Loop Scheduling and Partitions for Hiding Memory Latencies'

Fei Chen Edwin Hsing-Mean Sha
Dept. of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN 46556
Email: {fchen,esha }@cse.nd.edu
Tel: (219)631-8803 Fax{219631-9260

Abstract access the remote memory than it does for the local mem-
ory. We also assume a process contains multiple ALUs and
Partition Scheduling with Prefetching (PSiB)a memory la- multiple memory units The ALUs are for doing the com-
tency hiding technique which combines the loop pipeliningutations. The memory units are special hardwares we in-
technique with data prefetching. In PSP, the iteration spamsduced for performing operations to prefetch data from the
is first divided into regular partitions. Then two parts afemote memory to the local memory.
the schedule, the ALU part and the memory part, are pro-The partition (tiling) technique is incorporated into the
duced and balanced to produce an overall schedule with higbP algorithm. We partition the whole iteration space and
throughput. These two parts are executed simultaneoughecute one partition at a time. The benefit is that data local-
and hence the remote memory latency are overlapped. i/és improved within the partition, and therefore the num-
study the optimal partition shape and size so that a well bpér of prefetching operations is reduced. We study the le-
anced overall schedule can be obtained. Experimentsgei partition shape and provide formulas for determining an
DSP benchmarks show that the proposed methodology ceptimized partition size which guarantees a balanced overall
sistently produces optimal or near optimal solutions. schedule. Furthermore, we estimate the requirement of local
memory size for executing this partition. The estimate gives
. designers a good indication of local memory requirement.
1 Introduction Traditional prefetching schemes [2, 5, 6] can be hardware
or software based. They either only gave the dynamic
Because CPU speed has increased dramatically compgigfetching decisions or did not give the complete static
with memory speed, the slowness of memory hinders t§ghedules. Partitioning the iteration space were not consid-
overall system performance. A well planned data prefetdled in those approaches either. Several multi-dimensional
ing scheme may reduce the memory miss penalty by oviglop pipelining techniques have been proposed. For exam-
lapping the processor computations with the memory accggs passos and Sha proved that in multi-dimensional case
operations to achieve high throughput computation. Mulfor nested loops), full-parallelism for MDFGs can always be
dimensional (MD) problems are of particular interests. Thegghieved by using multi-dimensional retiming [4]. However,
problems, for example a large number of DSP applicatiopgne of the above research efforts include the prefetching
are characterized by nested loops with uniform date depgjEa in their loop scheduling algorithms. Experiments are
dencies.Loop pipeliningtechniques are widely used to eXgone in many DSP benchmarks and the results are compared
pose the instruction level parallelism so that a good schedyjéh other scheduling algorithms, suchlas schedulingal-
with high throughput can be obtained. gorithm andPBSalgorithm [1]. Experiments show that the
In this paper, we develop a methodology calRattition average length obtained by PSP is76 of the one using
Scheduling with Prefetching (PSRJgorithm which com- |ist scheduling and 69% of the PBS. Since partitioning is
bines the loop pipelining technique with a data prefetchipgt used in PBS, the result of our experiments also shows
approach. This technique can be used in computationalifat partitioning the iteration space is very important for op-
tensive applications (especially multi-dimensional DSP a@mizing the overall schedule.
plications) when two level memory hierarchies are existed.
These two level memory are abstracted asidleal memory

and theremote memoryWe assume it takes longer time t(2 Algorithm framework

*This work was partially supported by NSF MIP 95-01006, NSF MIP . .
97-04276. Modeling the ALU computation

i Partition 1 iti
A nested loop of computation can be represented by a. ;rj"’“ Bartition 2 Partition 1

v Partition 2
multi-dimensional data flow grapfMDFG) [4]. An MDFG A~ W W 7777777777 W
G = (V,E,d,t) is a node- and edge-weighted directed graph,: 1 <><>< g
whereV is the set of computation nodd&sC V x V isthe set ‘ é’%‘é%
of dependence edgesjs a function fromE to Z" represent- ? z)2 % X 7 4 oy
ing the multi-dimensional inter-iteration dependency (delay). ¥ =2 =% o‘,,fi,-,
between two nodes, whereis the number of dimensions, @ (b)

