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ABSTRACT

A method for measuring routability /wireability is pro-
posed for use in general area routing problems of MCM de-
signs. The routability is measured by extending the count-
ing method of Pascal’s Triangle for potential routes of each
net. Using this method, the number of potential routes
can be obtained precisely in the presence of arbitrary ob-
stacles including the possible limitations on the number of
vias/bends to use. Experimental results of the technique
proposed herein are presented.

1. INTRODUCTION

Traditionally, physical design of electronic modules consists
of partitioning, placement and routing. The primary goal
of this design phase is to produce a layout ready for fabri-
cation. Whether designing PCBs, MCMs or ICs, a problem
that frequently arises is determining if the layout will be
routable at the end of the placement stage. This is the
classical problem of predicting routability /wireability that
has been known since the early days of physical design.
Routability, as the name suggests, is a measure of the per-
centage of connections that can successfully be routed given
the placement of modules, the amount of wiring space and
the set of connections to be made [14].

In light of the routability prediction, obtaining a rea-
sonable measure that insures a realizable interconnection
during the early stage of the design phase has always
been desired. However, due to the difficulty of quantify-
ing the “real” routability measure, the average wire-length,
or something similar, has been commonly used as a measure
of routability. Most placement algorithms, for example,
attempt to minimize wire-length based on the number of
intra-module connections [14]. They achieve good routabil-
ity this way by assuming that short connections will reduce
congestion and will be easier to route than the long ones.
The most reliable (but not very helpful) method of mea-
suring the routability is to actually perform the place-and-
route steps. Without going through the actual place-and-
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route, the average wire length can only serve as a very rough
estimate. In fact, it would be difficult, if not impossible, to
actually derive the mathematical relationship between the
average wire length and the measure of routability.

Models for predicting routability have been developed in
the context of traditional VLSI layout methodologies [13].
Roughly the approaches can be classified into two cate-
gories: (1) stochastic-based wiring space estimation and
(2) computational geometric based algorithms. In the first
category, initialized by works on wiring space estimation
[15, 6], stochastic models were used for predicting the prob-
ability of successfully routing the placement within the al-
located space [7]. Subsequent works [5, 14, 1, 3] proposed
2-D stochastic models to represent designs with regularly
placed sub-circuits such as gate arrays or FPGAs. The sec-
ond category is characterized by the idea of cut and capacity
where the requirement of regularly placed sub-circuits was
no longer necessary. The cut is a line segment connecting
two visible end of features in the routing area and the ca-
pacity is the maximum number of wires which can cross
the cut. The flow of a cut is then defined as the number of
wires passing across a cut. One can then say that a design
is routable when flows never exceed cuts. Here, the flow
of wires crossing a cut was obtained by a pre-processing
step. In [8] for example the pre-processing step was done
by a global router, and in [12, 4] this was accomplished by
a rough sketching process.

This work searches for a realistic way of measuring
the nets’ routability rather than relying on the average
wire length. It focuses on general area routing prob-
lems [10, 2, 11] found in MCM designs. The proposed tech-
nique will be based on a simple Pascal’s Triangle method
to determine the number of possible paths in the bounding
box formed by two terminals. This facilitates the possibility
of considering arbitrary obstacles and precisely determines
the number of potential interconnects that each net may
have. A further development of the technique has made it
possible to measure the potential routes when the number
of vias allowed is limited.

In addition to providing feedback for improving the place-
ment algorithm, the routability measure can also serve to
feed forward information for routers. Routing usually is
carried out in layer by layer basis [10, 2, 11]. Given a set
of interconnect data, or a netlist, most routers attempt to
connect the nets in the first layer or layer pair. Some of the
nets may get routed and some may not. The unrouted nets
will then be propagated to the second layer and so on. In a
simplified example, consider a general area routing problem
where all terminals, i.e. the end points of the nets, occupy
the first layer of the routing planes. These terminals are
basically obstacles to all potential interconnects. To some
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Figure 1. (a) A Net and The Bounding Box, (b)
Route Types.

of the nets, the presence of the terminals alone could mean
a blockage that prevents the router from completing the in-
terconnects. In this case, the router should simply ignore
such helpless nets and defer processing for the next layer.
If one can identify which nets do not have the potential for
routing in each layer, then the routers can make use of this
information for improving the routing process.

