
Optimized System Synthesis of Complex RT Level Building Blocks from
Multirate Dataflow Graphs

Jens Horstmannshoff and Heinrich Meyr
Integrated Signal Processing Systems

Aachen, Germany

Abstract
In order to cope with the ever increasing complexity of

todays application specific integrated circuits, a building
block based design methodology is established. The system
is composed of high level building blocks of which some
are reused from previous designs while others might have
been created by behavioral synthesis. In data flow oriented
designs, these blocks usually have complex non-matching
interface properties, making it necessary to generate ad-
ditional interfacing and controlling hardware to integrate
them into an operable system.
In this paper, an RTL-HDL code generation from a syn-
chronous data flow representations is introduced, that effi-
ciently automates the generation of the required additional
hardware. While existing code generation approaches pro-
vide strong limitations concerning the building block in-
terfacing properties, our method enables the integration of
components that access their ports periodically with arbi-
trary patterns. In order to reduce interface register cost,
a minimum-area retiming approach is taken to determine
optimum building block activation times, which is known
to have polynomial time complexity. The code generation
methodology is compared to an existing approach using a
simple case study.

1 Introduction
Todays ASIC designers face the problem of an explod-

ing design complexity. At the same time, the development
cycles are getting shorter in order to achieve a minimum
time-to-market of the product. This pressure leads to a shift
in ASIC design paradigm to speed up productivity while
guaranteeing that only one design iteration is necessary to
develop an operable product (first-silicon-success).
This new paradigm is based on the combination of high
level building blocks that are taken from different origins
[3]. To a certain degree these blocks can be reused from pre-
vious designs or purchased from third party vendors. Other
blocks have to be custom made for the specific application.
This involves the usage of advanced block design methods
like behavioral synthesis [1] or data-path generation. In
general, the high-level building blocks have non-matching
complex interfacing properties that require the designer to
write additional interfacing and controlling hardware that
combines all blocks into an operable system.
In order to ensure a first-silicon-success of the building
block based design it is important to use a seamless design
flow from the algorithmic system specification to hardware
implementation, that enables the the joint development of
algorithm and architecture and a stepwise refinement of the
initial algorithmic model. This flow allows the verification

of the refined model to the more abstract algorithmic speci-
fication.
The ideal design environment to automate the seamless de-
velopment of building-block based data-path oriented ASIC
designs is RTL-HDL code generation from synchronous
data-flow graphs [6]. Here, the algorithmic input specifi-
cation is given by the data flow graph representation of the
system which contains no notion of time. In the course of
the code generation, the purely functional data-flow actors
are mapped to complex RTL building blocks that are taken
from a library. Furthermore, additional interfaces and con-
trollers are generated to glue the given building-blocks into
an operable system.
In this paper, we present a new approach of generating
a building-block based target RTL architecture from syn-
chronous data flow graph specifications. Here, a minimum
area retiming transformation is used to reduce interfacing
register cost. The paper is organized as follows: Section 2
summarizes the existing HDL code generation approaches
from synchronous data flow representations. In Section 3 an
overview of the tasks performed by our HDL code genera-
tion tool is given. After discussing the timing specification
of the building blocks in section 4, the algorithms involved
in the code generation are presented in section 5. Finally, a
simple case study is presented in section 6.

2 Existing Approaches
Several approaches of generating hardware from syn-

chronous data flow graphs are known to date. In [10], por-
tions of the data flow graph are grouped into hardware exe-
cution units for which asynchronous communication is gen-
erated. Here, the granularity of the actors is restricted, so
the desired combination of complex building blocks is not
supported.
In [11], a library based HDL code generation method is pre-
sented that enables the integration of more complex build-
ing blocks. This approach, however, is strongly restricted
concerning the I/O properties of the building blocks. Each
block is assumed to read and write samplesequidistantly,
meaning that a fixed number of clock cycles elapses be-
tween each sample being read or written. This assumption
is not valid for a vast number of building-block architectures
which are integrated in todays communication systems.
The code generation approach presented in this paper is
based on the work discussed in [2], where the building
blocks are allowed to have arbitrary periodic port access
patterns. Here, a straightforward approach is taken to gen-
erate the additional interfacing and controlling hardware,
which can lead to a high overhead in interfacing registers.
In this paper we will present a code generation approach
that tremendously reduces this overhead.