andt is a function fromV to positive integers representin

the computation time of each node. qzlgure 2:(a) An illegal partition of the iteration space; (b) A legal

partition.
v
8\ /%» cannot be arbitrarily chosen. For example, note the iteration
an @ @y space in Figure 2(a), where dots represent iterations and vec-
for (y=1; y<=m;y++) (B) tors represent the inter-iteration dependencies. If we parti-
for (x= 1; x<=n; x++) W ' tion the iteration space to rectangular shape, as shown in Fig-
VI =vapedly-11+ 5) @ @ ure 2(a), this partition method is illegal, because of the for-
ﬁmg} N ﬁ{iﬁ;]]g(/zl[]x][g]fz aoy Yoo ward dependencies froRartition; to Partitioni1 (the thin
} Clen @ @ vectors) and the backward dependencies fiRartition;
() () to Partition; (the bold vectors). Due to these two-way de-

pendencies between partitions, we cannot execute either one
Figure 1:(a) a code of nested loops; (b) corresponding MDFG; (Efst. This partition is therefore not implementable and-is
retimed MDEG. legal. In contrast, consider the alternative partition method
shown in Figure 2(b). Since there are no two-way depen-
dencies, a feasible partition execution sequence exists. For
The execution of all nodes X one time represents arexample, executBartition; first, thenPartition,, and so on.
iteration. An iteration is identified by a vectoj, which Therefore, it is a legal partition.
is equivalent to a multi-dimensional index starting fromArchitecture model
(0,0,...,0). Inter-iteration dependencies are represented byive assume a processor contains multiple ALUs and multi-
vector- we|ghted edges. For any iteratignan edgee from ple special hardwares called memory units. Associated with
uto v (u-3v) with delay vectord(e) means that the com-the processor is a small local memory. Accessing the local
putation of nodev at |terat|onj depends on the executiormemory is fast. There is also a large remote memory. How-
of nodeu at iterationj — d(e). An edge with delay vector ever, accessing it is slow. The goal of our technique is to
(0,0,...,0) represents a data dependency within the samepitefetch the operands of all computations into the local mem-
eration. Figure 1(a) is an example code of a nested loop, witly before the actual computations are taken place. These
the corresponding MDFG in Figure 1(b). prefetching operations are performed by memory units. Two
We call a legal MDFGG = (V,E,d,t) is realizable,or types of prefetching instructiongrefetch andkeep, are
implementablejf there exists aschedule vector $or the supported by memory units. Tharefetch instruction
MDFG, such thas-d(e) > 0 for anye € E [4]. This schedule prefetches the data from the remote memory to the local
vectors is regarded as the normal vector for a set of parahemory; thekeep instruction keeps the data in the local
lel equitemporal hyperplanes, of which the iterations in ttlemory for the execution of the next partition. Both of them
same hyperplane will be executed in sequence. For examate,issued to make sure those data about to be referenced will
in Figure 1(b)s= (0,1). be appeared in the local memory.
Multi-dimensional retimingechnique [4] is used in our al-PSP algorithm framework
gorithm. In our study, the legal retiming vectois chosen The schedule generated by PSP consists of two parts: the
as the base vector orthogonalgoUsing Figure 1(b) as anALU part and the memory parts. In the ALU part of the
example, sinces = (0,1), the base retiming vectarcan be schedule, we first use tmeulti-dimensional rotation schedul-
(1,0). The graph after MD retiming is shown in Figure 1(c)ing algorithm[3] to create the ALU schedule for one itera-
Partitioning the iteration space tion. We then duplicate this one iteration ALU schedule and
Instead of executing the whole iteration space in order Bgpend the copies consecutively to form thigeration ALU
rows or columns, we first partition it and then execute tlsghedule (whera is the number of iterations in the parti-
partitions one by one. The two boundaries of a partition afen). The memory part of the schedule will be executed at
calledthe partition vectors We will denote them by, and the same time as the ALU part. It gives the global schedule
Py. Due to the dependencies in the MDFG, partition vectdiar memory operations to prefetch all the operands needed by

Algorithm PSP Partition Scheduling with Prefetching

Memory Units

< o Input: Initial MDFG; ALU and memory constraint; execution time
%i | for ALU and memory operations.
Bycsa) [V Output: An optimal partition and the optimized ALU and memory

Prefeich schedules for executing the partition.