2. A NEW ROUTABILITY MEASURE

This section starts the discussion with some observations
on how one can route a net when the available space is
limited to the net’s bounding box. Then the method for
calculating the number of possible routes when there exist
some arbitrary number of obstacles inside the bounding box
is introduced. The method is then developed further to
include the ability to calculate the number of routes when
the number of vias is limited.

2.1. Routability Inside a Bounding Box of a Net

The bounding box of a net is defined as the smallest rectan-
gle enclosing the net’s two end points [16]. Assuming a clean
bounding box, the number of possible routes of a net can
be calculated using a combinatorial analysis. The bound-
ing box consists of evenly spaced grids where the route can
go through or change directions. Routing starts at one end
point of the net and always advances toward the other end
point to form a path. This path consists of vertical and hor-
izontal wire stubs/segments connecting the grids that the
route goes through. The result is a minimum rectilinear
path (MRLP) which is also known as a Manhattan route.
There are two styles of routing techniques for MCM de-
signs: single-layer and x-y routing styles. The two differ
in the way they support changing directions in each route.
The former places the wires for the entire route for the net
on one routing plane. The latter performs the routing on a
pair of adjacent layers, with one layer for horizontal wires
and the other for vertical wires. When a route needs to
change direction, the horizontal wire and the vertical wire
are connected by a via. Through out this paper only the

x-y routing style is considered. In addition, it is assumed
that the routing problems contain two-terminal nets only,
i.e. the type of nets whose terminals are located at their
two end points only. In many practical cases, however, some
nets may contain more than two terminals which are also
known as multi-terminal nets. In such cases they will be
treated as a set of two terminal nets.

To begin, a single 2-terminal net is shown in Fig. 1a. The
terminals are S (source) and T (target) located at (r,s)
and (t,u), respectively. The two corners NW and NE are
the conjugate corners. Two imaginary Euclidean lines exist
in the bounding box of net S —T. The first is the main
diagonal connecting the two terminals and the second is the
conjugate diagonal connecting the conjugate corners. Given
the locations of S and T, there are many possible MRLPs
that can be established to connect the two terminals. One
possible routing scheme (e.g. MCG [11]) is to trace the
perimeter of the bounding box in both x and y directions
from terminals S and T toward the two conjugate corners.
When the traces intersect at the conjugate corners then
there will be at most two MRLPs that can be established
containing 1 via. In practical cases however, 1-via routes
cannot always be found due to some obstacles that may
be present on the perimeter. This forces the routing to
change direction toward the inside of the bounding box in
order to avoid the obstacles. Consequently, by assuming
the x-y routing style one additional via must be introduced
whenever the route needs to change direction.

The number of vias connecting a route determines the
type of the route. Fig. 1b depicts a list of possible route
types based on the number of vias. They are 1-via route
type through 6-via route type. 0-via routes were not in-
cluded in the list since a net from S(r, s) to T'(¢,u) can only
have a 0-via route if r = ¢ or s = u. From these route types
the following observations can be drawn: (1) route types
with odd (even) number of vias start and end on different
(the same) layers, (2) route types with a higher number of
vias recursively contain lower via problems, (3) the maxi-
mum number of vias depends on how far apart the terminals
are, (4) the larger the number of vias, the closer the path
to the main diagonal.

In the next subsection, an analytical method is presented
to answer to the following question. Given a net whose
terminals are S and 7', how many possible MRLPs are there
from S to T'?

2.2. Routability Measure by Combinatorial Anal-
ysis

In the absence of obstacles, the number of possible routes
of a net can be obtained using a combinatorial analysis. Al-
though the result doesn’t seem to be applicable for practical
purposes, the combinatorial analysis serves as an important
basis for obtaining the new method of routability measure
developed herein.

Consider a net with two terminals as described earlier
and shown in Fig. la. It is assumed that all grids inside the
net’s bounding box are available for routing purposes or, in
other words, there is no obstacle inside the bounding box.
For a given net whose terminals are S(r,s) and T'(t,u), let
m = |t —r| and n = |u—s|. The number of possible MRLPs
connecting the two terminals is then given by

N(m,n) = (m; ”) - (m:”) (1)

This is also known as “the north-east paths” theorem where
each possible MRLP can be thought of as a binary sequence



of length m+mn. Let 0 represent a horizontal segment, and 1
represent a vertical segment. The total number of possible
MRLPs is basically the combinations containing m 0s and
n 1s.

