
EFFICIENT SOLUTION OF SYSTEMS OF ORIENTATION CONSTRAINTS

Joseph L. Ganley

Cadence Design Systems, Inc.
ganley@cadence.com

ABSTRACT

One subtask in constraint-driven placement is enforcing a set of
orientation constraints on the devices being placed. Such con-
straints are created in order to, for example, implement matching
constraints or enforce regularity among members of an array of de-
vices. Here we present an efficient algorithm for solving systems
of discrete orientation constraints. The algorithm handles overcon-
straints by selectively relaxing constraints until the remaining set
can all be simultaneously enforced. The algorithm runs in linear
time in the absence of overconstraints.

1. INTRODUCTION

Part of the constraint-driven placement problem is finding a set
of orientations for the devices being placed that satisfies certain
orientation constraints. In this paper we present an efficient al-
gorithm that solves this problem. It has been implemented in the
rectilinear metric for four types of orientation constraints, and can
be easily extended to other metrics and other types of orientation
constraints.

For clarity of exposition, we focus on the rectilinear model, in
which only horizontal and vertical lines are allowed, since this is
the model we use in our implementation and under which most in-
tegrated circuits are fabricated. (Note, however, that our algorithm
is applicable to any metric in which the orientation of a device can
be described by a finite sequence of independent rotations and/or
reflections.) In the rectilinear model, there are eight possible ori-
entations of a device, which are shown in Figure 1 (we use the
standard Cadence nomenclature to describe them).

With respect to these orientations, the following constraints are
defined:

� A single device hasFIXED ORIENTATION set to one of the
eight orientations.

� Every device in a set of two or more must have theSAME
ORIENTATION.

� A pair of devices must haveMIRRORED ORIENTATIONabout
either thex- or y-axis.

� Every device in a set of two or more must have either the
SAME OR MIRRORED ORIENTATION(if mirrored, then about
either thex- or y-axis).

R0 MX MY R180

R90 R270 MXR90 MYR90

Figure 1. The eight possible orientations.

Here we present an efficient algorithm that uses graph color-
ing to solve the following problem: given a set of devices and a
set of constraints on these devices, where each constraint is one
of the four described above, choose an orientation for each device
such that all the constraints are satisfied (if possible; see below).
If one is only concerned with the first three of these types of con-
straints, then a simple iterative algorithm that propagates orienta-
tions out from the devices with fixed orientations suffices to solve
this problem. However, not only is the coloring algorithm more
efficient than such an iterative algorithm, but it also handlesSAME
OR MIRRORED ORIENTATIONconstraints. The iterative technique
is insufficient to handle such constraints; details are given in the
next section.

Sometimes all constraints cannot be satisfied simultaneously.
For example, suppose two devices are members of both aSAME
ORIENTATION and aMIRRORED ORIENTATIONconstraint; clearly
these two constraints cannot be simultaneously satisfied. Such a
condition is called anoverconstraint, and it is handled byrelaxing
(i.e. not enforcing) one or more of the constraints involved in the
overconstraint, such that the remaining constraints can be simul-
taneously satisfied. The coloring algorithm, unlike the previous
iterative algorithm, allows total control over the selection of which
constraints to relax in order to resolve overconstraints.

2. PREVIOUS WORK

To our knowledge, the literature contains no previous work on this
problem.

In the first release of our placement product, solving orientation
constraints was accomplished using a simple iterative algorithm.
This algorithm proceeds as follows: Initially the orientation of ev-
ery device is set toundefined. Next the orientations of those de-
vices on which there is aFIXED ORIENTATION constraint are set
appropriately. The algorithm then repeats the followingorienta-
tion propagationoperation: find an as-yet-unprocessed constraint,
some of whose members’ orientations have already been set, and
set the orientations of the remaining devices in the constraint ap-
propriately. If no such constraint exists, then pick a device whose
orientation is undefined and set its orientation arbitrarily, and re-
peat the orientation propagation loop.

As mentioned above, this algorithm is sufficient to handle the



Fixed
Orientation

(R0)

A

Fixed
Orientation

(R0)

DB

Same or
Mirrored

Orientation

C

Mirrored
Orientation

Same or
Mirrored

Orientation

? ?
Figure 2. A Test Case for the Iterative Algorithm.

first three types of constraints, but it faces a problem when pre-
sented with aSAME OR MIRRORED ORIENTATION constraint.
Within the local context of the constraints and devices being con-
sidered in each orientation propagation step, there is insufficient
information with which to choose whether to enforce aSAME OR
MIRRORED ORIENTATION constraint as aSAME ORIENTATION
constraint or as aMIRRORED ORIENTATION constraint. In our
implementation, one of the two was arbitrarily chosen; however,
this can lead to situations where no solution is found to a system
of constraints that does, in fact, have a solution satisfying all con-
straints.