1 part 1: /*using list scheduling to obtain ALU schedule */

A 2: S« initial ALU part schedule for one iteration

'%mem unit 1 3: repeat
< I memunits 4: [* reducing the length of one iteration ALU part of the
s schedule by using MD rotation scheduling */
'gi S+ rotate the current schedug

G; + retimed MDFG
[* decide the optimal partition shape and size */
Obtain the legal partition directiorBg, Pyg according taG;

Figure 3: The overall schedule of a partition. Assuming there ar : Obtain the partition size so that the ba|ancing property (The_
four ALU functional units and five memory units. orem 3) is satisfied

10: /* produce the overall schedule */
11: Number the iterations

. 12: Entire ALU part scheduling
the next partition into the local memory. 13: Memory part scheduling

We call the partition which is being executed tharent 14: /* evaluation */
partition, and call the one that will be executed nextifext 15: Calculate the average length of the overall schedule
partition. For all other partitions which have not been exet6: Calculate the local memory requirement
cuted except the next one, we call thether partitions(see 17: until the average schedule length cannot be reduced
Figure 4(c)). In the memory part scheduling, if a non-zero
delay edge passes from the current partition into other parti- other partitions

tions, aprefetch operation is needed. Each directed edge [?1
(-1,1) (1,1)
)

o ~ou

from the current partition to the next partition corresponds to &

akeep operation. The framework of our algorithm is illus- AN

trated inAlgorithm PSP. @ >
Figure 3 gives an example of oowerall schedule-the

ALU part as well as the memory part. There are four iterkigure 4:(a) The original MDFG of Wave Digital Filter; (b) The

tions in one partition. In the ALU part, each iteration takd§timed MDFG after rotating node 0; (c) Solid edges represent

4 control steps (CS) to finish, and hence all four iteratioREefetch operations; dashed edges represesép operations;

takelen(ALU) = 16 control steps. In the memory part aﬁiot edges are the data dependencies inside the partition, hence no
. ’ | ., memory operation is needed.
prefetch operations are scheduled from the top, and then

thekeep operations. The length of the memory part of the
schedule i$en(mem) = 17. Since these parts are executed si-
multaneously, the overall schedule length is the maximumwave Digital Filter shown in Table 1, with the correspond-
them, which iden(overall) = max{len(ALU),len(mem} = ing MDFG in Figure 4. Notatiom() in the table conveys
17. If we divide the overall schedule length by the number tie computation noda in the originali-th iteration in the
iterations in the partition, we get the average schedule lengtirtition. According to the data dependencies in the origi-
avelen(overall) = 177 =4.25. nal MDFG shown in Figure 4(a), we have an initial schedule
with length three, shown in the left part of Table 1. During
the rotation, computation node 0 in control step (CS) 1 is ro-
3 PSP Scheduling tated, and the corresponding node 0 in the MDFG is retimed
by the base retiming vector= (1,0). The schedule length is
We use multi-dimensional rotation scheduling algorithm teduced to 2 after the rotation. In PSP scheduling algorithm,
schedule the ALU part for each iteratiodulti-dimensional the ALU part then applies the same schedule pattern for each
rotation schedulingis a loop pipelining technique whichiteration in the partition. Iterations are executed one after the
implicitly uses the multi-dimensional retiming heuristic foother in the ALU part of the schedule.
scheduling cyclic graphs. The rotation scheduling is de-Scheduling of the memory part consists of several steps.
scribed in detail in [3]. Given an initial schedule, the rotatiofirst, given the retimed MDFG as a result from the MD ro-
technique repeatedly transforms the ALU part of the schedtdé&ion, we need to decide the directions of the legal partition
to a more compact one under the resource constraint. Ceectors. Second, the iterations in the partition should be num-
sider an example of MD rotation scheduling performed on thered so that they can be scheduled in that order. Third and