The number given by N(m, n) can be enormous especially
when the terminals are very far apart. This of course in-
cludes all of the possible MRLPs regardless of the multitude
of vias. When one is interested in counting the MRLPs that
change directions for only a certain number of times then it
is often desirable to simply disregard the routes containing
many vias. In such a case the combinatorial analysis can
still easily be used to accommodate this interest as long as
there is no obstacle in the bounding box.

As observed earlier, the maximum number of vias con-
necting an MRLP depends on how far apart the terminals
are. The farther apart the terminals the more vias the
MRLP can have. In contrast, a net whose terminals are
in line (r = ¢ or s = u) will never have an MRLP contain-
ing even a single via. Indeed the multitude of vias to use
should be set to a number no more than what an MRLP
can have. This number can be obtained as follows. For a
net with m > 0 and n > 0, the maximum number of vias
that an MRLP can have is given by

2m — 1, if m=n,
V(m,n) = (2)
2 x Min(m,n), otherwise.

Again, an MRLP can be viewed as a binary sequence of
length m + n containing m 0s and n 1s. The first case
is when m = n. If m = n then the maximum number of
transitions happens when 0 and 1 alternate in the sequence.
The sequence that starts with 0 will end with 1 and vice
versa. Consider now the sequence that starts with 0. In
this sequence, each of the 1s represents 2 transitions except
for the last 1 which represents only 1 transition. Thus the
number of transitions in this sequence is 2n — 1 = 2m — 1.
The sequence that starts with 1 behaves similarly. The sec-
ond case is when m # n. Consider m > n. The maximum
number of transitions is obtained when each of the 1s is in
between 0s. In this case each of the 1s represents 2 transi-
tions or in other words the maximum number of transitions
is equal to 2n. If n > m then the maximum number of
transitions is 2m. So if m # n then the maximum number
of transitions is 2xMin(m, n).

Eq. 2 leads to two consequences. First, a router should
not probe a net for possible routes with vias greater than
V(m,n). Second, V(m,n) reflects the number of possible
MRLPs since it basically represents the size of the bounding
box which in turn determines N(m,n).

Finally, one may also be interested in finding the MRLPs
that go through a certain point located inside the bounding
box. Suppose that this intermediate point is I located at
(¢,7). The number of paths from S(r,s) to T'(¢,u) that go
through I(7, j) can then be calculated using Eq. 1 as follows.

N'(t—ru—s)=N@G—-rj—s)x Nt—i,u—7j) (3)

Or, if I is an obstacle then the number of MRLPs from
S to T that don’t go through I is simply the difference
between N (t —r,u — s) and N'(t — r,u — s). This is useful
especially when there’s only a single obstacle present inside
the bounding box. However, as the number of obstacles
becomes larger, it will be increasingly difficult to apply the
formulation due to the combinatorial nature of the problem,
not to mention if one wants to limit the number of vias that
the net can have.
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Figure 2. The Pascal’s Triangle Method.

The above analysis applies only when there is no obstacle
present inside the net’s bounding box. In practice, obstacles
will almost always be present inside the bounding box of a
net. In fact, when the bounding box is free of any obstacle,
there’s no real need to find out how many MRLPs that
the net can have. A good router would always route the
net with the least possible number of vias which in this
case is 1-via route type. On the other hand, the maximum
number of vias given in Eq. 2 is probably a lot more useful
in practice. Not only does it reflect the number of MRLPs,
but it also needs less computation effort since no factorial
calculation is involved in the equation.

In the following subsections, a more applicable method
for calculating the number of possible MRLPs is presented.
The method measures the routability of a net in the pres-
ence of an arbitrary number of obstacles. It is then devel-
oped further to include the ability to calculate the number
of possible routes whose number of vias is limited.

2.3. Possible Routes by Pascal’s Triangle

Given a net from S(r,s) to T(t,u), one can calculate the
number of possible MRLPs using Eq. 1 as shown earlier by
setting m = |t —r| and n = |u — s|. Without loss of gen-
erality, suppose now that the net is enclosed in a square
bounding box, i.e. m = n, as shown in Fig. 2. Then con-
sider the conjugate diagonal of this bounding box. In order
to connect the terminals, it is clear that all possible MRLPs
from S to T must cross the conjugate diagonal. By Eq. 1,
these routes are distributed among the grids lying on the
diagonal according to the coefficients of a binomial distribu-
tion. The numbers of MRLPs from S to the grids lying on
the conjugate diagonal are shown in Fig. 2a which indeed
corresponds to the coefficients of a binomial distribution.