3 Code Generation Overview
Algorithmic simulation of communication systems can

be performed very efficiently using synchronous dataflow
[6]. In dataflow, a system is represented as a directed graph,
in which the nodes represent computations and the edges
represent FIFO channels. These channels queue data val-
ues, encapsulated in objects called tokens, which are passed
from the output of one computation to the input of another.
In the dataflow model, no notion of time is present. For our
code generation tool we use dataflow graphs as offered by
[9] as an input specification. In the course of the code gen-
eration, the computational models contained in the dataflow
nodes are mapped to RTL building blocks. Furthermore,
a cycle based time scale is introduced for the data tokens
transmitted over the graph’s edges. Therefore, detailed in-
formation is required about the timing of each RTL building
block.
The building blocks are assumed to have complextiming-
patternsfor their ports. The port timing pattern consists of
a periodic sequence of timesteps (specified in multiples of
clock cycles) at which data samples are consumed or pro-
duced at this port. Most data-path oriented signal process-
ing components can be described in this manner. A detailed
description of the component timing model will follow in
Section 4.
The main task in system integration is the generation of ad-
ditional RTL-components to glue the single components to-
gether to a working system. As depicted in Figure 1, this is
done by introducing interface components and controllers
which provide reset and stall signals to ensure proper build-
ing block activation. These components are now discussed
with respect to their tasks.

A
1 2 2 1

1

1

E1

E4

C

B

1

1 11

1

E2

E3

 Synchronous Data-Flow Graph

A C

B
RTL System Architecture

RTL

RTL

RTL

SIG2
SIG1

SIG3

SIG4

Pause Signal
Generator

Delayed
Reset Generator

Initial
Value Generator

HDL Code Generation

FIFO

FIFO

Figure 1. HDL Code Generation Scenario

� Stall signal generation:
In synchronous dataflow, each component consumes
and produces a fixed number of samples at its ports
each time it is activated. This number is referred to as
the port’sdata rate. In a block diagram with multiple
rates, each component has to be activated a certain num-
ber of times within a global processing period in order
to achieverate-consistency. When the system is rate-
consistent and free of deadlocks, it can go through an
infinite number of iterations with finite memory require-
ments at the interfaces between its components [6]. If

the number of clock cycles the building-blocks require
for one system iteration is not constant for all building-
blocks in the system, it becomes necessary to pause the
faster ones. In the target architecture, this is realized by
applying a stall signal to the corresponding blocks or by
using gated clock signals.

� FIFO buffers:
On certain signals in the RTL target architecture, FIFO
buffers have to be inserted to adapt non-matching tim-
ing patterns of the connected building block ports or to
balance the latency of merging paths. The registers re-
quired for this latency balancing are also calledshim-
ming registers[4].

� Initial value generation:
In the system’s initialization phase, some blocks have to
start processing with determined initial values in order
to avoid dead-locks in feedback loops. These values are
produced by an initial value generator in the interface
preceding those blocks.

� Delayed reset signals:
After the system reset signal is deactivated, a component
can start processing only after the preceding block starts
to deliver valid data samples, i.e. after the writing block
has finished its initialization. This delayed activation
is implemented by disabling the reset signals for each
component at a pre-determined point in time. Therefore,
the target architecture contains a reset generator which
delivers an independent reset-signal for each building-
block.

In order to build this required additional hardware, the fol-
lowing data has to be determined:
� Number of pause cycles per building block
� Mapping of pause cycles to block schedules
� Reset deactivation delay of each building block
� Data token transfer delays

In section 5, we will present the algorithms to determine
this data.

4 System Input Specification
The HDL code generation presented here is based on a

data-flow representation of the system and a clock cycle true
timing specification of the RTL building blocks. In the fol-
lowing, a formal model is introduced for this data.