. next partition

CS Initial schedule || Schedule after rotatior]
ALU1 | ALUZ2 || ALU1 ALU2 Iteration execution sequence o o o
1 0 10 o@D in the partition. 6 o o
2 100 200 30§ IPXE o o o
3 209 < | A N T hyperplane3 . X
,,,,,,, hyperplane2 " Px

Table 1:The ALU part of the schedule. Bl = ®

@ (b)

Figure 6: (a)lterations will be executed from left to right in ti
direction and then precede to the next hyperplane along the direction
perpendicular td; (b) Iteration orders in the partition.

while the direction of the clockwise extreme partition vector,
P, is aligned with the positive x-axis. For convenience, we
Figure 5:(a) The CW and CCW regions relative to vecmr(b) usePy andP,o to denote thédase partition vectorshowing

The extreme CW and CCW vectors of vectdysdy,... ,anddg and - these two directions (The elements in the base partition vec-
the partition vectoPx andPy. tor have no common divisors). The actual partition vectors
are then denoted iy = fxPx andP, = fyRy, wherefy and

fy are calledpartition factors which is related to the size of

the most important step, calculate the optimal partition si partition. o .

to ensure a balanced schedule. Fourth and the last, actuallj"€ neéxt step is to number the iterations within the par-

create the memory part of the schedule. We will explain theifion so that they can be scheduled in that order. The it-

steps below in great detail. era_tions are numpered from left to right in tRgdirection,
Among all the delay vectors in an MDFG, two extrem@S |Ilustr_ated in Figure 6(a), and then to the next hyperplane

vectors, clockwise (CW) and counterclockwise (CCW), afdong with the direction of the vector perpendicularRo

the most important for deciding the directions of the leghjgure 6(b) shows an example of the iteration order. The

partition vectors. They are given by the following definitiorPlack dots represent the iterations in the partition, while the
numbers give the order. The numbering can be easily done by

Definition 1 The extreme (outermost) clockwise vector C¥@rting the iteration indices of different iterations—whoever
of a vector set B= {dy,dy, ... ,dk} satisfies these two condi-has the smaller y element or has the same y element but the
tions: (1) CW € D; (2) all the vectors in D- {CW} are in smaller x element will get the smaller number. We will dis-
counterclockwise region of CW. The definition of CCW vec@iss how to obtain the optimal partition size in Section 4.

is similar.

CS ALU part memory part

Figure 5(a) illustrates thelockwise and counterclockwise ALUL | ALU2 MEM1 MEM2

. . . 1 10 0D | P22 (-2,1) | P2 (-2,1)
regionsrelative to a vectop. The magnitude of theross 5 | 20 | 30 o 2
product of two vectorspy and_ P2, deqqted byp: ® py, is 3 [10 0D P32(0,1) | P39(0,1)
used to determine the relative position pf and p,. If 4 | 20) 1 1
p1 = (p1-X, p1.y) andpz = (p2-X, P2.y), thenp; ® py = p1-xx 5 12 0 K0@ (1,00 | K3©(0,1)
P2.y— P2.X X p1.y. If p1® p2 is positive, therp; is clockwise 6 22 352 K3 (0,1)

i iqi < thi 7 | O o

from p, with respect to the origif0, 0); if this cross product " o i KO (L,0)

is negative, themp; is counterclockwise fronp,.
Legal p{?\rtltlon \{ectors can only be OHtS'd,e of CW ar"ﬁa\ble 2:The overall schedule with respect to the MDFG of Wave

CCW or aligned with them. For example in Figure 5(b), Wgjgjtal Filter in Figure 4.