Algorithmically, the number of routes arriving at each
grid of the conjugate diagonal can be obtained by using
the method that has been used for finding the coefficients
of a binomial distribution, namely the Pascal’s Triangle
Method. It is basically a 2D counting method starting from
(0,0) and advancing in the increasing order of the abscissas.
Let us refer to the method as the Conventional Pascal’s Tri-
angle Method (CPTM) which is again applicable when the
corresponding net contains no obstacle inside the bounding
box. The method states that the entry of (i,7) is equal to
the sum of the entries of (: — 1,5) and (4,7 — 1). By defi-
nition, the entries of (0, ) and (4,0) are equal to 1, V i,j.
Assuming that a net starts from S(0,0), then the entry
representing (i, j) found by CPTM is nothing else but the
number of MRLPs from S to I. According to Eq. 1, it is
equal to N(4,7). And thus the entry found by CPTM at
(m,n) is equal the total number of possible MRLPs from S
to T.



Definition 1 In CPTM, the number of MRLPs arriving at
grid point (i,7) from the net’s terminal of origin S(0,0) is

M(i,j) = M(i—1,j) + M(i,j — 1) (4)
where M (,0) = M(0,5) =1, Vi,5 > 0.

One important feature of CPTM is the fact that it can
easily be extended to handle cases where obstacles are
present inside the bounding box. The basic idea is to set an
entry to a zero value if it corresponds to an obstacle in the
bounding box. Fig. 2b depicts the new method for calcu-
lating the number of MRLPs from S to T in the presence of
obstacles shown in grey. This extended method is referred
to as the Obstructed Pascal’s Triangle Method (OPTM).

Definition 2 Let O(i, j) be a function that tells whether or
not grid point (i,7) inside the bounding bozx is occupied by
an obstacle, or forr <i <t and s <j < u,

0(i, j) = { 1 if (i,7) is free, 5)

0 otherwise

Adopting Definition 1, the OPTM considers each entry sim-
ilarly. The only addition is to evaluate whether the entry
corresponds to an obstacle.

Definition 3 Let P(i,j) be an entry representing grid
point (i,7). It is located inside the bounding bor of a net
whose terminal of origin is S(0,0). The bounding boz con-
tains an arbitrary number of obstacles which can be identi-
fied by O(i, j). In OPTM, the entry representing grid point
(i,7) is defined as

P(i,j) = 0@, ) [P(i = 1,j) + P(i,j — 1)] (6)

where ¥ i,5 > 0: P(,0) = O(i,0)P(: — 1,0) and P(0,j) =
0(0,5)P(0,j — 1)

In the above definition, the existence of every obstacle is
taken into account for calculating the MRLPs. The exis-
tence of an obstacle in grid point (7,j) will prevent any
MRLP from passing through. If grid point (i,j) is not
free, then no path could pass through (i,7), consequently
P(i,5) = 0. Otherwise the routes can simply pass the grid
point. The MRLPs passing the grid point (7,j) are called
unblocked when P(i,j) # 0.

Lemma 1 The entry P(i, j) given by Eq. 6 is an accumu-
lation of the unblocked MRLPs from the previous entries.

Proof: Suppose that grid point (7, §) is free and there exists
an obstacle at grid point (i —1, j) implying that O(7,j) = 1
and O(i — 1,7) = 0. Applying Eq. 6 to grid point (i — 1, j)
results in P(i — 1,7) = 0 and consequently P(i,j) = [0 +
P(i,j—1)]. In other words, only unblocked MRLPs can get
through to (i, ). |

Theorem 1 The number of possible MRLPs of a net from
S to T is given by the OPTM entry representing T .

Proof: By Lemma 1, the entry of OPTM representing T
corresponds to the number of unblocked MRLPs that arrive
at T recursively from S. O

Using the above theorem, OPTM is basically the same
counting method as CPTM with additional features to han-
dle obstacles. The entries of OPTM can be represented in
two arrays. They correspond to the columns of the net’s
bounding box, one for even numbered columns and another
for odd numbered columns. Counting starts from S and
advances toward T'.

In the final count, OPTM always includes all possible
MRLPs that can be found regardless the number of vias. If
one intends to calculate the number of possible routes using
this method and simultaneously wants to limit the number
of vias, then the method presented in the next subsection
will be more appropriate. It’s called the Extended Pascal’s
Triangle Method (EPTM).