4.1 Data-Flow Graph Terms
The system to be integrated is described by a directed

synchronous data flow graph [6]GSDF
= (N SDF; ESDF

), where
N SDF represents a set of nodes (blocks) andESDF stands for
a set of edges. Figure 2 depicts two nodesN SDF

i andN SDF
j

which are connected via edgeESDF.

 E

P (N)1
out

i N i

η (E)i

σ (E)i

P (N)1
in

j N j

η (E)
o

σ (E)o

ζ ρ

SDF

SDF SDF

Figure 2. Definition of graph terms
Each nodeN SDF

i has a number of input portsP in
j (N SDF

i)

and output portsP out
j (N SDF

i). So, edgeESDF in figure 2
can be represented by an ordered pair of portsESDF

=

(P out
1 (N SDF

i); P in
1 (N SDF

j)), where the input port of this edge
is given by�in(ESDF

) = P out
1 (N SDF

i) and the output port

by �out(ESDF
) = P in

1 (N SDF
j). To denote the nodes with

respect to a connected edge we introduce the input node
of edgeE as �in(ESDF

) = N SDF
i and its output node as

�out(E
SDF
) = N SDF

j .
The number of samples which are consumed or produced on
a portP (N SDF

)within one activation is given by its data-rate
r(P (N SDF

)). The number ofinitial values�(ESDF
) on edge

ESDF denotes the number of data tokens that are written to
the edge output port�o(ESDF

) before the first data token is
produced by the edge input port�o(ESDF

). In addition to
these typical synchronous data-flow properties, the user can
assign a minimum number of registers�(ESDF

) to an edge
that will be placed on the corresponding signal in the RT
level system architecture.
4.2 Building Block Interface Specification

As mentioned above, the building blocks are assumed to
perform their calculations periodically after initialization.
The duration of one processing period of nodeN SDF

i in num-
ber of clock cycles is callediteration-periodand will be de-
noted asInode(N SDF

i). During one iteration-period, the RTL
building block consumes and writes the same number of
data items at its ports as specified by the data-rates of the
corresponding synchronous data flow model. In order to
map these data items to the clock cycle true schedule of the
RTL model, we introduce aport time mapping vector~�(P)
for every data portP to specify in which clock cycle within
the iteration period it is accessed.If portP is an output port,
thej-th element of~�(P) represents the clock cycle index of
the first valid appearance of thej-th sample in the iteration
period of portP in the periodic processing phase. IfP is
an input port, thei-th element of~�(P) contains the cycle in
which thei-th data sample is read from the port. Since the
first element of the port time mapping vector denotes the
cycle index of the first access to this port, it can be seen as
the latency of this port.
Some building blocks require a certain number of clock cy-
cles between the deactivation of the reset signal and the start
of the periodic I/O schedule to initialize their internal states.
This duration is calledinitialization-time�init(N SDF

i).
Figure 3 depicts the waveforms of a resource shared down-
sampling FIR filter block with registered output ports that
was generated using behavioral synthesis. The numbers in
the waveforms of theINPUT andOUTPUTport represent
the data token index within the iteration period.

INPUT

CLOCK

OUTPUT

RESET

Cycle
Index

Iteration Interval

0 1 2 3 4 5 6

0 1 2 3

7 8 9 10 11 12 13

0 1 2 3

00

Initialization
Time

Figure 3. Waveforms of DFIR Filter
Following the deactivation of the reset signal the block

requires�init = 1 clock cycle to initialize its internal
states. Then the block starts processing periodically with
an iteration interval ifI = 7 during whichr(INPUT) =

4 data samples are consumed from the input port and
r(OUTPUT) = 1 data sample is written to the output port.
As depicted in figure 3, the port time mapping vectors are

given by
~�(INPUT) = (0 4 5 6)

T
~�(OUTPUT) = (4) (1)

The periodicity model holds especially well for data-flow
oriented components with resource sharing as they are gen-
erated by high level synthesis tools [1]. As we will see in
section 5.2 it is also important to specify whether an out-
put port is registered or whether there exists a combinato-
rial path from an input port. This property is crucial for the
construction of the paused timing pattern.

