
Loop Scheduling and Partitions for Hiding Memory Latencies�

Fei Chen Edwin Hsing-Mean Sha
Dept. of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556

Email: ffchen,esha g@cse.nd.edu
Tel: (219)631-8803 Fax:(219)631-9260

Abstract

Partition Scheduling with Prefetching (PSP)is a memory la-
tency hiding technique which combines the loop pipelining
technique with data prefetching. In PSP, the iteration space
is first divided into regular partitions. Then two parts of
the schedule, the ALU part and the memory part, are pro-
duced and balanced to produce an overall schedule with high
throughput. These two parts are executed simultaneously,
and hence the remote memory latency are overlapped. We
study the optimal partition shape and size so that a well bal-
anced overall schedule can be obtained. Experiments on
DSP benchmarks show that the proposed methodology con-
sistently produces optimal or near optimal solutions.

1 Introduction

Because CPU speed has increased dramatically compared
with memory speed, the slowness of memory hinders the
overall system performance. A well planned data prefetch-
ing scheme may reduce the memory miss penalty by over-
lapping the processor computations with the memory access
operations to achieve high throughput computation. Multi-
dimensional (MD) problems are of particular interests. These
problems, for example a large number of DSP applications,
are characterized by nested loops with uniform date depen-
dencies.Loop pipeliningtechniques are widely used to ex-
pose the instruction level parallelism so that a good schedule
with high throughput can be obtained.

In this paper, we develop a methodology calledPartition
Scheduling with Prefetching (PSP)algorithm which com-
bines the loop pipelining technique with a data prefetching
approach. This technique can be used in computational in-
tensive applications (especially multi-dimensional DSP ap-
plications) when two level memory hierarchies are existed.
These two level memory are abstracted as thelocal memory
and theremote memory. We assume it takes longer time to

�This work was partially supported by NSF MIP 95-01006, NSF MIP
97-04276.

access the remote memory than it does for the local mem-
ory. We also assume a process contains multiple ALUs and
multiple memory units. The ALUs are for doing the com-
putations. The memory units are special hardwares we in-
troduced for performing operations to prefetch data from the
remote memory to the local memory.

The partition (tiling) technique is incorporated into the
PSP algorithm. We partition the whole iteration space and
execute one partition at a time. The benefit is that data local-
ity is improved within the partition, and therefore the num-
ber of prefetching operations is reduced. We study the le-
gal partition shape and provide formulas for determining an
optimized partition size which guarantees a balanced overall
schedule. Furthermore, we estimate the requirement of local
memory size for executing this partition. The estimate gives
designers a good indication of local memory requirement.

Traditional prefetching schemes [2, 5, 6] can be hardware
or software based. They either only gave the dynamic
prefetching decisions or did not give the complete static
schedules. Partitioning the iteration space were not consid-
ered in those approaches either. Several multi-dimensional
loop pipelining techniques have been proposed. For exam-
ple, Passos and Sha proved that in multi-dimensional case
(or nested loops), full-parallelism for MDFGs can always be
achieved by using multi-dimensional retiming [4]. However,
none of the above research efforts include the prefetching
idea in their loop scheduling algorithms. Experiments are
done in many DSP benchmarks and the results are compared
with other scheduling algorithms, such aslist schedulingal-
gorithm andPBSalgorithm [1]. Experiments show that the
average length obtained by PSP is 26:7% of the one using
list scheduling and 60:9% of the PBS. Since partitioning is
not used in PBS, the result of our experiments also shows
that partitioning the iteration space is very important for op-
timizing the overall schedule.

2 Algorithm framework

Modeling the ALU computation

1

A nested loop of computation can be represented by a
multi-dimensional data flow graph(MDFG) [4]. An MDFG
G= (V;E;d; t) is a node- and edge-weighted directed graph,
whereV is the set of computation nodes,E�V�V is the set
of dependence edges,d is a function fromE to Zn represent-
ing the multi-dimensional inter-iteration dependency (delay)
between two nodes, wheren is the number of dimensions,
andt is a function fromV to positive integers representing
the computation time of each node.

 v3[x][y] = v1[x][y]+v2[x][y]*2;
 v2[x][y] = v3[x+1][y-1] * 0.2;
 { v1[x][y] = v3[x-1][y-1] + 5;
for (x= 1; x<=n; x++)

for (y = 1; y<=m; y++)

 }
(a)

1 2

3 (-1,1)(1,1)

(b)

(0,0) (0,0)

1 2

3 (-1,1)(0,1)

(c)

(1,0) (0,0)

Figure 1:(a) a code of nested loops; (b) corresponding MDFG; (c)
retimed MDFG.