Consider Figure 2, which illustrates a set of constraints on four
devicesA,B,C, andD.

The algorithm begins by setting devicesA andD to orientation
R0. However, it must then decide whether to enforce each of the
SAME OR MIRRORED ORIENTATIONconstraints as aSAME ORI-
ENTATION constraint or as aMIRRORED ORIENTATIONconstraint.
Due to theMIRRORED ORIENTATIONconstraint betweenB andC,
the twoSAME OR MIRRORED ORIENTATIONconstraints must be
enforced oppositely—one as aSAME ORIENTATIONconstraint and
the other as aMIRRORED ORIENTATION constraint—but there is
no way to determine this while considering only the constraints in-
volving devices whose orientations have already been determined.

One can easily devise a strategy to deal with this particular test
case, but we can construct a similar but longer chain ofSAME ORI-
ENTATION, MIRRORED ORIENTATION, andSAME OR MIRRORED
ORIENTATION constraints, terminated at the ends byFIXED ORI-
ENTATION constraints, to defeat any such ad hoc strategy.

The iterative algorithm also deals poorly with overconstraints.
The way they are handled in our implementation was that if the
orientation of a device is already set, and a constraint now being
considered would force that device to have an orientation different
from its current one, then there is an overconstraint and the current
constraint is relaxed.

The iterative algorithm has time complexityO((n + m)2),
wheren is the number of devices andm is the number of con-
straints. This running time could probably be improved by the use
of suitable data structures, but in light of our new algorithm this
hardly seems worthwhile.

3. THE COLORING ALGORITHM

The key observation leading to our coloring algorithm is that the
orientation of a device in the rectilinear metric can be represented
by the independent application or nonapplication of three opera-
tions:

� Rotate the device 90 degrees counterclockwise (R90).

� Mirror the device about thex-axis (MX).

� Mirror the device about they-axis (MY).

If two or more of these operations are applied, then they must be
applied in this order; i.e., R90 is applied before MX or MY, and
MX is applied before MY. These operations, if applied, start from
the default orientation R0. Thus, each of the eight possible orienta-
tions can be precisely and uniquely described by choosing whether

Orientation R90? MX? MY?
R0 No No No
MX No Yes No
MY No No Yes
R180 No Yes Yes
R90 Yes No No
R270 Yes Yes Yes
MXR90 Yes Yes No
MYR90 Yes No Yes

Table 1. Operations applied to produce each orientation.

or not to apply each of these operations. Table 1 shows, for each of
the orientations shown in Figure 1, which of these operations are
applied to produce that orientation.

We will now construct three graphs. AgraphG = (V;E) con-
sists of a collectionV of verticesand a collectionE of edges,
where each edge has two verticesu andv as endpoints. Such an
edge is denoted(u; v). Edges are undirected, so(u; v) and(v; u)
denote the same edge between verticesu andv. If edge(u; v) is
in E, then we say thatu andv areadjacentand are one another’s
neighbors. The graphs will be colored using two colors: red and
green. A coloring is valid if, for every edge(u; v), verticesu andv
have different colors. Note that this implies that if two verticesu1
andu2 are adjacent to a vertexv—i.e. (u1; v) and(u2; v) are both
edges inE—thenu1 andu2 must have the same color.

We will now construct three graphs, denotedR, X, and Y ,
which correspond to the three orientation components R90, MX,
and MY. In each graph, there is initially a vertex for each device,
and there are initially no edges. For a given device, the correspond-
ing vertices inR, X, andY arevR, vX , andvY , respectively (if
there is no danger of confusion, then these three vertices are col-
lectively referred to asv). We are going to color each of these
three graphs using two colors, red and green, such that adjacent
vertices have different colors. After the graphs have been success-
fully colored, if a vertexvR in R is green, then the R90 operation
is to be applied to the corresponding device; ifvR is red, then the
R90 operation is not to be applied. Similarly, the colors of the ver-
tices inX andY indicate whether the MX and MY operations,
respectively, are to be applied to the device corresponding to each
vertex.

Initially, the color of every vertex is undefined. AFIXED ORI-
ENTATION constraint is implemented for the device corresponding
to vertexv by setting the colors of verticesvR, vX , andvY to the
appropriate values to implement the orientation as prescribed in
Table 1.

We will now add edges and intermediate vertices between the
vertices corresponding to devices involved in each constraint, such
that a valid 2-coloring of each graph translates to an orientation
for each device such that all constraints are satisfied. This is ac-
complished using the fact that adjacent vertices must have differ-
ent colors and pairs of vertices each connected to an intermediate
vertex must have the same color.