5 Algorithms
5.1 Rate and Periodicity Consistency

The first step in synthesizing an operable RTL architec-
ture from the synchronous data flow system is to determine
the minimumsystem iteration periodand the number of
clock cycles each building block has to be paused in this
period. The system iteration periodImin

sys describes the min-
imum number of clock cycles the RTL system requires for
one system iteration. Therefore, it is necessary to calcu-
late the number of iteration periods each block goes through
during one system iteration. This information can be ex-
tracted from the synchronous data flow representation.
Let qNSDF

i

denote the number of times nodeN SDF
i is activated

per system iteration period, then we have to determine val-
ues forqNSDF

i

which fulfill the following balance equations
for all edges8ESDF

j 2 ESDF

q�i(ESDF
j

)r(�i(E
SDF
j)) = q�o(ESDF

j
)r(�o(E

SDF
j)) (2)

Equation 2 expresses the fact that within one system it-
eration period the same number of samples is produced
and consumed by the ports connected to edgeESDF

j . We
can construct atopology matrix� that contains the inte-
ger r(P out

n (N SDF
i)) in position(j; i) if nodeN SDF

i produces
r(P out

n (N SDF
i)) samples from output portn on the edgeESDF

j .
If it contains the integer�r(P in

n (N SDF
i)) in position(j; i),

nodeN SDF
i consumesr(P in

n (N SDF
i)) samples on input portn

from edgeESDF
j . Then, the system of equations to be solved

can be written as
� ~q = ~0 (3)

where~0 is a vector full of zeros, and~q is therepetition vec-
tor. Now we are able to calculate the minimum system iter-
ation period

Imin
sys = max

8NSDF
i
2N

(Inode(N
SDF
i) qi) (4)

Please note that any system iteration period can be chosen
depending on the system throughput requirements as long
as the minimum system iteration interval is not violated. If
the number of cycles a nodeN SDF

i requires forqi activations
is smaller than the system iteration period, the component
has to be paused for

p(N SDF
I) = Isys � I(N SDF

i) qNSDF
i

(5)
cycles in each system iteration. This measure has to be
taken in order to achieve a globalperiodicity consistency.

5.2 System Timing Adjustment by Retiming
In this paper, we will use a minimum-area retiming ap-

proach to map the pause cyclesp(N SDF
i) to the building

blocks I/O schedule and determine the block reset deacti-
vation cycles, while minimizing the delay of all data token
transfers in the system. This approach leads to a tremen-
dous reduction in interface register area compared to the

approach presented in [2].
In the following, we will demonstrate how to construct a
directedretiming graphGRET from the input system specifi-
cation on which the classic min-area retiming algorithm [7]
can be applied.

5.2.1 Retiming Graph Construction

The directed retiming graphGRET
= (N RET; ERET

) is a
representation of the building block I/O schedules and the
data transfers that take place in one system iteration. In gen-
eral, the I/O schedule of a building block can be partitioned
into multiple phases where each phase contains exactly one
clock cycle in which ports are accessed. A retiming node
NRET
i (N SDF

) 2 N RET stands for thei-th phase in the I/O
schedule of data flow blockN SDF. Every retiming node has a
reference cyclec(N RET

i (N SDF
)) that contains the index of the

corresponding port access cycle in the periodic I/O sched-
ule of building blockN SDF. The retiming edgesERET 2 ERET

are represented by ordered pairs of retiming nodes
ERET

= (NRET
i ; NRET

j). The set of Retiming edges can be
divided into two basic typesERET

= ERET
(N SDF

)[ERET
(ESDF

).
A schedule edgeERET

(N SDF
) 2 ERET

(N SDF
) stands for a

direct sequential dependency between two phases in the
I/O schedule of building blockN SDF. A data transfer edge
ERET
i (ESDF