The execution of all nodes inV one time represents an
iteration. An iteration is identified by a vector̂j , which
is equivalent to a multi-dimensional index starting from
(0;0; : : : ;0). Inter-iteration dependencies are represented by
vector-weighted edges. For any iterationĵ, an edgee from
u to v (u

e
! v) with delay vectord(e) means that the com-

putation of nodev at iteration ĵ depends on the execution
of nodeu at iteration ĵ � d(e). An edge with delay vector
(0;0; : : : ;0) represents a data dependency within the same it-
eration. Figure 1(a) is an example code of a nested loop, with
the corresponding MDFG in Figure 1(b).

We call a legal MDFGG = (V;E;d; t) is realizable,or
implementable,if there exists aschedule vector sfor the
MDFG, such thats�d(e)� 0 for anye2E [4]. This schedule
vectors is regarded as the normal vector for a set of paral-
lel equitemporal hyperplanes, of which the iterations in the
same hyperplane will be executed in sequence. For example,
in Figure 1(b),s= (0;1).

Multi-dimensional retimingtechnique [4] is used in our al-
gorithm. In our study, the legal retiming vectorr is chosen
as the base vector orthogonal tos. Using Figure 1(b) as an
example, sinces= (0;1); the base retiming vectorr can be
(1;0). The graph after MD retiming is shown in Figure 1(c).
Partitioning the iteration space

Instead of executing the whole iteration space in order by
rows or columns, we first partition it and then execute the
partitions one by one. The two boundaries of a partition are
calledthe partition vectors.We will denote them byPx and
Py: Due to the dependencies in the MDFG, partition vectors

Partition 2

X

Y
Partition 1

Y

X

Partition 2
Partition 1

O O

(b)(a)

Figure 2:(a) An illegal partition of the iteration space; (b) A legal
partition.

cannot be arbitrarily chosen. For example, note the iteration
space in Figure 2(a), where dots represent iterations and vec-
tors represent the inter-iteration dependencies. If we parti-
tion the iteration space to rectangular shape, as shown in Fig-
ure 2(a), this partition method is illegal, because of the for-
ward dependencies fromPartitioni to Partitioni+1 (the thin
vectors) and the backward dependencies fromPartitioni+1

to Partitioni (the bold vectors). Due to these two-way de-
pendencies between partitions, we cannot execute either one
first. This partition is therefore not implementable and isil-
legal. In contrast, consider the alternative partition method
shown in Figure 2(b). Since there are no two-way depen-
dencies, a feasible partition execution sequence exists. For
example, executePartition1 first, thenPartition2, and so on.
Therefore, it is a legal partition.
Architecture model

We assume a processor contains multiple ALUs and multi-
ple special hardwares called memory units. Associated with
the processor is a small local memory. Accessing the local
memory is fast. There is also a large remote memory. How-
ever, accessing it is slow. The goal of our technique is to
prefetch the operands of all computations into the local mem-
ory before the actual computations are taken place. These
prefetching operations are performed by memory units. Two
types of prefetching instructions,prefetch andkeep , are
supported by memory units. Theprefetch instruction
prefetches the data from the remote memory to the local
memory; thekeep instruction keeps the data in the local
memory for the execution of the next partition. Both of them
are issued to make sure those data about to be referenced will
be appeared in the local memory.
PSP algorithm framework

The schedule generated by PSP consists of two parts: the
ALU part and the memory parts. In the ALU part of the
schedule, we first use themulti-dimensional rotation schedul-
ing algorithm[3] to create the ALU schedule for one itera-
tion. We then duplicate this one iteration ALU schedule and
append the copies consecutively to form then iteration ALU
schedule (wheren is the number of iterations in the parti-
tion). The memory part of the schedule will be executed at
the same time as the ALU part. It gives the global schedule
for memory operations to prefetch all the operands needed by