A SAME ORIENTATIONconstraint is implemented as follows. If
the constraint involves more than two devices, then this operation
is applied pairwise between an arbitrarily chosen deviceA in the
constraint and each additional device in the constraint (clearly if
all devices have the same orientation asA, then they all have the
same orientation). For each such pair, letu andv be the vertices
corresponding to the pair of devices. Intermediate verticespR, pX ,
andpY are added toR, X, andY , respectively. Edges(uR; pR)
and(pR; vR) are added to R, and similarly edges(uX ; pX) and
(pX ; vX) are added toX and edges(uY ; pY ) and(pY ; vY ) are
added toY . In this way,uR andvR are forced to be colored the
same color, as areuX andvX as well asuY andvY . Thus, the



u
R

v
R

u
X

v
X

u
Y

v
Y

p
X

p
Y

p
R

Y

R

X

Y

X

R

Figure 3. The vertices and edges added for aSAME ORIENTA-
TION constraint.

u
R

v
R

u
X

v
X

u
Y

v
Y

p
Y

p
R

Y

R

X

Y

X

R

Figure 4. The vertices and edges added for aMIRRORED ORI-
ENTATION constraint about thex-axis.

devices corresponding tou andv are forced to have the same ori-
entation. This configuration is shown in Figure 3.

A MIRRORED ORIENTATIONconstraint is implemented as fol-
lows. Assume without loss of generality that the constraint is with
respect to thex-axis. AMIRRORED ORIENTATIONconstraint must
include exactly two devices; letu andv be the vertices correspond-
ing to these two devices. Intermediate verticespR and pY are
added toR andY , respectively. Edges(uR; pR) and (pR; vR)
are added toR, and edges(uY ; pY ) and(pY ; vY ) are added toY .
A single edge(uX ; vX) without an intermediate vertex is added to
X. In this way,uR andvR are forced to have the same color, as are
uY andvY . The verticesuX andvX are forced to have different
colors. Inspection of Figure 1 and Table 1 shows that this forces
the devices corresponding tou andv to have mirrored orientation
about thex-axis. This configuration is illustrated in Figure 4.

The implementation of aMIRRORED ORIENTATIONconstraint
with respect to they-axis is similar, but withX andY reversed
throughout. That is, we add vertexpR and edges(uR; pR)
and (pR; vR) to R, we add vertexpX and edges(uX ; pX) and
(pX ; vX) toX, and we add edge(uY ; vY ) to Y .

The final constraint is theSAME OR MIRRORED ORIENTATION
constraint. Again, assume without loss of generality that the con-
straint is about thex-axis. This type of constraint can include more
than two devices; as with theSAME ORIENTATION constraint, the
following operation is applied pairwise between an arbitrarily cho-

u
R

v
R

u
X

v
X

u
Y

v
Y

p
Y

p
R

Y

R

X

Y

X

R

Figure 5. The vertices and edges added for aSAME OR MIR-
RORED ORIENTATIONconstraint about thex-axis.

sen deviceA in the constraint and each additional device in the
constraint (again, if all devices satisfy the constraint with respect
to A, then they must satisfy it with respect to one another). For
each such pair, letu andv be the corresponding pair of vertices.
We again add intermediate vertexpR and edges(uR; pR) and
(pR; vR) toR and add intermediate vertexpY and edges(uY ; pY )
and(pY ; vY ) toY . No edge is added betweenuX andvX . In this
way, verticesuR andvR must have the same color, as must ver-
ticesuY andvY . VerticesuX andvX may either have the same
color, in which case the devices corresponding tou andv will have
the same orientation, or they may have different colors, in which
case the devices corresponding tou andv will have mirrored ori-
entation about thex-axis (again, this can be verified by examining
Figure 1 and Table 1). This configuration is illustrated in Figure 5.

Again, aSAME OR MIRRORED ORIENTATIONconstraint about
they-axis is similar, but withX andY reversed throughout. That
is, we add vertexpR and edges(uR; pR) and(pR; vR) toR, and
we add vertexpX and edges(uX ; pX) and(pX ; vX) toX.

We have shown how to construct graphsR,X, andY such that a
valid 2-coloring of each graph translates to an orientation for each
device such that all constraints are satisfied. What remains to be
shown is how to compute such a coloring, and how to deal with
overconstraints.