2.4. Extended Pascal’s Triangle Method for Lim-
iting Number of Allowed Vias

In many cases, it is desirable to limit the number of vias
that a route can have. In fact, routers (e.g. V4RJ[10],
MCG [11]) do impose the limit for both algorithmic and
technical reasons. In the earlier discussion, it was observed
that routes with a large number of vias contain problems
with a smaller number of vias. This implicitly expresses
that routing procedures involving a large number of vias are
potentially more tedious than those with a smaller number.
Another important reason for limiting the vias is yield con-
sideration. When a via is introduced, a connection from the
x running wire to the corresponding y running wire has to be
established physically in the fabrication process [10]. This
process requires quite a degree of precision which affects
yield. In addition, introducing vias also means decreasing
the routing space since vias occupy both x and y layers and
thus prevents additional nets from utilizing the space. Fur-
thermore, each via corresponds to changing direction and
thus introduces discontinuity in the electrical model of the
wire.

Consider a net from (0,0) to a grid point located at (i, 7)
as shown in Fig. 3. Let w < V(4, j) be the number of vias
that the net is allowed to have. The net is to be routed using
MRLP. According to Eq. 1, there are as many as N(i,j)
possible routes arriving at the grid point (4, j). They consist
of those coming from the left and those from the bottom.
Clearly, only a portion of these routes arrive at the grid
point (4, 7) with w vias.
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Figure 3. Example of 3-via MRLPs

Lemma 2 The MRLPs arriving at grid point (i, ) with w
vias consist of .

L¥(i,j) = [L"(i = 1,5) + B" ' (i—=1,)] 0(i,5)  (7)

BY(i,j) = [BY(i,i =)+ L""(,j — 1] O(i,5)  (8)
where LY (i,j) and B“(i,j) are the numbers of MRLPs
coming from the left and the bottom of (i,j), respectively.
By definition,

L*(i,j) = B¥(i,j) =0, Vi,j<0

and

h
o
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=
<
I

0(0,/)L°(0,5 =1) for j>0
B°(i,0) = 0(i,0)B°(i — 1,0) for i>0



Proof: Eq. 7 shows the number of MRLPs with w vias
which were coming from the left of grid point (4, 5). These
routes consist of those already having w vias coming from
the left of (¢ — 1,5) and those having w — 1 vias coming
from the bottom of (i —1, 7). The latter turn right and end
up with w vias. These MRLPs will pass through the grid
point if there’s no obstacle present. point (7,j). Eq. 8 can
be proven similarly. O

In the example shown in Fig. 3, a set of MRLPs con-
taining 3 vias is considered. In Fig. 3a, there are 4 pos-
sible 3-via routes which are coming from the left of grid
point (i,7). These 3-via routes consist of those which al-
ready bend three times coming from the left of grid point
(i —1,7) and those which bend twice coming from bottom
of grid point (¢ — 1,5). The MRLPs shown in Fig. 3b are
basically the mirror of those in Fig. 3a.

Lemma 2 is inherently recursive since considering w-via
routes requires also considering the ones with w — 1 vias.
This fact turns out to be quite useful since the routes will
include all of MRLPs containing w vias or less. When a
limit is set for the number of vias, one often wants to obtain
any routes as long as the number of vias doesn’t exceed the
limit. In practice [10, 11], each route is allowed to have vias
from 0 up to 4 or 6.

Theorem 2 The number of MRLPs from S(0,0) to a grid
point (i,7) containing v-or-less vias is given by

N(i,j) =Y [B"(i,5) + L” (i, 5)] 9)
w=0
Proof: This is a direct calculation using Lemma 2. O

The main disadvantage of the above theorem is the fact
that it needs to maintain a set of arrays whose length de-
pends on the value of v. The larger the number of limiting
vias, the longer the arrays and thus the more space we need.
However, since it maintains the number of routes for each
possible via (0, 1, ..., v) in an array, the distribution of
routes is automatically revealed.

2.5. Implementation Issue

The EPTM algorithm is probably best described through
a small example such as shown in Fig. 4. The net is from
S to T with three obstacles inside the bounding box. The
terminals are identified in gray and the obstacles are drawn
in solid black. In this example the MRLPs are allowed to
only have up to three vias. Note also that the method would
work as well for non-square bounding boxes.

