
Compressed Code Execution on DSP Architectures

Paulo Centoducatte and Guido Araujo
IC–UNICAMP

Campinas, SP 13083-970, Brazil
(ducatte,guido)@dcc.unicamp.br

Ricardo Pannain
II–PUC Campinas

Campinas, SP 13020-904, Brazil
pannain@zeus.puccamp.br

Abstract

Decreasing the program size has become an important
goal in the design of embedded systems target to mass pro-
duction. This problem has led to a number of efforts aimed
at designing processors with shorter instruction formats
(e.g. ARM Thumb and MIPS16), or that can execute com-
pressed code (e.g. IBM CodePack PowerPC). Much of this
work has been directed towards RISC architectures though.
This paper proposes a solution to the problem of execut-
ing compressed code on embedded DSPs. The experimental
results reveal an average compression ratio of 75% for typ-
ical DSP programs running on the TMS320C25 processor.
This number includes the size of the decompression engine.
Decompression is performed by a state machine that trans-
lates codewords into instruction sequences during program
execution. The decompression engine is synthesized using
the AMS standard cell library and a 0.6�m 5V technology.
Gate level simulation of the decompression engine reveals
minimum operation frequencies of 150MHz.

1. Introduction

Embedded systems are computer systems designed to
specific application domains. Because they are aimed at
mass production, minimizing the final cost of such systems
is a major design goal. Therefore, embedded system de-
signs are typically constrained by stringent area, power, and
performance budgets. In order to reduce the total system
cost, designers are integrating memories, microprocessor
cores and ASIC modules into a single chip, a methodology
known asSystem-On-a-Chip(SOC). Microprocessor cores
are selected based on the target application. In areas that
require intense arithmetic processing, as in telecommunica-
tions,Digital Signal Processors(DSPs) have been the pro-
cessor of choice.

A considerable part of the design effort of an embedded
system is devoted to programming the application. Due to
performance constraints, this task is predominantly done in
assembly. Programming and debugging embedded code is

a hard and time-consuming task. With the increase in the
size of applications, assembly programming has become
un-practical and error-prone. Compilers like SPAM [11],
RECORD [8], CodeSyn [10] and CHESS [4] have achieved
some success in generating quality code from high-level
language programs. Unfortunately, compilers can reduce
program size only to some extent. On the other hand, em-
bedded programs are growing considerably large, to the
point where the size of the program memory has become
the largest share of the final die area (cost). A way to re-
duce program size is to compress its instructions, using a
decompression engine to generate the original code during
instruction fetch. This paper proposes a compression algo-
rithm and a decompression engine targeted to DSPs. The
experimental work reveals a 75% average compression ra-
tio1 for a set of typical embedded programs running on the
TMS320C25 processor.

This paper is divided as follows. Section 2 describes re-
lated work in the area of code compression. Section 3 de-
tails our basic compression algorithm. The decompression
engine is described in Section 4 and the experimental re-
sults are analyzed in Section 5. In Section 6 we conclude
the work.

2. Previous Work

The problem of file compression has been extensively
studied [3]. Almost all practical dictionary based compres-
sion tools of today are based on the work of Lempel and
Ziv (LZ) and its variations [3]. Unfortunately, algorithms
derived from LZ are not suitable for real-time code decom-
pression. In LZ, codewords are decompressed sequentially
using as dictionary the string formed by all the symbols al-
ready decompressed. This is a major drawback if the code-
word encodes a forward branch instruction. In the rest of
this section we describe only those compression techniques
that are suitable to efficient real-time code decompression.

Wolfe and Channin [12] proposed theCompressed Code
RISC Processor(CCRP). Programs are compressed one

1Compression Ratio = Size of the compressed code / Size of the un-
compressed code.

cache-line at a time using Huffman codewords and byte-
long symbols. During a cache miss, compressed cache-lines
are fetched from main memory, uncompressed, and stored
into the cache. Instructions in the cache and main memory
have different addresses. The CCRP uses a main memory
table,Line Address Table(LAT), to map (compressed) main
memory addresses to (uncompressed) cache addresses. In
order to reduce the number of accesses to the LAT, aCache
Lookaside Buffer(CLB) is provided to store the set of most
recently used LAT entries. The advantage of the CCRP ap-
proach is that the latency of the decompression engine is
amortized across many cache hits. On the other hand, the
use of a cache makes it very difficult to estimate the exe-
cution time of the embedded program. This is particularly
important for embedded systems running time critical appli-
cations. Moreover, embedded programs are usually stored
into fast on-chip memories. The average compression ratio
achieved by CCRP on a MIPS architecture is 73%. This
compression ratio does not consider the size of the decom-
pression engine.