2

CS 1:
CS 2:
CS 3:
CS 4:
CS 5:
CS 6:
CS 7:
CS 8:
CS 9:
CS 10:
CS 11:
CS 12:
CS 13:
CS 14:
CS 15:
CS 16:
CS 17:

Prefetch
Part

1

101112

2
3 4 5 6 7
8 9

5 6

7
8 9

10
1112

1
2 3

4

Part
Keep

Memory UnitsALU FUs

ALU1 ALU4

mem unit 5

mem unit 1

it
er

at
io

n
4

it
er

at
io

n
1

Figure 3:The overall schedule of a partition. Assuming there are
four ALU functional units and five memory units.

the next partition into the local memory.
We call the partition which is being executed thecurrent

partition, and call the one that will be executed next thenext
partition. For all other partitions which have not been exe-
cuted except the next one, we call themother partitions(see
Figure 4(c)). In the memory part scheduling, if a non-zero
delay edge passes from the current partition into other parti-
tions, aprefetch operation is needed. Each directed edge
from the current partition to the next partition corresponds to
a keep operation. The framework of our algorithm is illus-
trated inAlgorithm PSP.

Figure 3 gives an example of ouroverall schedule—the
ALU part as well as the memory part. There are four itera-
tions in one partition. In the ALU part, each iteration takes
4 control steps (CS) to finish, and hence all four iterations
take len(ALU) = 16 control steps. In the memory part, all
prefetch operations are scheduled from the top, and then
thekeep operations. The length of the memory part of the
schedule islen(mem) = 17: Since these parts are executed si-
multaneously, the overall schedule length is the maximum of
them, which islen(overall) =maxflen(ALU); len(mem)g=
17: If we divide the overall schedule length by the number of
iterations in the partition, we get the average schedule length
ave len(overall) = 17

4 = 4:25.

3 PSP scheduling

We use multi-dimensional rotation scheduling algorithm to
schedule the ALU part for each iteration.Multi-dimensional
rotation schedulingis a loop pipelining technique which
implicitly uses the multi-dimensional retiming heuristic for
scheduling cyclic graphs. The rotation scheduling is de-
scribed in detail in [3]. Given an initial schedule, the rotation
technique repeatedly transforms the ALU part of the schedule
to a more compact one under the resource constraint. Con-
sider an example of MD rotation scheduling performed on the

Algorithm PSP Partition Scheduling with Prefetching
Input: Initial MDFG; ALU and memory constraint; execution time

for ALU and memory operations.
Output: An optimal partition and the optimized ALU and memory

schedules for executing the partition.
1: /* using list scheduling to obtain ALU schedule */
2: S initial ALU part schedule for one iteration
3: repeat
4: /* reducing the length of one iteration ALU part of the

schedule by using MD rotation scheduling */
5: S rotate the current scheduleS
6: Gr retimed MDFG
7: /* decide the optimal partition shape and size */
8: Obtain the legal partition directionsPx0;Py0 according toGr

9: Obtain the partition size so that the balancing property (The-
orem 3) is satisfied

10: /* produce the overall schedule */
11: Number the iterations
12: Entire ALU part scheduling
13: Memory part scheduling
14: /* evaluation */
15: Calculate the average length of the overall schedule
16: Calculate the local memory requirement
17: until the average schedule length cannot be reduced

(1,1)(-1,1)

0

1

2 3

0

1

2 3

(-2,1) (0,1)

(1,0)

(a) (b) (c)

other partitions

next partition

current
partition

Figure 4: (a) The original MDFG of Wave Digital Filter; (b) The
retimed MDFG after rotating node 0; (c) Solid edges represent
prefetch operations; dashed edges representkeep operations;
dot edges are the data dependencies inside the partition, hence no
memory operation is needed.

Wave Digital Filter shown in Table 1, with the correspond-
ing MDFG in Figure 4. Notationn(i) in the table conveys
the computation noden in the original i-th iteration in the
partition. According to the data dependencies in the origi-
nal MDFG shown in Figure 4(a), we have an initial schedule
with length three, shown in the left part of Table 1. During
the rotation, computation node 0 in control step (CS) 1 is ro-
tated, and the corresponding node 0 in the MDFG is retimed
by the base retiming vectorr = (1;0): The schedule length is
reduced to 2 after the rotation. In PSP scheduling algorithm,
the ALU part then applies the same schedule pattern for each
iteration in the partition. Iterations are executed one after the
other in the ALU part of the schedule.