The algorithm starts from S(0,0) in the first column and
ends at 7'(4,4) at the last column. Each column of grids
inside the bounding box is represented by an array of inte-
gers as shown in the top boxes. The array holds B“(i,j),
L*(i,j) and N”(i, ). Although Fig. 4 shows the arrays rep-
resenting all columns of the bounding box, in practice the
method only needs a pair of these arrays in order for the
EPTM to run: one for representing the even columns and
another for the odd columns.

In the first column, each entry of the array is obtained
using Egs. 7 and 8 starting from grid point (¢,0) advancing
to grid point (7,4). The calculation continues for all entries
in the next columns similarly. Final values of the entry
that correspond to grid point (4,4) will then represent the
solution.

The top boxes from left to right in Fig. 4 show the entries
as the algorithm proceeds. The final entries indicate a total
of six possible routes comnsisting of four 3-via routes, one
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Figure 4. The EPTM Progress for A Single Net.
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Figure 5. Possible Routes from S to T: (a) 3-via or
less, (b) more than 3-via.

2-via route and one 1-via route. Fig. 5 illustrates all of the
possible routes for the same net. The ones containing 3-via
or less is shown in Fig. 5a and the rest of the routes are
shown in Fig. 5b.

Having established the EPTM for measuring the routabil-
ity of a net, the next step is to prepare a scheme for eval-
uating a set of nets when their terminals occupy the same
routing surface. The goal is to measure the routability of
each net in the presence of terminals that belong to the
other nets. On the same routing surface, a terminal appears
as an obstacle to a net when it resides inside the bounding
box of the net. The scheme for calculating the MRLPs of
the nets on the same routing surface is described below.

To describe the scheme, consider a small example whose
terminal locations along with the data structure for use in
measuring the routability is depicted in Fig. 6. There are
8 nets on the routing plane of size 7 x 7 grids. The nets
consist of 5 nets going North East (NE nets) and 3 nets
going North West (NW nets). These nets are stored in two
different linked lists, the NE Net List and NW Net List,
respectively. Terminals are sorted column wise and kept
in a linked list called the Terminal List. An index is also
used to identify the Terminal List according to the column
number. This index is called Column Index.

The NE nets and NW nets are processed separately using
a list called the Active List for bookkeeping. The Active
List contains the instantiation of the EPTM data structure
and the EPTM algorithm. When processing the NE nets,
the Terminal List is scanned from left to the right to see
whether the terminal is (a) a source terminal of an NE net,
(b) a target terminal of an NE net, or (c) something that
belongs to an NW net. When a source terminal of an NE
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Figure 6. Data Structure for a Multi-net Problem.
EPTM (v = 6)

Net | OPTM [0 JT1TT273] 4]5] 6] Total
1 15 ojol1|6] 413 1 15
2 57 0]012|5| 9912 37
3 13 0j1|12(4] 3|1 2 13
4 2 0j0f1]0 170] 0 2
5 4 0|212(0] 0|0} O 4
6 88 0j0|1|1]10|9]15 36
7 25 010|133 ] 9|6 4 25
8 0 0j]0[O0O|O0O] O]O] O 0

Table 1. OPTM and EPTM Solutions to The Ex-
ample Problem.

net is encountered then an EPTM instance is prepared and
added to the Active List. If a target terminal of an NE net
is encountered, then the instance of the corresponding net
is scheduled for deletion from the Active List to be placed
in a result list. The Active List grows and shrinks while the
scanning of the Terminal List is progressing. Any terminal
encountered will be used to update the EPTM instances in
the Active List. To some nets, the terminal may appear
as an obstacle. In this case the EPTM will act accordingly
to the instances representing these nets. By the end of the
Terminal List, EPTM will finish processing all of the NE
nets and obtain the results.

Processing the NW nets is conducted similarly. Scanning
is performed to the same Terminal List in the opposite di-
rection. It goes from right to the left during which only the
NW nets are scheduled for processing in the Active List.
By the end of this scanning, the EPTM will obtain the so-
lutions to the NW nets. Combining both solutions to NE
and NW nets, a list of the number of possible routes for
each net in question will be completed.

Table 2.5. shows the solution to the example problem.
There are two types of solutions in the table. The OPTM
lists the MRLPs regardless the number of vias and the
EPTM lists the MRLPs with 0 to 6 vias.

3. EXPERIMENTAL RESULTS

The EPTM has been implemented in a Unix environ-
ment using C++4 and tested on three industrial MCM
designs commonly used as benchmarks for various MCM
routers [10, 11, 2]. In addition, a test on a number of ran-
domly generated examples has also been performed. This
section reports the preliminary results of the test of EPTM.