) 2 ERET
(ESDF

) represents the transfer of thei-th
data token over data flow edgeESDF within one system
iteration. Here, the feeding retiming node represents the
I/O schedule phase in which the data token is written, while
the consuming retiming node stands for the I/O schedule
phase in which the token is read. Every retiming edgeERET

has a delayD(ERET
) and a widthw(ERET

) assigned to it.
In order to construct the retiming graphGRET

(GSDF
) from a

data flow graphGSDF, we first partition the I/O schedules
of all building blocks into retimable phases to determine
the retiming nodes and the schedule edges. Inserting pause
cycles into the periodic I/O schedule of a building block has
the effect of stretching the port access patterns. Depending
on where the pause cycles are inserted in the periodic I/O
schedule of the block, different stretching scenarios occur.
As an example, the I/O schedule of the downsampling
FIR filter in figure 3 shall be used, assuming that it has
to be paused (p(dfir) > 0) and only activated once each
system iteration (qdfir = 1). This block can be paused by
deactivating the load-enable signal of all internal registers.
We partition the I/O schedule of this block into five phases
where the first phase spans the first three cycles of its
periodic I/O schedule. Pausing the component in any cycle
of this phase will result in the same pattern stretching.
The remaining four clock cycles of the I/O schedule are
partitioned into four distinct phases since the pattern is
stretched differently depending on which of these cycles
is chosen for pausing. In the retiming graph, the five
I/O phases are represented by retiming nodesN RET

0�4(dfir)
that are connected cyclically by retiming schedule edges
ERET
0�4(dfir) as depicted in figure 4. These edges represent

the cyclic I/O schedule of the building block.
Figure 5 presents the algorithm that determines the set

of retiming nodesN RET, their reference cyclesc(N RET
)

and the number of retiming nodes#N RET
(N SDF

) for every
building block. The algorithm iterates through all building
blocks and generates a retiming node for every phase in
the periodic I/O schedule of a block that contains a clock
cycle in which a port access takes place. However, if a

N (dfir)RET
0 N (dfir)RET

1 N (dfir)RET
2 N (dfir)RET

3 N (dfir)RET
4

c=0 c=3 c=4 c=5 c=6
D=0 D=0 D=0 D=0

D=p(dfir)

E (dfir)
RET

1 E (dfir)
RET

2
E (dfir)

RET

3 E (dfir)
RET

4

E (dfir)
RET

0

Figure 4. Retiming graph representing I/O
schedule of block dfir

building block does not have to be paused (p(N SDF
) = 0),

only one retiming node will be created. The function
is port access(N SDF; i) returns true if a port access takes
place in thei-th cycle of the periodic I/O schedule of block
N SDF. In the case of registered output ports, the function
returns true if a data item is written in cyclei + 1 in order
to take the register delay into account.

The retiming nodes are cyclically connected by

1)N RET
 ;

2) for all NSDF
2 N

SDF

3) if p(NSDF) = 0
4) N

RET
 N

RET
[fN

RET
0 (NSDF)g

6) c(NRET
0 (NSDF)) 0

7) #N
RET(NSDF) 1

8) else
9) j 0
10) for i=0 to qNSDF I(NSDF) � 1

11) if is port access(NSDF
; i)

12) j j + 1
13) N

RET
 N

RET
[fN

RET
j�1(N

SDF)g

14) c(NRET
j�1(N

SDF)) i

15) end
16) #N

RET(NSDF) j

17) end
18) end

19) end

Figure 5. Determination of retiming nodes
#NRET

(N SDF
) schedule edges, whereERET

0 (N SDF
) al-

ways marks the schedule edge between the last
NRET
#NRET(NSDF)

(N SDF
) and the first NRET

0 (N SDF
) retiming

node. The pause cycles that are introduced in the I/O
schedule of a building block are represented by the re-
timing edge delaysD(ERET

i (N SDF
)) assigned to schedule

edgeERET
i (N SDF

) of this block. As depicted in figure 4 the
p(N SDF

) pause cycles are initially placed on schedule edge
ERET
0 (N SDF

). So we can write

D(ERET
i (N SDF

)) =

�
0 : i 6= 0

p(N SDF
) : i = 0

(6)

In the retiming transformation, these pause cycles are dis-
tributed over the I/O schedule to minimize data transfer de-
lay. As we will in section 5.2.2, the width of all schedule
retiming edges is

w(ERET
i (N SDF

)) = 0 8ERET
i (N SDF

) 2 ERET
(N SDF

) (7)