Wolf and Lekatsas [6, 7] studied two different meth-
ods for code compression. The best compression ratio is
achieved by their SADC method. In SADC, symbols are
associated to instruction opcode and operand fields. Dur-
ing compression, instruction sequences are selected and a
stream of bits is derived for each sequence of instruction
fields. Each stream is then encoded using Huffman code-
words. The average compression ratio achieved by this
method on a MIPS architecture is 51%.

Lefurgy et al [5] describe a compression technique based
on dictionary. Common sequences of instructions are as-
signed to a codeword. A dictionary in the decompression
engine stores the sequence of instructions at the address
given by the codeword. The decompression is performed by
retrieving the sequence of instructions from the dictionary.
Because instructions are compressed, the target address of
jump and branch instructions must be recomputed. In or-
der to deal with that, Lefurgy et al divide the target address
bits into two parts. The first part stores the address of the
word where the compressed target is located. The second
part corresponds to the target offset inside the word. The
average compression ratio using this technique for the Pow-
erPC, ARM and i386 processors were 61%, 66% and 74%.

Araujo et al [2] proposed a code compression technique
for the MIPS architecture that resembles the one previously
studied by Wolf and Lekatsas [6]. They differ on how sym-
bols are selected from the instruction stream. In [2] program
expression trees are decomposed into sequences of opcode
and operand patterns, a method calledoperand factoriza-
tion. Patterns are then compressed separately using Huff-
man codewords, resulting in a 43% compression ratio. In
this paper we also use expression trees as the basis of our
algorithm, but unlike Araujo et al, we do not decompose

them.
Liao et al [9] were the first to study the code compres-

sion problem for a DSP processor. Similarly to [5], com-
pressed instructions are stored into a dictionary. Liao’s idea
is to substitute similar instruction sequences by sub-routine
calls. Instructions are represented by boolean variables, and
instruction sequences are encoded as minterms. Hence, the
problem of compressing the program can be formulated as
a set-covering problem. Instruction sequences are then con-
verted into call instructions to sub-routines in the dictio-
nary. A mechanism based on a stack is used to minimize
the penalty of the sub-routine return instruction. The av-
erage compression ratio achieved by this technique in the
TMS320C25 processor was 82%. To the best of our knowl-
edge, apart from the work of Liao et al [9], no other research
has addressed the problem of executing compressed DSP
code.

SACL static_3

LT *+,AR6

LAC static_3
APAC

MPY *+,AR5
MPY

LT

static_3

acc

t

p

*+

SACL

AR6

*+,AR5

APAC

LAC

static_3

acc

Figure 1. Expression trees.

3. The Compression Algorithm

Our compression algorithm encodes program expression
trees using a simple binary code. First, instruction se-
quences are grouped into expression trees. An instruction
is the root of an expression tree [1] if one of the follow-
ing is true: (a) the instruction stores into memory; (b) the
destination operand of the instruction is the source of more
than one instruction inside the basic block; (c) the desti-
nation operand of the instruction is the source of at least
one instruction outside the basic block; (d) the instruction
is the first instruction in the basic block; (e) the instruction
is a branch. We use expression trees as the basis for com-
pression because compilers tend to generate similar expres-
sion trees during the translation of source statements, like
if-then-elseandfor. Examples of two expression trees are
shown in Figure 1.

