploration and comparison with [24]

a multiplexing identi�er MID (10 bit size) and a local
identi�er LID (7 bit size). Experiments are done rela-
tively to two di�erent telecom networks too: in network
1, the table contains 213 records, whereas in network 2,
the table contains 216 records on average. From pro�l-
ing information at the system level, it is observed that
all MID values and only half of LID values are simulta-
neously active.
The selected key ordering is: LID, MID, but none of

the keys need to be hashed. sizeK = 17 bits. Since
only half (i.e. 26) of LID values and all MID values are
used, in network 1

avgrec = 213 = 26 � 210=freqMID ,
so that freqLID = 7=6 = 1:2 and freqMID = 10=7 = 1:4,
whereas in network 2,

avgrec = 216 = 26 � 210=freqMID ,
so that freqLID = 7=6 = 1:2 and freqMID = 10=10 = 1.
Exploration results compared with those obtained from
[24] are reported in Table 7. For both networks, the
best implementation reached by our method is again a
two-layer one, and also happens to be the optimal one.

Memory Memory
area power

netw1 PA(17) 6 117 1 676
PA(15)-AR(2) 4 847 1 328

PA(12)-PA(4)-AR(1) 3 646 1 498
PA(9)-PA(3)-PA(4)-AR(1) 3 586 1 965
[24] PA(LID)-PA(MID) 4 373 1 797

netw2 AR(17) 41 943 5 744
PA(7)-AR(10) 20 975 5 745

PA(4)-PA(3)-AR(10) 20 974 8 618
PA(1)-PA(3)-PA(3)-AR(10) 20 974 11 490
[24] PA(LID)-AR(MID) 20 975 5 745

Table 7: SPP exploration and comparison with
[24]

8 Conclusions
The major bottlenecks in embedded implementations

of telecom network applications, are generally the mem-
ory area and power. A large part of the area is due
to memory units, and the power consumption is heav-
ily dominated by the huge amount of memory accesses.
Hence the storage of the used dynamic data sets needs
to be optimized already at the system level, where the

impact on area, performance, and power is the most
important.
To this end we propose a new exploration and opti-

mization method to select implementations for associ-
ation tables of records indexed by keys, commonly en-
countered in telecom network applications. Our method
�ts in the context of embedded system synthesis for such
applications and enables to further raise the abstraction
level of the initial speci�cation, where dynamic data
sets can be speci�ed without low-level details. Com-
pared with existing realisations, it can save up to 2/3 of
the memory power consumption and 3/4 of the memory
area. In the future, we intend to extend our method to
other dynamic data sets, such as bu�ers, sets of timers,
and pools of bu�ers shared among active connections
with di�erent qualities of services.

Acknowledgments This work is funded by the European
commission in the Esprit project No. 21929 (Media). We thank A. He-
mani from Royal Institute of Technology Stockholm and G. De Jong
from Alcatel, for providing us the speci�cation of the MUX core, the
F4, and the SPP. We also thank S. Wuytack from IMEC Leuven, for
many insightful discussions.

References
[1] A.V. Aho et al. Data Structures and Algorithms.

Addison-Wesley, 1983.

[2] J.-Y. Le Boudec. The asynchronous transfer mode: a
tutorial. Computer Networks and ISDN Systems, 24,
1992.

[3] F. Catthoor et al. Global communication and memory
optimizing transformations for low power signal process-
ing systems. In VLSI Signal Processing VII, IEEE Press,
New York, 1994.

[4] D. Clark et al. An analysis of TCP processing overhead.
IEEE Communications Magazine, June 1989.

[5] J.L. da Silva et al. E�cient system exploration and syn-
thesis of applications with dynamic data storage and in-
tensive data transfer. DAC'98.

[6] P. Ellervee et al. Exploiting data transfer locality in
memory mapping. Submitted to EUROMICRO'99.

[7] A. Jantsch et al. Hardware/software partitioning and
minimizing memory interface tra�c. EDAC'94.

[8] M. Heddes. A Hardware/Software Codesign Strategy for
the Implementation of High-Speed Protocols. PhD thesis,
Technische Universiteit Eindhoven, 1995.

[9] A. Hemani et al. Design of operation and maintenance
part of the atm protocol. Journal on Communications,
Hung. Sc. Society for Telecommunications, special issue
on ATM networks, 1995.

[10] K. Higuchi et al. Innovative system-level design envi-
ronment based on FORM for transport processing sys-
tem. EDTC'98.

[11] W. Horn. Modelling of an ATM Multiplexer in a Net-
work Terminal for a Mixed Hardware/Firmware Imple-
mentation. PhD thesis, ESDLab/KTH, Stockholm, May
1998.

[12] P. Landman et al. Black-box capacitance models for ar-
chitectural power analysis. Int. workshop on Low Power
Design, 1994.

[13] MATLAB. http://www.mathworks.com/.

[14] T.H. Meng et al., Portable video-on-demand in wireless
communication. IEEE Proceedings, special issue on low
power electronics, April 1995.

[15] D.A. Patterson et al. Intelligent RAM(IRAM): chips
that remember and compute. IEEE Int. Conf. on Solid-
State Circuits, 1997.

[16] A. Seawright et al. A system for compiling and debug-
ging structured data processing controllers. EDAC with
EURO-VHDL, 1996.

[17] B. Svantesson et al. An e�cient scheme for hard-
ware implementation of processes with multiple active
instances. NORCHIP'97.

[18] B. Svantesson et al. A methodology and algorithms
for e�cient interprocess communication synthesis from
system descriptions in SDL. Int. Conf. on VLSI Design,
1998.

[19] Y. Therasse et al. VLSI architecture of a SDMS/ATM
router. Annales des Telecommunications, 48(3-4), 1993.

[20] V. Tiwari et al. Instruction-level power analysis and
optimization of software. Journal of VLSI Signal Pro-
cessing, 13, 1996.

[21] P.H.A. van der Putten et al. Object-oriented co-design
for hardware/software systems. EUROMICRO'95.

[22] R. Watson et al. Gaining e�ciency in transport services
by appropriate design and implementation choices. ACM
Trans. on Comp. Syst., May 1987.

[23] S. Wuytack et al. Global communication and memory
optimizing transformations for low power systems. Int.
workshop on Low Power Design, 1994.

[24] S. Wuytack et al. Transforming set data types to power
optimal data structures. IEEE Trans. on CAD, June
1996.

[25] S. Wuytack et al. Memory management for embedded
network applications. IEEE Trans. on CAD, May 1999.

	Main Page
	ISSS'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