This means that pausing the I/O schedule of a building block
does not cause any register cost.
Now the set of data transfer retiming edgesERET

(ESDF
) is

constructed. The number of data tokens transferred over
a data flow edgeESDF in one system iteration is given by the
interface rate

rint(E
SDF
) = q�i(ESDF) r(�i(E

SDF
)) (8)

In the retiming graph, each data token transfer over a
data flow edgeESDF is represented by a data transfer edge
ERET

(ESDF
). So the number of retiming edges per data flow

edge is also determined byrint(ESDF
). In order to deter-

mine the input and output retiming nodes of each data trans-
fer edge, we need knowledge about the I/O schedule phase
in which a data token is produced or consumed. This in-
formation is given in theretiming variable mapping vector
~�(P (N SDF

)) that can easily be determined once the phase
partitioning was performed. Thei-th element�i(P (N SDF

))

of this vector contains the I/O phase index in which thei-th
data token is read or written on portP (N SDF

). For the down-
sampling FIR filter example in figure 3, these vectors are

~�(INPUT(dfir)) = (0 2 3 4)
T
; ~�(OUTPUT(dfir)) = (1)

Figure 6 contains the algorithm that determines the set
of data transfer edgesERET

(ESDF
), the data transfer delays

D(ERET
(ESDF

)) and their widthw(ERET
(ESDF

)). The algo-

1) ERET(ESDF) ;
2) for all ESDF

2 E
SDF

3) for j = 1 to rint(E
SDF)� 1

4) k (j + �(ESDF)) modrint(ESDF)

5) E
RET
j (ESDF)

�
N

RET
�j(�i(E

SDF))
(�i(E

SDF));

N
RET
�k(�o(E

SDF))
(�o(ESDF))

�

6) E
RET(ESDF) ERET(ESDF) [f ERET

j (ESDF)g

7) D(ERET(ESDF)) d
�
o; k
� di; j(E

SDF) +��iv(E
SDF)

+�init(�o(E
SDF))� �init(�i(E

SDF))
8) w(ERET(ESDF)) w(ESDF)
9) end

10) end

Figure 6. Determination of data transfer edges

rithm generates a retiming data transfer edge for each data
transfer that takes place within each system iteration. In
line 5, the retiming edges are constructed by pairing up the
retiming nodes that represent the producing and consuming
I/O schedule phases of the corresponding data token. When
determining the output retiming node of a data transfer edge
ERET

(ESDF
), we have to consider that the first�(ESDF

) in-
put tokens that port�o(ESDF

) consumes are initial values
assigned to data flow edgeESDF. Therefore, the token corre-
spondence has to be cyclically shifted by�(ERET

) samples
in line 4. The delayD(ERET

j (ESDF
)) of a data transfer edge

denotes the delay between the production of thej-th data
token onto edgeESDF and its consumption. The initial delay
between token production and consumption is calculated in
line 7, assuming that all building blocks are activated in the
same clock cycle and that the pause cycles are inserted be-
tween the last and the first retiming node as stated in equa-
tion 6. Here,di; j(ESDF

) is thej-th element of theedge in-
put pattern, whiled�o; j(E

SDF
) stands for thej-th element of

the edge output patterncyclically shifted by� initial val-
ues. These patterns are constructed by duplicating the port
time mapping vectors of the connected ports as often as the
corresponding block is activated within each system itera-
tion. The negative delay caused by the availability of initial
values is represented by��iv(ESDF

). The determination of
these values is thoroughly discussed in [2]. The width of
a data transfer edge equals the width of the corresponding
data flow edge.