We have selected a widely deployed DSP, the
TMS320C25, as the target processor for this work. The
TMS320C25 has 16 bit long instructions that are encoded
using 15 different formats. Instruction formats use opcodes
of different lengths (one or two words) and three address-
ing modes (direct, indirect and immediate). In the direct
addressing mode the operand address is encoded into an in-
struction field. In the indirect addressing mode the operand

Program Total Distinct
Trees Trees (%)

aipint2 928 295 (32)
bench 6693 2089 (31)
gnucrypt 1976 750 (38)
gzip 7171 2146 (30)
hill 627 292 (47)
jpeg 1124 572 (51)
rx 360 121 (34)
set 2798 969 (35)

Table 1. Number of distinct trees in a program.
The numbers in parentheses are percentage
with respect to the total number of expression
trees.

format is <ind,next> , where ind is a side-effect op-
eration with the current address registerAR, e.g. auto-
increment (*+), andnext is the next current address reg-
ister. In the immediate mode the value of the operand is
encoded into the instruction field.

In order to measure the effectiveness of our algorithm we
selected a set of example programs that are representative
of the type of applications running on embedded proces-
sors and DSPs. Programjpeg is an implementation of the
JPEG image compression algorithm,benchis a disk cache
controller,gzip is a compression algorithm, andsetis a col-
lection of bit manipulation routines from a DSP application.
Programshill , gnucryptare data encryption programs, and
rx is an embedded state machine controlling routine.

We first generateoptimizedcode for the example pro-
grams using TI’s TMS320C25 compiler with optimization
flag -O2. The resulting number of distinct expression trees
for each program is shown in Table 1. On average, distinct
expression trees correspond to 37% of all trees in the pro-
grams.

At this point, we want to determine what makes two ex-
pression trees different. Two expression trees are distinct if
they have at least two different instructions. Two instruc-
tions are different if they have different opcodes and/or dif-
ferent operands. For example, instructionsADD *+,AR3
andADD *+,AR3,0 have the same opcode but differ in
one operand (0). In order to better understand what makes
two trees distinct, we split each expression tree into the se-
quences of opcodes and operands that form it. For example,
expression tree[ADD *+,AR2,0 : SUBK 16] is de-
composed into(ADD,SUBK) and(*+,AR2,0,16) . We
then determine the set of distinct opcode and operand se-
quences for each program. Table 2 shows the number of
distinct opcode (column II) and operand (column III) se-
quences for each program, as well as the number of distinct
trees (column IV). Notice, from Table 2, that the number of
distinct operand sequences (column III) is very close to the

Program # Opcode # Operand #Trees Diff.(%)
Name (I) Seq. (II) Seq. (III) (IV) (V)

aipint2 62 291 295 1.4
bench 372 1997 2089 4.6
gnucrypt 193 718 750 4.5
gzip 403 2058 2146 4.3
hill 92 273 292 6.9
jpeg 146 560 572 2.1
rx 50 115 121 4.3
set 218 927 969 4.5
Average 192 867 904 4.2

Table 2. Number of distinct opcode (II) and
operand sequences (III), when compared with
the number of trees (IV).

number of distinct trees (column IV). The difference of both
(in percentage) is shown in column V. The average differ-
ence across all programs is approximately 4.23%. In other
words, there is almost a one to one correspondence between
an operand sequence and its expression tree. For the major-
ity of the trees in a program, given an operand sequence
there is only one opcode sequence associated to it. There-
fore, the combination of its instruction operands is the main
reason for the variety of trees in a program. In the table
Table 2, we can note that the operand factorization method
[2] has more redundanancy than our new method. This sug-
gests that, at least for the case of DSPs, there is no need to
encode operand and opcode sequences separately, as pro-
posed in Araujo et al [2]. Trees should be encoded as an
atomic unit.

The selection of the best algorithm to encode trees de-
pends on their contribution to the program. In order to de-
termine that, we ordered the set of distinct trees based on
how frequent they show up in each program. The cumu-
lative distribution of the distinct trees in the programs was
computed. The result is shown in the graph of Figure 2.
In the horizontal axis of the graph, trees are ordered in de-
creasing frequency. Notice from Figure 2 that the frequency
distribution of distinct trees in DSP programs is very non-
uniform. Actually, trees have exponential frequency distri-
butions, as noticed in [5, 2]. In other words, a small set
of distinct trees covers a large number of all trees in the
program. In average, 70% of all program trees are cov-
ered by only 30% of the most frequent ones. This suggests
that expression trees should be compressed using an encod-
ing that assigns smaller (larger) codewords to (un)frequent
trees. Figure 3 shows this encoding. In that figure the first
bit of each codeword is an escape bit (b). When the escape
bit is zero, the followingk bits encode the2k most frequent
expression trees. Quantityk is the minimum number of bits
required to encode at least the 30% most frequent trees, i.e.
k = dlog20:3Ne, whereN is the number of distinct expres-