Scheduling of the memory part consists of several steps.
First, given the retimed MDFG as a result from the MD ro-
tation, we need to decide the directions of the legal partition
vectors. Second, the iterations in the partition should be num-
bered so that they can be scheduled in that order. Third and

3

CS Initial schedule Schedule after rotation
ALU1 ALU2 ALU1 ALU2

1 0(0) 1(0) 0(1)

2 1(0) 2(0) 3(0)

3 2(0) 3(0)

Table 1:The ALU part of the schedule.

P

X

(a)

Y

(b)

d5 d1

d2
Py

(CCW)d4

X

Y

d3(CW)

Pxregion
CW

region
CCW

Figure 5: (a) The CW and CCW regions relative to vectorp; (b)
The extreme CW and CCW vectors of vectorsd1;d2; : : : ; anddk and
the partition vectorPx andPy:

the most important step, calculate the optimal partition size
to ensure a balanced schedule. Fourth and the last, actually
create the memory part of the schedule. We will explain these
steps below in great detail.

Among all the delay vectors in an MDFG, two extreme
vectors, clockwise (CW) and counterclockwise (CCW), are
the most important for deciding the directions of the legal
partition vectors. They are given by the following definition.

Definition 1 The extreme (outermost) clockwise vector CW
of a vector set D= fd1;d2; : : : ;dkg satisfies these two condi-
tions: (1) CW2 D; (2) all the vectors in D�fCWg are in
counterclockwise region of CW. The definition of CCW vector
is similar.

Figure 5(a) illustrates theclockwise and counterclockwise
regionsrelative to a vectorp: The magnitude of thecross
product of two vectorsp1 and p2, denoted byp1
 p2, is
used to determine the relative position ofp1 and p2: If
p1=(p1:x; p1:y) andp2=(p2:x; p2:y); thenp1
p2= p1:x�
p2:y� p2:x� p1:y: If p1
 p2 is positive, thenp1 is clockwise
from p2 with respect to the origin(0;0); if this cross product
is negative, thenp1 is counterclockwise fromp2:

Legal partition vectors can only be outside of CW and
CCW or aligned with them. For example in Figure 5(b), we
choosePy to be aligned with CCW, andPx to the aligned with
x-axis, which is outside of CW. This is a legal choice of par-
tition vectors. In PSP algorithm, we assume they elements of
the delay vectors of the input MDFG are always� 0;which is
often the case in real applications with nested loops. There-
fore, vectors= (0;1) is always the legal scheduling vector.
After choosing the base retiming vectorr as(1;0); the posi-
tive x-axis is always a legal direction for the partition vector.
In our algorithm, the direction of the counterclockwise parti-
tion vector,Py; is chosen to be aligned with the vector CCW;

(b)

Py

y

Px

0

2 3

1 x

Iteration execution sequence
 in the partition.

(a)

hyperplane 3

hyperplane 2

hyperplane 1

Px (r)

Py Px(s)

Figure 6:(a)Iterations will be executed from left to right in thePx

direction and then precede to the next hyperplane along the direction
perpendicular toPx; (b) Iteration orders in the partition.

while the direction of the clockwise extreme partition vector,
Px, is aligned with the positive x-axis. For convenience, we
usePx0 andPy0 to denote thebase partition vectorsshowing
these two directions (The elements in the base partition vec-
tor have no common divisors). The actual partition vectors
are then denoted byPx = fxPx0 andPy = fyPy0; where fx and
fy are calledpartition factors, which is related to the size of
the partition.

The next step is to number the iterations within the par-
tition so that they can be scheduled in that order. The it-
erations are numbered from left to right in thePx direction,
as illustrated in Figure 6(a), and then to the next hyperplane
along with the direction of the vector perpendicular toPx:

Figure 6(b) shows an example of the iteration order. The
black dots represent the iterations in the partition, while the
numbers give the order. The numbering can be easily done by
sorting the iteration indices of different iterations—whoever
has the smaller y element or has the same y element but the
smaller x element will get the smaller number. We will dis-
cuss how to obtain the optimal partition size in Section 4.