chooseP, to be aligned with CCW, anB, to the aligned with

x-axis, which is outside of CW. This is a legal choice of par-

tition vectors. In PSP algorithm, we assumeytetlements of After obtaining the partition directions and size, we can

the delay vectors of the input MDFG are alway®, which is start to schedule the memory paPrefetch operations are

often the case in real applications with nested loops. Theseheduled as early as possible, because they do not have any

fore, vectors = (0,1) is always the legal scheduling vectordata dependenciel{eep operations have the data dependen-

After choosing the base retiming vectoas(1,0), the posi- cies from the ALU part. Therefore,leep operation must

tive x-axis is always a legal direction for the partition vectolne scheduled after the corresponding computation, whichever

In our algorithm, the direction of the counterclockwise partprovides the result of that data instance, is finished. For each

tion vector Ry, is chosen to be aligned with the vector CCWkeep , we define the earliest starting timeS) as the con-

4

#iter=Px&® Py area(UVWX)

=f; PX0® PyO0 =I*h=I* -
Py d :f);g*b);sgb_a%a) Py d:(dx,dy)lé Py =rh= (Py%/)
base_area /%?/V (R TR V
. . = ‘\ / -
(0] Px O Px 2Px PX0 Px=fxPx0 ‘W ‘W
(a) (b) (C) (a)//X Px (b)// X Px
area(PQRS)=|Px|*dy
Figure 7: (a) fy restriction; (b)fy restriction; (c) The number of | d=(dxdy) p XIPXOIdy o
iterations (#ter) inside one partition. % dy
. L . IPx]
trol step when the corresponding value is finished computing. © P)
Then, starting fronES, we schedule th&eep operation at
the earliest available place in the memory part. Figure 8:(a)(b) Calculating the number of the delay edges cross-

Table 2 is the overall schedule of Wave Digital Filteihg the boundary of the current partition and entering the next par-
shown in Figure 4. Here we assume two ALUs and twition; (c)(d) Calculating the number of the delay edges crossing the
memory units. The ALU part of the schedule is a dump_oundary of the current partition and entering other partitions.
cation of the four iterations of the schedule shown in Ta-
ble 1. In the memory part, the notatio®r()(x,y)” con-
veys ‘prefetch the data instance which corresponds to theg ~ W‘\ljm‘%, vd = (dx dy) € D. Sincefy is an integer,
delay vector(x,y) from noden in the i-th iteration”. For 0
example, P29 (—2,1)” means ‘prefetch the data cor-
responding to the delay vect6+2, 1) from node 83", we (dxdy)eD. N
units, that isTpre = 2. The down arrows() in the table repre- Lemma 1 shows how to calcu]ate the length of the ALU part
sent the continuation of therefetch operation. Similarly, Of the schedule, referring to Figure 7(c).

“Knl)(x,y)” denotes thekeep operation. We assume eacrll_ 1 The lenath of the ALU { the schedule i
keep operation takes one time unit, i.8xeep= 1. In this emma e length of the part of the schedule is

example, the length of the overall schedulg fs 8. Since Laru x #iter = Lawy fify(Po @ Po), where lay denotes the

there are 4 iterations in the partition, the average Iength!;g:)tllf‘]gt_h ?; the oge—ltirf'i_\tlor} ALU. pt?rt of ih[e schedule, and
the overall length, denoted e, is % = 2, which is equal Iteris the number ot iterations in the partition.
to the lower bound.

this inequality is equivalent tox > L%J +1, vd=

Then we estimate how many memory operations are
needed by calculating the areas of two shaded regions in Fig-
... . . ure 8. Given a delay vectar = (dx,dy), regionUVW Xin
4 Partition size and memaory size the current partition, shown in Figure 8, is the region wttkere

will enter the next partition. Similarly, regiddQRSs where
In the previous section, we have decided the partition direpwill enter other partitions. We denote the areas of the above

tions, denoted b andRyo. Here we will determine the two two regions aPgotanext(d) andAgoro otherdd), respectively,
partition factorsfy andfy, so that a balanced schedule can kgith respect to a given delay vectbe= (dx, dy).

achieved.