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f
T

re
es

 C
ov

er
ed

Unique Expression Trees (Decreasing frequency)

aipint2

bench

gnucrypt

gzip

hill

jpeg

rx

set

Figure 2. Percentage of program trees cov-
ered by distinct trees.

sion trees in the program. When the escape bit is one, the
remaining bits encode a not so frequent tree. The number
of bits required for that isdlog

2
(N � 2k)e.

The compression algorithm substitutes each expression
tree in the program by its corresponding codeword. The re-
sulting code is compacted so that all bits in every memory
word are used. Although codeword compaction improves
compression, it brings two other consequences. First, mem-
ory words can have more than one codeword. Second, code-
words are allowed to split across memory word boundaries.
In the first case, the decompression engine has to keep track
of codeword boundaries inside the current memory word.
In the second case, the engine must be able to put together
pieces of a split codeword during two consecutive memory
fetches.

2
K = log 0.3*N0

2
 log (N - 2)1

K

 CODEWORD

CODEWORD LENGTH

b

BIT

ESC

Figure 3. Tree encoding

4. The Decompression Engine

Figure 4 shows the decompression engine for our com-
pression algorithm. The majority of the work in the de-
compression engine is performed by theInstruction
Generator (IGEN) state machine. During each machine
cycle IGEN generates the bits that together form the var-

ious fields of an instruction from the expression tree be-
ing decoded. For the case of the TMS320C25 processor
the output signals fromIGEN are the instruction fields: op-
code (opcode), immediate (immed), indirect (ind), next
(next), compressed branch address (caddr), and uncom-
pressed branch address (uaddr). The various fields of the
instructions merge into theInstruction Assembly
Buffer (IAB), where they are assembled and shipped to
the CPU, at each machine cycle. Notice that one expression
tree can have more than one instruction. Therefore, while
the CPU executes the delivered instruction, a new instruc-
tion from the current expression tree can be decompressed
without having to fetch another memory word. This is pos-
sible because moduleIAB contains a buffer to store the in-
structions that form the tree. The decompression cycle con-
tinues until all the instructions from the current tree are de-
compressed. In Figure 4 moduleFETCHis responsible for
fetching the next compressed tree from main memory (see
Section 4.1 for details).

Address Bus
CPU

IGEN

opcode

branch

immed

ind

next

uaddr
MEM

IAB
CPU

Data Bus

codeword

instruction
MEM

Address Bus

Data Bus

FETCH

caddr

branch

uddr

Figure 4. The Decompression Engine.

Module IGEN does not increase explosively with the
program growth (see Section 5), as one might expect. There
are two reasons for that. First, the number of state variables
in IGEN is bounded by the size of the largest tree. When
smaller trees are decompressed, the non-used state variables
become don’t cares. Moreover, many distinct trees have
instructions with similar fields, which are eventually trans-
lated into shared logic in theIGEN machine. For exam-
ple, distinct instructionsADD *,AR3 andADD *-,AR3 ,
can share the same piece of logic inIGEN, given that
both have to generate fieldsopcode = ADD andnext =
AR3. We have synthesized the state machineIGEN for each
program in our benchmark, and the results are described in
Section 5.

4.1. Codeword Fetch

Module FETCH fetches the memory word where the
next codeword is (remember that one memory word can
have more than one codeword), and extracts the code-
word bits from it. It also aligns the remaining word bits

Codeword

MDR

Address Bus
MEM

MEM
Data Bus

codeword

caddr

branch

uaddr

CPU

MAR

takenEXTRACT

=

Address Bus

Figure 5. The codeword FETCH module.

so as to prepare the reading of the next codeword. This
is done with the help of theMemory Data Register
(MDR), Memory Address Register (MAR), and the
Extraction Logic (EXTRACT) (Figure 5). MDRis
used to store the memory word that contains the current
compressed tree, whileMARstores the address of the next
word in memory.