CS ALU part memory part
ALU1 ALU2 MEM1 MEM2

1 1(0) 0(1) P2(2)(�2;1) P2(3)(�2;1)
2 2(0) 3(0) # #

3 1(1) 0(2) P3(2)(0;1) P3(3)(0;1)
4 2(1) 3(1) # #

5 1(2) 0(3) K0(2)(1;0) K3(0)(0;1)
6 2(2) 3(2) K3(1)(0;1)
7 1(3) 0(4)

8 2(3) 3(3) K0(4)(1;0)

Table 2:The overall schedule with respect to the MDFG of Wave
Digital Filter in Figure 4.

After obtaining the partition directions and size, we can
start to schedule the memory part.Prefetch operations are
scheduled as early as possible, because they do not have any
data dependencies.Keep operations have the data dependen-
cies from the ALU part. Therefore, akeep operation must
be scheduled after the corresponding computation, whichever
provides the result of that data instance, is finished. For each
keep , we define the earliest starting time (ES) as the con-

4

Py

Px

d

O

Py

α
O

β
d

Partition

I

Partition
II

Partition
III

2PxPx
N

M

����
��
��
��
��
��
��
��
��

=fxfy*base_area

#iter=Px Py
=fxfy(Px0 Py0)

(a) (b) (c)

=fyPy0

Px0 Px=fxPx0

Py0

base_area

Py

Figure 7: (a) fy restriction; (b) fx restriction; (c) The number of
iterations (#iter) inside one partition.

trol step when the corresponding value is finished computing.
Then, starting fromES; we schedule thekeep operation at
the earliest available place in the memory part.

Table 2 is the overall schedule of Wave Digital Filter
shown in Figure 4. Here we assume two ALUs and two
memory units. The ALU part of the schedule is a dupli-
cation of the four iterations of the schedule shown in Ta-
ble 1. In the memory part, the notation “Pn(i)(x;y)” con-
veys “prefetch the data instance which corresponds to the
delay vector(x;y) from noden in the i-th iteration”. For
example, “P2(3)(�2;1)” means “prefetch the data cor-
responding to the delay vector(�2;1) from node 2(3)”. We
assume in Table 2 eachprefetch operation takes two time
units, that is,Tpre= 2: The down arrows (#) in the table repre-
sent the continuation of theprefetch operation. Similarly,
“Kn(i)(x;y)” denotes thekeep operation. We assume each
keep operation takes one time unit, i.e.,Tkeep= 1: In this
example, the length of the overall schedule “L” is 8: Since
there are 4 iterations in the partition, the average length of
the overall length, denoted byLave; is L

4 = 2; which is equal
to the lower bound.

4 Partition size and memory size

In the previous section, we have decided the partition direc-
tions, denoted byPx0 andPy0: Here we will determine the two
partition factorsfx and fy; so that a balanced schedule can be
achieved.

First, we impose the restriction tofy that it should be large
enough so that no delays can pass through the entire partition
along the direction ofPy: For example, the partition vectorPy

in Figure 7(a) is not large enough, because the delay vector
d crosses both the bottom and the top boundaries of the par-
tition. Denoting the set of all the non-zero delay vectors in
the MDFG asD; the above restriction can be represented by
inequality: fy�Py0:y� dy; 8d= (dx;dy) 2 D:

Partition vectorPx is restricted so that no delays start-
ing from the current partition can reach two partitions later.
In other words, in Figure 7(b), delay edges starting from
Partition I cannot reach Partition III. Therefore, we have
jdj < jNMj = jPxj

sinα
sin(α�β) = fxjPx0j

sinα
sin(α�β) : This gives us:

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���������������

����������������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

����
����
����
����

������������������

������������

l

d

Q

R

d
β α

Q
d

|Px|
(d)

(b)(a)

(c) Px

P
Py

S
R

d=(dx,dy)
P

S
dy

=fx*|Px0|*dy

X Px
W

VU

Py.y-dy
h=

δ
=l*h=l*(Py.y-dy)

area(UVWX)

Py
d=(dx,dy)