First, we impose the restriction g that it should be large Lemma 2 Given a delay vector e (dx dy), Agota_next(d) =
enough so that no delays can pass through the entire parti(ig}p:yo.y_ dy)wk”’ and Ayoto_othersd) = fxdy|Pxq|-
along the direction of,. For example, the partition vect&y
in Figure 7(a) is not large enough, because the delay vectoNote that the number of delay edges entering the next
d crosses both the bottom and the top boundaries of the pgmartition, i.e. keep operations, is very close to the area
tition. Denoting the set of all the non-zero delay vectors af UVW X, Summing up all these areas for every distinct
the MDFG adD, the above restriction can be represented by we get the total number dfeep operations, Keep =

inequality: fy x Ro.y > dy, Vd= (dxdy) € D. 3 4 Agotanext(d) = Sq(fyPo.y — dy) 2Bl g for all d =
Partition vectorP is restricted so that no delays starttdx dy). Similarly, the total number oprefetch opera-

ing from the current partition can reach two partitions lateions is #refetch = 3 4 Agotaotherdd) = S qarea(PQRS =

In other words, in Figure 7(b), delay edges starting fromy, |P|dy= fy 5 4dy|Pal.

Partition | cannot reach Partition Ill. Therefore, we have Theorem 3 gives the conditions of what we call asa&

|d| < [NM| = |PX|% = MR@I%. This gives us: ancedschedule. The idea here is to schedpiefetch

Y " kept. Thus a total ofP| x 1 memory locations are needed.

JoRRREEER P In general, for eachl = (dy, dy) wheredy # 0, |Py|dy, mem-
/ J /! K ory locations are needed. Summarizing the above, the size of
Jeam peay) the basic memory for the working set is equal to
=== x [e x
@ Pl
- Sizis = Ryd hen dy#0
Figure 9:(a) One memory location is needed for dethy: (1,0); vd={Ga,) [Pddy ,when dy#
(b) |Px|dy memory locations are needed for dethy (dy,dy), when
dy # 0. Now let us consider the second category: reserved mem-

ory for prefetch andkeep operations. These operations
represent the data instanceie-loadedor pre-occupiedin
et(tp_e local memory before we execute this partition. Each

ule, and schedule theeep from the bottom. The left-hand°"e of them needs a reserved memory location. The to-

side of Inequality 1 is the estimated length of the memog numger Off these pre-occu?ed data 'Sf tWt% times Ithedt%-
part schedule, and we only allow it to be at mgle,con- number of memory operations (one for the pre-loade

trol steps longer than the ALU part, as shown in the righqfalta for the current partition; the other for the new gener-
hand side. The reason of leaving d’.u& steps is to make ated data for the next partition). Therefore, the size of this
. ep

rooms for those potentikdeep operations corresponding toDaIrlt OIhth? m?mory 'ES'Z%SZWEJT 2(#pret+ ﬁl:.eep. '::tl .
the computational nodes at the last control step in the A ng"y. the local memory heeded to execute this partition 1S

part. Corollary 4 concerns about the average overall sche 8al_5|ze: Siz@us + SiZqeserved
length.

operations from the top of the memory part of the sch

Theorem 3 Assume that Ny < Nmem TaLu > Tkeep and In- S EXpe”mental Results

equality 1 is satisfied.

[#pre

Nmem

In this section, the effectiveness of the PSP algorithm is
#keep] evaluated by running a set of simulations on DSP bench-
-‘ X Tpre+ [w-‘ X Tkeep< Laru X #iter+ Tkeep marks. Table 3 and Table 4 show our scheduling results. The
(1) first column presents the benchmarks’ names. The second

to fourth columns are the parameters of the input MDFG,

The length of the memory part of the schedule is at m@sp T with the second column showing the number of nodes and

control steps longer than that of the ALU patrt. the third and fourth columns showing the ALU and memory
unit resource constraints. The partition generated by the al-