Because our compression algorithm allows codewords to
split across the boundary of a memory word, the target of a
branch instruction can start at any position inside a memory
word. On the other hand, the CPU can only handle un-
compressed addresses. In order to solve this conflict,IGEN
generates two addresses, for each branch instruction that
is decompressed. They are: uncompressed branch address
(uaddr) and compressed branch address (caddr).

In the TMS320C25 architecture, a branch instruction has
two 16-bit words, where the second word is the branch tar-
get. Whenever a branch instruction is detected,IGEN out-
put signalbranch is activated. It remains so, until the
next instruction is decompressed. ModuleIAB appends the
bits in uaddr to the other instruction fields generated by
IGEN, so as to assemble the branch instruction (Figure 4).
At the same time, theEXTRACTmodule uses the bits from
caddr to determine: (a) the memory address of the word
where the target compressed tree is; (b) the offset, with re-
spect to the beginning of that word, where the tree starts.
The address of the next expression tree depends on the re-
sult of the last branch instruction passed to the CPU. The
EXTRACTmodule uses signaltaken (Figure 5) to check
that. Signaltaken = 1 if the last decompressed instruc-
tion passed to the CPU was a branch and the branch was
taken, andtaken = 0 otherwise. Signaltaken is deter-
mined by monitoring the progression of the CPU address
bus. If during the next (program) memory read cycle the
content of the CPU address is not equal to the last branch
target passed to the CPU (i.e.uaddr 6= CPU Address
Bus), taken = 0 and the next compressed tree is inMDR,
or is the first tree of the next memory word. In the first case,
theEXTRACTlogic removes the tree fromMDRand passes it
to IGEN (Figure 4). In the second case,MARis incremented,

the next memory word is fetched and its first tree is ex-
tracted and passed toIGEN. If uaddr = CPU Address
Bus, taken = 1 andcaddr is used byEXTRACTand
MARto fetch the next codeword. This approach allows the
CPU to handle the same addresses as those in the original
uncompressed program (uaddr), while the access to mem-
ory is performed using compressed addresses (caddr). By
using this approach we do not require a modification of the
processor address generation unit, like in [5].

5. Experimental Results

We tested our compression algorithm using a set of typi-
cal DSP programs. The compression ratio for each program
was measured. We automatically generate VHDL code for
the decompression engine, using the codeword assignment
resulting from compression. The decompression engine
was synthesized using the Leonardo Spectrum tools from
Exemplar/Mentor Graphics, and the AMS standard cell li-
brary with a 0.6�m, 5 V technology. For each decompres-
sion engine we target area optimization. We measured gate
level estimates for the decompression engine area and max-
imum clock rate. The results are shown in Table 3. The av-

Program Area Clk. Rate
(mm

2) (MHz)

rx 0.5 195
hill 0.8 165
aipint2 1.1 179
jpeg 2.1 150
gnucrypt 2.9 157
set 3.5 182
bench 7.5 155
gzip 8.1 161

Table 3. Area (mm
2) and maximum operation

frequency (MHz) estimates for the decom-
pression engine.

erage engine area was 3.3mm
2.The average operation fre-

quency was 167 MHz. These clock rates match those found
in modern DSPs, suggesting that the latency of the decom-
pression engine will not impact much the final performance
of the system. From Table 3 it is also possible to determine
how the size of the decompression engine depends on the
program size. Although the area of the decompression en-
gine increases as the size of the program grows (Table 3),
the growth is sub-linear. This supports our observation that
larger programs are much more redundant, and that similar
expression trees tend to share the same logic gates inIGEN.

The compression ratio for each program is shown by the
dark bars in the graph of Figure 6. The average program
compression ratio was 28%. The final compression ratio
has to take into consideration the size of the decompression

Program Compression

100

90

80

70

60

50

40

30

20

10

0

Fi
na

l C
om

pr
es

si
on

 r
at

io
 (

%
)

gzipabenchsetgnucryptjepgaipint2hill rx

Engine Overhead

Figure 6. Final compression ratio.

engine though. We measured the area of the decompres-
sion engine and determined the engine overhead contribu-
tion to the final compression ratio2. The overhead of the
decompression engine for each program is represented by
the white bars in Figure 6. In average the decompression
engine contributes 47% to the final compression ratio. The
final compression ratio, once the engine size is taken into
consideration was 75%.