Py

X
W

Px

d

VU

δ

area(PQRS)=|Px|*dy

Figure 8: (a)(b) Calculating the number of the delay edges cross-
ing the boundary of the current partition and entering the next par-
tition; (c)(d) Calculating the number of the delay edges crossing the
boundary of the current partition and entering other partitions.

fx >
jdjsin(α�β)
jPx0jsinα ; 8d = (dx;dy) 2 D: Since fx is an integer,

this inequality is equivalent tof x� b
jdjsin(α�β)
jPx0jsinα c+1; 8d=

(dx;dy) 2 D:
Below we derive the conditions for a balanced schedule.

Lemma 1 shows how to calculate the length of the ALU part
of the schedule, referring to Figure 7(c).

Lemma 1 The length of the ALU part of the schedule is
LALU �#iter= LALU fx fy(Px0
Py0); where LALU denotes the
length of the one-iteration ALU part of the schedule, and
#iter is the number of iterations in the partition.

Then we estimate how many memory operations are
needed by calculating the areas of two shaded regions in Fig-
ure 8. Given a delay vectord = (dx;dy); regionUVWX in
the current partition, shown in Figure 8, is the region whered
will enter the next partition. Similarly, regionPQRSis where
d will enter other partitions. We denote the areas of the above
two regions asAgoto next(d) andAgoto others(d); respectively,
with respect to a given delay vectord= (dx;dy):

Lemma 2 Given a delay vector d= (dx;dy); Agoto next(d) =

(fyPy0:y�dy) sin(α�β)
sinα jdj; and Agoto others(d) = fxdyjPx0j:

Note that the number of delay edges entering the next
partition, i.e. keep operations, is very close to the area
of UVWX: Summing up all these areas for every distinct
d; we get the total number ofkeep operations, #keep =

∑d Agoto next(d) = ∑d(fyPy0:y� dy) sin(α�β)
sinα jdj; for all d =

(dx;dy): Similarly, the total number ofprefetch opera-
tions is #prefetch = ∑d Agoto others(d) = ∑d area(PQRS) =
∑d jPxjdy= fx ∑d dyjPx0j:

Theorem 3 gives the conditions of what we call as abal-
ancedschedule. The idea here is to scheduleprefetch

5

d=(1,0)

Px

Py

Y

X

Py

Y

XPx

d=(1,1)

|Px|
(b)(a)

Figure 9:(a) One memory location is needed for delayd = (1;0);
(b) jPxjdy memory locations are needed for delayd= (dx;dy); when
dy 6= 0:

operations from the top of the memory part of the sched-
ule, and schedule thekeep from the bottom. The left-hand
side of Inequality 1 is the estimated length of the memory
part schedule, and we only allow it to be at mostTkeepcon-
trol steps longer than the ALU part, as shown in the right-
hand side. The reason of leaving outTkeep steps is to make
rooms for those potentialkeep operations corresponding to
the computational nodes at the last control step in the ALU
part. Corollary 4 concerns about the average overall schedule
length.

Theorem 3 Assume that NALU �Nmem;TALU �Tkeep; and In-
equality 1 is satisfied.
�

#pre
Nmem

�
�Tpre+

�
#keep
Nmem

�
�Tkeep� LALU �#iter+Tkeep

(1)

The length of the memory part of the schedule is at most Tkeep

control steps longer than that of the ALU part.

Corollary 4 If the partition satisfies the conditions pre-
sented in Theorem 3, the average length of the overall sched-
ule is at most

Tkeep
#iter plus the average length of the ALU part of

the schedule.

Experiments show that rotation scheduling in most cases
can generates the ALU part of the schedule which achieves
the lower bound, i.e.,LALU = bound(ALU): Therefore, the
overall schedule either reaches its lower bound or is very
close to it; the difference is at most

Tkeep
Px
Py

:

Now we estimate the local memory size for executing the
partition. We classify the memory usage into two categories:
basic memory for the working set and reserved memory for
prefetch andkeep operations.