Corollary 4 If the partition satisfies the conditions pregorithm is shown in the fifth to seventh columns. The final

sented in Theorem 3, the average length of the overall schgghedule is shown in the next three columns. Colutgh *

ule is at mosT'i‘fgrp plus the average length of the ALU part ofjives the length of the overall schedule and Colug’ is
the schedule. the averageﬁ({-ﬁ). In order to compare our results with the
lower bound, as well as the results from other algorithms, we

Experiments show that rotation scheduling in most casg§iculated the lower bounds of the schedule Ieng’tﬁ\‘—,],

can generates the ALU part of the schedule which achieyggy put them in ColumnL‘B”. We also ran the samealéet of

the lower bound, i.e..awy = boundALU). Therefore, the penchmarks usintist schedulingand Prefetch Balanced ro-

overall schedule either reaches its lower bound or is Vggyion Scheduling (PBSYhe results are shown in Columns

close to it; the difference is at mo Txe‘f;';- “List’ and “PBS”, respectively, where the sub-column “len”
Now we estimate the local memory size for executing tliethe schedule length and the sub-column “ratio” is the ratio

partition. We classify the memory usage into two categoriemmparing the PSP schedule length with that of list schedul-

basic memory for the working set and reserved memory fag and PBS scheduling, i.e. rat ng‘;]e.

prefetch andkeep operations. The abbreviations for our benchmarks “WDF”, “lIR”,
The former corresponds to all the internal delay edges’DPCM”, “2D” and “Floyd” stand forWave Digital filter In-

the partition. The delay edgk= (1,0) in Figure 9(a) indi- finite Impulse Response filidifferential Pulse-Code Mod-

cates a data instance produced in Iteratipand consumed ulation device Two Dimensional filterandFloyd-Steinberg

in the next Iteratiol;. Only one memory location is neededlgorithm, respectively. In Table 3, we assume that each

to hold this data because we can reuse the same locatiorAlod operation takes 1 time unit, eadleep operation also

later iterations. In general, we nedgdmemory locations for takes 1 time unit, and eagirefetch takes 2 time units,

eachd = (dx,0). However, wherd = (dy,1), as shown in while in Table 4, we assume eaphefetch takes 10 time

Figure 9(b), a whole row of intermediate values need to baits. In the PBS experiments in Table 4, the graphs are first

Benchmark Parameters Partition PSP Schedule List PBS

N Nalu Nmem P Py Hter L Lave | LB fen ratio fen ratio

WDF(1) 4 2 2 3,0) | (-4,2) 6 12 2 2 3 66.7% | 3 66.7%
WDF(2) 12 3 3 4,0) | (-3,2) 4 17 | 4.25 4 6 70.8% | 4 106.3%
IIR 16 3 3 6,0) | (-4,2) 12 73 | 6.08 6 8 76% 6 101.3%
DPCM 16 4 4 6,0) | (-4,2) 12 49 | 4.08 4 7 58.3% | 7 58.3%
2D(1) 34 3 3 (3,00 | (0,1) 3 36 12 12 16 75% 12 100%

2D(2) 4 2 2 2,0) | (-4,2) 4 9 2.25 2 4 56.3% | 3 75%
MDFG1 8 2 2 4,0) | (-3,1) 4 17 | 4.25 4 7 60.7% | 4 106.3%
MDFG2 8 2 2 (4,0) | (-6,6) 24 97 | 4.04 4 8 50.5% | 8 50.5%
Floyd 16 3 3 4,0) | (-6,2) 8 48 6 6 11 | 545% | 6 100%

Table 3:Experimental results on DSP filter benchmarks assuMipgtetch= 2.