Our final compression ratio (75%) is better than the best
previous result on compression for DSPs, by Liao et al [9]
(82%). On the other hand, the numbers do not differ much.
In our approach we generate very dense code, using more
area for the decompression engine. The opposite occurs
in Liao’s case. Their program compression ratio is higher,
while the decompression engine is based on small dictio-
naries. The fact that we both obtain similar compression
ratios, using radically different approaches, suggests that
the minimum compression ratio that can be achieved for the
TMS320C25 is around 70-80%. This is probably true for
other DSPs as well. Similar experiments for RISC architec-
tures [2] resulted in lower a compression ratio (� 50%).
We believe this difference can be explained by the fact
that DSPs have highly encoded instruction sets, that are
designed to maximize the usage of word bits. Given that
instructions are already compacted, the efficiency of the
(de)compression algorithm (engine) is jeopardized.

6 Conclusions

This paper proposes a code compression technique for
DSP programs that improves previous work. Our approach
is based on compressing expression trees. We show that
trees have exponential distributions. We also propose a de-
compression engine that assembles instruction fields into
uncompressed instructions sequences.

2i.e. Engine overhead = Decompression engine area / Area of the pro-
gram memory for the original program.

7 Acknowledgments

The authors are grateful to Stan Liao for providing the
test programs. We also thank the anonymous referees for
their comments. This work would not be possible with-
out the tools and resources provided by Mentor Graphics
Corporation, through their Educational Program. This work
was supported by a CNPq/NSF collaborative research grant
and by CNPq Research Fellowship 300156/97-9.

References

[1] A. Aho, R. Sethi, and J. Ullman.Compilers, Principles,
Techniques and Tools. Addison Wesley, Boston, 1988.

[2] G. Araujo, P. Centoducatte, M. Cortes, and R. Pannain. Code
compression based on operand factorization. InProceedings
of MICRO–31: The 31th Annual International Symposium
on Microarchitecture, December 1998.

[3] T. C. Bell, J. G. Cleary, and I. H. Witten.Text Compres-
sion. Advanced Reference Series. Prentice Hall, New Jersey,
1990.

[4] D. Lanneer, J. V. Praet, A. Kifli, K. Schoofs, W. Geurts,
F. Thoen, and G. Goossens. CHESS: Retargetable Code
Generation for Embedded DSP Processors. In P. Marwedel
and G. Goossens, editors,Code Generation for Embedded
Processors, chapter 5, pages 85–102. Kluwer Academic
Publishers, Boston, Massachusetts, 1995.

[5] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge. Improving
code density using compression techniques. InProceedings
of MICRO–30: The 30th Annual International Symposium
on Microarchitecture, pages 194–203, December 1997.

[6] H. Lekatsas and W. Wolf. Code compression for embedded
systems. InProc. of 35th ACM Design Automation Confer-
ence, 1998.

[7] H. Lekatsas and W. Wolf. Random access decompression
using arithmetic coding. InProc. of the Data Compression
Conference, March 1999.

[8] R. Leupers.Retargetable Code Generation for Digital Sig-
nal Processors. Kluwer Academic Publishers, June 1997.

[9] S. Liao, S. Devadas, and K. Keutzer. A text-compression-
based method for code size minimization in embedded sys-
tems. ACM Transactions on Design Automation of Elec-
tronic Systems, vol. 4, no. 1, pages 12–38, January 1999.

[10] P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala.
CodeSyn: A Retargetable Code Synthesis System. In
Proceedings of the 7th International High-Level Synthesis
Workshop, Spring 1994.

[11] A. Sudarsanam. Code Optimization Libraries for Retar-
getable Compilation for Embedded Digital Signal Proces-
sors. PhD thesis, Princeton University, May 1998.

[12] A. Wolfe and A. Channin. Executing compressed pro-
grams on an embedded RISC architecture. InProceedings
of MICRO–25: The 25th Annual International Symposium
on Microarchitecture, pages 81–91, December 1992.

	Main Page
	ISSS'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