The former corresponds to all the internal delay edges in
the partition. The delay edged = (1;0) in Figure 9(a) indi-
cates a data instance produced in IterationI0 and consumed
in the next IterationI1: Only one memory location is needed
to hold this data because we can reuse the same location for
later iterations. In general, we needdx memory locations for
eachd = (dx;0): However, whend = (dx;1); as shown in
Figure 9(b), a whole row of intermediate values need to be

kept. Thus a total ofjPxj�1 memory locations are needed.
In general, for eachd = (dx;dy) wheredy 6= 0; jPxjdy mem-
ory locations are needed. Summarizing the above, the size of
the basic memory for the working set is equal to

Sizews= ∑
8d=(dx;dy)

�
dx ;when dy = 0
jPxjdy ;when dy 6= 0

Now let us consider the second category: reserved mem-
ory for prefetch andkeep operations. These operations
represent the data instancespre-loadedor pre-occupiedin
the local memory before we execute this partition. Each
one of them needs a reserved memory location. The to-
tal number of these pre-occupied data is two times the to-
tal number of memory operations (one for the pre-loaded
data for the current partition; the other for the new gener-
ated data for the next partition). Therefore, the size of this
part of the memory isSizereserved= 2(#pre+ #keep): Fi-
nally, the local memory needed to execute this partition is
Local size= Sizews+Sizereserved:

5 Experimental Results

In this section, the effectiveness of the PSP algorithm is
evaluated by running a set of simulations on DSP bench-
marks. Table 3 and Table 4 show our scheduling results. The
first column presents the benchmarks’ names. The second
to fourth columns are the parameters of the input MDFG,
with the second column showing the number of nodes and
the third and fourth columns showing the ALU and memory
unit resource constraints. The partition generated by the al-
gorithm is shown in the fifth to seventh columns. The final
schedule is shown in the next three columns. Column “L”
gives the length of the overall schedule and Column “Lave” is
the average (L#iter). In order to compare our results with the
lower bound, as well as the results from other algorithms, we
calculated the lower bounds of the schedule length ,d N

Nalu
e;

and put them in Column “LB”. We also ran the same set of
benchmarks usinglist schedulingandPrefetch Balanced ro-
tation Scheduling (PBS). The results are shown in Columns
“List’ and “PBS”, respectively, where the sub-column “len”
is the schedule length and the sub-column “ratio” is the ratio
comparing the PSP schedule length with that of list schedul-
ing and PBS scheduling, i.e. ratio= Lave

len :

The abbreviations for our benchmarks “WDF”, “IIR”,
”DPCM”, “2D” and “Floyd” stand forWave Digital filter, In-
finite Impulse Response filter, Differential Pulse-Code Mod-
ulation device, Two Dimensional filter, andFloyd-Steinberg
algorithm, respectively. In Table 3, we assume that each
ALU operation takes 1 time unit, eachkeep operation also
takes 1 time unit, and eachprefetch takes 2 time units,
while in Table 4, we assume eachprefetch takes 10 time
units. In the PBS experiments in Table 4, the graphs are first

6

Benchmark Parameters Partition PSP Schedule List PBS
N Nalu Nmem Px Py #iter L Lave LB len ratio len ratio

WDF(1) 4 2 2 (3,0) (-4,2) 6 12 2 2 3 66.7% 3 66.7%
WDF(2) 12 3 3 (4,0) (-3,1) 4 17 4.25 4 6 70.8% 4 106.3%

IIR 16 3 3 (6,0) (-4,2) 12 73 6.08 6 8 76% 6 101.3%
DPCM 16 4 4 (6,0) (-4,2) 12 49 4.08 4 7 58.3% 7 58.3%
2D(1) 34 3 3 (3,0) (0,1) 3 36 12 12 16 75% 12 100%
2D(2) 4 2 2 (2,0) (-4,2) 4 9 2.25 2 4 56.3% 3 75%

MDFG1 8 2 2 (4,0) (-3,1) 4 17 4.25 4 7 60.7% 4 106.3%
MDFG2 8 2 2 (4,0) (-6,6) 24 97 4.04 4 8 50.5% 8 50.5%
Floyd 16 3 3 (4,0) (-6,2) 8 48 6 6 11 54.5% 6 100%

Table 3:Experimental results on DSP filter benchmarks assumingTpre fetch= 2:

Benchmark Parameters Partition PSP Schedule List PBSunfold by 2�2
N Nalu Nmem Px Py #iter L Lave LB len ratio len ratio