5.2.2 Retiming Formulation
Based on the retiming graph constructed in the previous

section, the standard min-area retiming problem can be for-
mulated. A retiming is a labeling of the retiming graph ver-
tices� : NRET ! Z, whereZ is the set of integers. The
delay of retiming graph edge after retiming is denoted by
D�(E

RET
) and given by

D�(E
RET
) = �(�o(E

RET
)) +D(ERET

)� �(�i(E
RET
)) (9)

The retiming label�(N RET
) of a retiming nodeN RET repre-

sents the number of delays moved from its outgoing retim-
ing edges to its incoming retiming edges. Moving a delay
to a data transfer edgeERET

j (ESDF
) means that the delay be-

tween the production and consumption of thej-th data to-
ken via data flow edgeESDF is enlarged. Moving a delay to a
schedule edgeERET

(N SDF
) introduces a pause cycle between

the I/O schedule phases embodied by the input and output
retiming node of this edge.
It is our objective to minimize the data transfer delay
weighted with the width of the transferred data tokens,
in order to reduce interface register cost. A retiming
�(NRET

) = 1 on retiming nodeN RET contributes an incre-
ment of�C(NRET

) to the cost function

�C(NRET
) =

ERET
in

(NRET)X
w(ERET

)�

ERET
out

(NRET)X
w(ERET

) (10)

Here, ERET
in (NRET

) represents the set of incoming retiming
edges, whileERET

out(N
RET
) stands for the set of outgoing re-

timing edges with respect to retiming nodeN RET. Please
note that all schedule edges are zero width as shown in
equation 7, since no cost is caused by pausing a building
block. When formulating the retiming as an ILP problem,
the objective function to be minimized is given by

min

8NRET2NRETX
�C(NRET

)�(NRET
) (11)

In order to achieve avalid retiming, it has to be ensured
that the retiming graph edge delay after retiming does not
become negative. A negative delay on a data transfer edge
implies that a data token is read from a data flow edge before
it has been produced, while the negative delay on a schedule
edge means that the block schedule is shortened. For the I/O
schedule edges this non-negativity constraint can written as

�(�i(E
RET
))� �(�o(E

RET
)) � D(ERET

)

8ERET 2 ERET
(N SDF

) (12)

where�i(ERET
) denotes the start retiming node of edgeERET

and �o(ERET
) marks the end retiming node of this edge.

When constructing the constraints for the data transfer
edgesERET

(ESDF
), we have to consider that the delay must

never become smaller than the minimum delay�(ESDF
) that

the user assigned to the corresponding data flow edgeESDF.
This leads to

�(�i(E
RET
))� �(�o(E

RET
)) � D(ERET

)� �(ESDF
)

8ERET 2 ERET
(ESDF

) (13)

The ILP problem given by equations 11, 12 and 13, resem-
bles the unconstrained min-area retiming problem as formu-
lated in [7]. The dual of this ILP problem is a min-cost flow
network problem which can be solved efficiently in polyno-
mial time [5].

In order to ensure feasibility of the retiming ILP problem, it
has to be guaranteed that the sum of delays along all data-
transfer cycles in the retiming graph is smaller or equal zero.
If this is the case, the network optimization algorithm will
always find a valid retiming solution.

5.2.3 Retiming Results
After solving the retiming problem formulated in section

5.2.2, we are able to determine all data that is necessary to
generate the required additional hardware. Thereset de-
activation timetro(N SDF

) denotes the delay in clock cycles
between system reset deactivation and the reset deactivation
of blockN SDF. This value is given by the retiming labeling
of the first retiming node of the corresponding block

tro(N
SDF
) = �(NRET

0 (N SDF
)) (14)

In the RTL target architecture, the reset generator will pro-
vide an independent reset signal for each blockN SDF, which
is delayed bytro(N SDF

) clock cycles.
The periodic pausing pattern that the pause signal gener-
ator has to provide for each building blockN SDF can be
determined from the schedule edge delays after retiming
D�(E

RET
(N SDF

)) as given by equation 9 and the reference
cycles of the retiming nodesc(N RET

(N SDF
)). A schedule

edge delay ofD�(E
RET
j (N SDF

)) after retiming means that
the periodic schedule of blockN SDF has to be paused for
D�(E

RET
j (N SDF

)) cycles in thec(NRET
j (N SDF

))-th clock cycle
of its periodic processing phase.
The number of registers required to implement the FIFO
buffer on a data flow edge is given by the maximum number
of overlapping token transfers. By minimizing the delays
of these transfers in the retiming transformation, the maxi-
mum overlap is tremendously reduced compared to existing
approaches.