The first test set was three of MCC’s industrial MCM
designs: MCC1-75, MCC2-75 and MCC2-45. The MCC1-
75 consists of 6 chips with 75-micron pitch and substrate
size of 45 x 45 mm? which is equal to a grid size of 599 x
599. It has 802 nets, 799 of which are signal nets (some are

3 to 7-pin nets), two power and one ground net. This results
in a total of 1244 two-terminal-equivalent signal nets. Both
MCC2-75 and MCC2-45 are 6 x 6 inch® substrates with
75-micron pitch and 45-micron pitch or equivalent to 2032
x 2032 and 3386 x 3386 grid size, respectively. They have
37 Honeywell VHSIC gate array chips and 18 connectors
with a total 7118 nets and 14659 pins excluding the power
and ground nets. This gives a total of 7541 two-terminal-
equivalent signal nets.

The other set of test data was randomly generated and
based on the MCC1-75 design. The terminals and their
locations were taken from MCC1-75. Each new random
design containing 2-terminal nets was then created by ran-
domly making pairs of two terminals. A total of 10 random
designs were prepared.

3.1. Experimental Setup

The test was conducted using both test data sets by allow-
ing each net to have as many as 6 vias. The results reveal
the number of unrouted nets as the number of maximum al-
lowed vias increases. These nets are unroutable simply due
to the presence of terminals that belong to other nets on
the first routing layer pair. Here, EPTM can actually iden-
tify which nets are potentially routable and which are ab-
solutely unroutable for each of the allowed number of vias.
Intuitively, one would expect the number of unroutable nets
to drop as the number of allowed vias increases. The test
results also reveal a number which is considered to be ac-
ceptable for the maximum number of allowed vias.

To further confirm the test results with a more varied set
of data, the random data was used. The test performed on
the random data was the same as the one with the MCC
data. However, only the statistical results, such as the av-
erage of unrouted nets, etc., are presented.

3.2. Test Results

The test results for the MCC data are shown in Table 3.2..
The list shows the number of unroutable nets when the
number of allowed maximum vias is varied from 0 to 6.
Fig. 7 shows the plot of percentage of unroutable nets for
a varied number of vias. Fig. 8 shows a similar plot for
the random data set for the minimum, the average and the
maximum percentage of unroutable nets for the random
data. For comparison, the plot for the original MCC1-75 is
also included in Fig. 8.

[vias | MCCI-75 | MOC2-75 | MCC2-45 |

0 1243 7540 7540
1 978 7213 7186
2 327 4348 3615
3 64 757 354
4 50 368 354
5 50 368 354
6 50 368 354

Table 2. Unroutable Nets of MCC Benchmarks for

Several Numbers of Allowed Maximum Vias

All of the test results reveal that the number of un-
routable nets drops significantly when the number of vias in
each net is increased from 0 up to 4. Beyond 4-via routes,
only about 5% of nets were left with unroutable flags. As
the number of vias continues to increase, the percentage of
unroutable nets doesn’t seem to change very much. This
suggests that, in this case, the general area routing prob-
lem can be solved by using 4-via or fewer route types. The
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results confirm what was believed in [10] that the 4-via
route type is enough for most practical purposes in MCMs.

The results also uncover the fact that more than 70% of
the nets in MCC1 and more than 95% of the nets in MCC2
are unroutable by 1-via routes given that all terminals reside
on the same layer pair. Thus a router should never try to
find MRLPs for these nets using 1-via route type in the
first layer pair. The same rule applies to more than 20%
of the nets in MCC1 and more than 40% of the nets in
MCC2 when using 2-via routes. Since EPTM identifies the
routability of each net, the router could actually use this
information to exclude the unroutable nets from processing
with a certain type of routes. For a router such as MCG [11],
this information is very valuable for improving the routing
process.

4. CONCLUSION

A new method of measuring routability has been presented
in this work. The experiments focusing on the first layer
pair have been successful in identifying the number of po-
tentially routable nets (as well as those absolutely un-
routable) for some published MCM benchmarks. It also
confirm that maximum 4-via routing is sufficient for most
nets to be potentially routable in MCM general area rout-
ing problems. Further research is being conducted to ex-
tend this work to routing outside the bounding box and to

gridless routing problems.
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