WDF(1) 4 2 2 (3,0) (-14,7) 21 42 2 2 10 20% 5.25 38.1%
WDF(2) 12 3 3 (4,0) (-12,4) 16 65 4.06 4 10 40.6% 5 81.2%

IIR 16 3 3 (6,0) (-14,7) 42 253 6.02 6 21 28.7% 6 100.3 %
DPCM 16 4 4 (6,0) (-14,7) 42 169 4.02 4 20 20.1% 5.5 73.1%
2D(1) 34 3 3 (3,0) (0,4) 12 144 12 12 40 30% 20 60%
2D(2) 4 2 2 (2,0) (-16,8) 16 33 2.06 2 10 20.6% 5 41.2%

MDFG1 8 2 2 (4,0) (-12,4) 16 65 4.06 4 10 40.6% 5.25 77.3 %
MDFG2 8 2 2 (4,0) (-35,35) 140 561 4.01 4 40 10.0% 23.75 16.9%
Floyd 16 3 3 (4,0) (-12,4) 16 96 6 6 20 30% 10 60%

Table 4: Experimental results on DSP filter benchmarks assumingTpre f etch= 10:

unfolded by a factor of 2�2 before performing PBS schedul-
ing.

As we can see, list scheduling rarely achieves the optimal
schedule length; the schedules are often dominated by a long
memory part. In order words, the list schedules are not well
balanced. Although PBS is better than list scheduling, it too
becomes less effective to generate a balanced schedule espe-
cially whenTpre f etchis large. Moreover, PBS needs to explic-
itly unfold by large factors in order to generate good sched-
ules. This may cause a lot of computations (For example,
after unfolded by a factor of 2�2; the total number of nodes
is 4 times that of the original).

The PSP algorithm consistently produces optimal or near
optimal schedules, as shown by the bold figures in the tables.
Even in case of long memory latency, whenTpre f etchis large,
the algorithm still gives good overall schedules without do-
ing any unfolding. Almost all of the resulting schedules are
very close to the optimal. In Table 3, the average ratio of
the schedule length from the PSP algorithm to that from list
scheduling and PBS are 63:2% and 84:9%, respectively; and
in Table 4, 26:7% and 60:9% respectively. Moreover, since
we do not unfold the graph, the computation time of this al-
gorithm is very little. Almost all the experiments are finished
in less than two to three seconds. Comparing Tables 3 and
4, we also see that when the memory latency is increased,
the PSP algorithm tends to create a larger partition in order
to compensate for this long latency. It shows that the larger
the partition, the closer the average schedule length is to the
lower bound, because the overhead (Tkeep) control steps are
amortized over more iterations.

References

[1] F. Chen, S. Tongsima, and E. H.-M. Sha. Loop schedul-
ing optimization with data prefetching based on multi-
dimensional retiming. InProc. ISCA 11th International
Conference on Parallel and Distributed Computing Sys-
tems, pages 129–134, 1998.

[2] F. Dahlgren and M. Dubois. Sequential hardware
prefetching in shared-memory multiprocessors.IEEE
Transactions on Parallel and Distributed Systems, Vol.
6, No. 7, pages 733–746, Jul. 1995.

[3] N. L. Passos and Edwin H.-M. Sha. Scheduling of
uniform multi-dimensional systems under resource con-
straints. To appear in the IEEE Transactions on VLSI
systems.

[4] N. L. Passos and Edwin H.-M. Sha. Achieving full par-
allelism using multi-dimensional retiming.IEEE Trans-
actions on Parallel and Distributed Systems, Vol. 7, No.
11,, pages 1150–1163, Nov. 1996.

[5] J. Skeppstedt and M. Dubois. Hybrid compiler/hardware
prefetching for multiprocessors using low-overhead
cache miss traps. Inthe Proceedings of the Interna-
tional Conference on Parallel Processing, pages 298–
305, 1997.

[6] M. K. Tcheun, H. Yoon, and S. R. Maeng. An adaptive
sequential prefetching scheme in shared-memory multi-
processors. Inthe Proceedings of the International Con-
ference on Parallel Processing, pages 306–313, 1997.

7

	Main Page
	ISSS'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