Benchmark Parameters Partition PSP Schedule List PBSinfold by 2¢2
N Nau Nmem P Py #Hiter L Lave LB len ratio len ratio
WDF(1) 4 2 2 (3,0) (-14,7) 21 42 2 2 10 20% 5.25 38.1%
WDF(2) 12 3 3 (4,0) (-12,4) 16 65 4.06 | 4 10 | 40.6% 5 81.2%
IIR 16 3 3 (6,0) (-14,7) 42 253 | 6.02 6 21 | 28.7% 6 100.3 %
DPCM 16 4 4 (6,0) (-14,7) 42 169 | 4.02 4 20 | 20.1% 5.5 73.1%
2D(1) 34 3 3 (3,0) 0,4) 12 144 12 12 40 30% 20 60%
2D(2) 4 2 2 (2,0) (-16,8) 16 33 2.06 2 10 | 20.6% 5 41.2%
MDFG1 8 2 2 (4,0) (-12,4) 16 65 4.06 4 10 | 40.6% | 5.25 77.3%
MDFG2 8 2 2 (4,0) | (-35,35) | 140 | 561 | 4.01 4 40 | 10.0% | 23.75 16.9%
Floyd 16 3 3 (4,0) (-12,4) 16 96 6 6 20 30% 10 60%

Table 4: Experimental results on DSP filter benchmarks assumiagsch= 10.

unfolded by a factor of 2 2 before performing PBS schedulReferences
ing.
: [1] F. Chen, S. Tongsima, and E. H.-M. Sha. Loop schedul-
As we can see, list scheduling rarely achieves the optimal ing optimization with data prefetching based on multi-
schedule length; the schedules are often dominated by a longdimensional retiming. lfProc. ISCA 11th International
memory part. In order words, the list schedules are not well Conference on Parallel and Distributed Computing Sys-
balanced. Although PBS is better than list scheduling, it too tems pages 129-134, 1998.

becomes less effective to generate a balanced schedule jaﬁ)q: Dahigren and M. Dubois. Sequential hardware
cially whenTpretetchis large. Moreover, PBS needs to explic- p.refetching in sharea-memor.y multiprocessotEEE

Elﬁésnf?msbr{]frgceaicgoflgs gfrdcirr:]o Stzrt]i?)ﬁe(lggrogxsgr:e?e_ Transactions on Parallel and Distributed Systems, Vol.
' Y P P€. 6, No. 7 pages 733-746, Jul. 1995.

after unfolded by a factor of 2, the total number of nodes

is 4 times that of the original). [3] N. L. Passos and Edwin H.-M. Sha. Scheduling of
uniform multi-dimensional systems under resource con-

The PSP algorithm consistently produces optimal or near straints. To appear in the IEEE Transactions on VLSI
optimal schedules, as shown by the bold figures in the tables. systems.

Even in case of long memory latency, WhBjktetchis large,) o

the algorithm still gives good overall schedules without dé#] N. L. Passos and Edwin H.-M. Sha. Achieving full par-
ing any unfolding. Almost all of the resulting schedules are allelism using multi-dimensional retimindEEE Trans-
very close to the optimal. In Table 3, the average ratio of actions on Parallel and Distributed Systems, Vol. 7, No.
the schedule length from the PSP algorithm to that from list 11, pages 1150-1163, Nov. 1996.

_schedullng andOPBS are %% and 849%’ respectively; "?mde[S] J. Skeppstedt and M. Dubois. Hybrid compiler/hardware
in Table 4, 267% and 6% respectively. _Morgover, sinc prefetching for multiprocessors using low-overhead
we _do n_ot unfolq the graph, the computa_mon time Of_ tk_ns al- cache miss traps. Ithe Proceedings of the Interna-
gorlthm is very little. Almost all the expenments are finished tional Conference on Parallel Processingages 298—

in less than two to three seconds. Comparing Tables 3 and 305. 1997

4, we also see that when the memory latency is increased, ' '

the PSP algorithm tends to create a larger partition in ordé] M. K. Tcheun, H. Yoon, and S. R. Maeng. An adaptive
to compensate for this long latency. It shows that the larger sequential prefetching scheme in shared-memory multi-
the partition, the closer the average schedule length is to the processors. Ithe Proceedings of the International Con-
lower bound, because the overhedgt{p control steps are ference on Parallel Processingages 306—313, 1997.
amortized over more iterations.

	Main Page
	ISSS'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