6 Case Study
The carrier synchronization unit [8] depicted in figure 7

is used as an example to compare the register cost produced
by the approach presented here to the approach taken in
[2]. The RTL architectures that correspond to the functional
models of the data flow models have non-matching port
I/O patterns and different processing periodicities, requir-
ing the RTL-HDL code generation to produce additional in-
terfacing and controlling hardware in order to synthesize
all blocks into an operable system. In table 1 the number

Cordic &
NCO

Downsampling
FIR

Phase Error
DetectorLoopfilter 3

1
1
1

1

1

4

4

1
1
1

1114

E1

E2

E3

E4

E5

Figure 7. SDF Graph of Carrier Synchronizer
of interfacing registers inserted between the building block
ports are compared for two code generation approaches.
The variableNR represents the number of word level reg-
isters, whileNR w denotes the register cost in one-bit wide
registers. In [2], periodicity adjustment is performed by ar-
bitrarily inserting the pause cycles into the building block
I/O schedules, while the reset deactivation time and shim-
ming register cost is determined by using a shortest path
algorithm on a timed graph. As we can see, interfacing reg-
isters have to be inserted on the signals that correspond to

Approach I Approach II
NR NR w NR NR w

E1 3 12 0 0
E2 2 8 0 0
E3 0 0 0 0
E4 0 0 1 5
E5 4 68 0 0

Total 9 88 1 5

Table 1. Register Cost of Carriersynchronizer

data flow edgesE1, E2 andE5, leading to a total register
cost of 88 single-bit registers. Approach II represents the
optimized code generation algorithm presented in this pa-
per. By using a retiming transformation, to map the pause
cycles to the building blocks I/O schedules and to determine
the block reset deactivation times, register cost is decreased
tremendously. Only one 5-bit wide register is required on
edgeE4, resulting in a interfacing register cost reduction
by a factor of 17. Please note that the complexity of the
generated controller does not significantly increase when
changing the pause cycle mapping or the delayed reset de-
activation pattern.

7 Summary
In this paper, we presented an HDL code generation ap-

proach from synchronous data flow graphs that enables the
seamless building block based design of data-flow oriented
systems. By employing a min-area retiming technique to
minimize data transfer delays, the interface register cost is
significantly reduced compared to existing approaches.
In future work, we will focus on the support of data-
dependent communication and on providing an interface to
top level control dominated systems.

References
[1] R. Camposano. A review of hardware synthesis techniques

- behavioral synthesis. In G. D. Micheli, editor,Hard-
ware/Software Co-Design, 1996.

[2] J. Horstmannshoff, T. Gr¨otker, and H. Meyr. Mapping Mul-
tirate Dataflow to Complex RT Level Hardware Models. In
ASAP. IEEE, 1997.

[3] M. Hunt and J. Rowson. Blocking in a system on a chip.
IEEE Spectrum, November 1996.

[4] H. Jagadish and T. Kailath. Obtaining Schedules for Digi-
tal Systems.IEEE Transactions on Signal Processing, 39,
November 1991.

[5] E. Lawler. Combinatorial Optimization: Networks and Ma-
troids. Rinehart & Winston, 1976.

[6] E. Lee and D. Messerschmitt. Synchronous data flow.Pro-
ceedings of the IEEE, September 1987.

[7] C. Leiserson, F. Rose, and J. Saxe. Optimizing Synchronous
Circuitry by Retiming. InProceedings of the 3rd Caltech
Conference on VLSI, pages 87–116. ACM, 1991.

[8] H. Meyr, M. Moeneclaey, and S. Fechtel.Digital Communi-
cation Receivers. John Wiley and Sons, 1998.

[9] SYNOPSYS.COSSAP Block Diagram Editor Users Guide,
1999.

[10] M. C. Williamson and E. A. Lee. Synthesis of Parallel Hard-
ware Implementations from Synchronous Dataflow Graph
Specifications. November 3-6 1996.

[11] P. Zepter, T. Gr¨otker, and H. Meyr. Digital Receiver Design
using VHDL Generation from Data Flow Graphs. InProc.
32nd Design Automation Conf., June 1995.

	Main Page
	ISSS'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