In the absence of overconstraints, a 2-coloring of each graph
can be easily computed in time linear in the number of vertices
and edges in the graph. One way to do so is by using a depth-
first search (see Cormen, Leiserson, and Rivest [1, pp. 377-485],
for a description of depth-first search, and see Kozen [2, p. 119],
for an explanation of 2-coloring using depth-first search). First,
choose a vertexv whose color has already been set due to aFIXED
ORIENTATION constraint. If no such vertex exists, then choose
an arbitrary vertexv and assign it the color green (in the latter
case, there are at least two valid solutions with opposite colors, so
the choice of color for the starting vertex is irrelevant). We add
a field parent(u) to each vertexu; the contents of this field will
be the vertex that was visited beforeu. Now, apply the following
procedure starting fromv.



Color(v):
For each neighboru of v not already colored:

1. Assignu the opposite color fromv

2. Setparent(u) to v

3. Color(u)

In the absence of overconstraints, when this procedure com-
pletes it will have produced a valid 2-coloring of the graph.

An overconstraint can be recognized if, in Step (1) above, a
neighboru of v has already been assigned the same color asv.
In this case, the graph edges corresponding to the constraints in
the overconstraint either form a cycle, or else they form a path
whose endpoints are vertices whose colors were assigned due to a
FIXED ORIENTATION constraint. Using theparent field, we trace
backward fromv until we either encounteru again or encounter
a vertex whose color was assigned due to aFIXED ORIENTATION
constraint. One of these two events must occur, since if we do
not encounter a vertex whose color was assigned due to aFIXED
ORIENTATION constraint, then we must find a cycle starting and
ending atu, or elseparent(v) would be equal tou.

Having found the overconstraint, we form a set of constraints
corresponding to the edges that the algorithm traced, plus the edge
(u; v). We pass this set of constraints to a procedure that relaxes
one of the constraints, and then we start all over, build the graphs
R,X, andY , and attempt to 2-color them again. This procedure is
repeated once for each overconstraint until all overconstraints have
been resolved and we produce a valid 2-coloring of each graph.
The criteria used by the procedure to decide which constraint to
relax are independent of the algorithm; i.e., the algorithm works
correctly regardless of which constraint the procedure chooses to
relax. Note that this differs from the way overconstraints are han-
dled by the iterative algorithm, which simply relaxes the constraint
it is currently considering at the time the overconstraint is detected.

Once a valid 2-coloring has been computed, it is simple to trans-
late the colors of each trio of vertices back into an orientation for
the corresponding device, using the translations given in Table 1.
When this is done, each device will have been assigned an orien-
tation such that all constraints that were not relaxed due to over-
constraints are satisfied. Each coloring attempt requiresO(n+m)
time [2], wheren is the number of devices andm is the number
of constraints (which is within a constant multiple of the num-
ber of edges in the graphs). This process, as well as the proce-
dure that decides which constraint in an overconstraint to relax,
is repeated once each time an overconstraint is found. Thus, if
there arec overconstraints andf(n;m) is the time required by the
overconstraint resolution procedure, then the total time required is
O(c(n+m+ f(n;m))). A typical overconstraint resolution pro-
cedure requires at mostO(n + m) time itself, which makes the
total time required equal toO(c(n+m)).

In the actual implementation, there is no need to construct three
separate graphs. Instead, one can compute a single graph, each
of whose vertices contains three separate colors and three separate
sets of edges (one for each ofR, X, andY ). In addition, there is
no need to explicitly add the intermediatep vertices; rather, one
can simply set a flag on the appropriate edges such that they are
treated as thoughp were present.

In addition, it might be possible to reconstruct only the portions
of the graphs involved in an overconstraint when one is found,
rather than reconstructing the graphs entirely and 2-coloring them
from scratch. However, there are typically few or no overcon-
straints, and the algorithm runs in linear time for each overcon-
straint, so this optimization is probably not cost-effective.

100

300

500

700

900

100
200

300
400

500
600

700
800

900
1000

0

2

4

6

8

10

12

Time (seconds)

Constraints

Devices

Figure 6. Running times for the given numbers of devices and
constraints.

4. EXPERIMENTAL RESULTS

Our coloring algorithm has been implemented as part of a Cadence
placement product. Experimental results of running the algorithm
on a number of randomly generated test cases are shown in Fig-
ure 6 (detailed numerical data available on request).

The test cases are randomly generated so as to avoid the most
degenerate types of overconstraints: constraints between two de-
vices that both have fixed orientation, and multiple constraints of
different types between the same pair of devices. Each type of
constraint is equally probable. Each data point is the result of run-
ning1000 tests. Note that because our test cases are randomly gen-
erated, despite being generated as to avoid simple types of over-
constraints, they still contain far more overconstraints than would
a typical real design. The majority of the running time of the algo-
rithm on this test data is spent dealing with these overconstraints,
as evidenced by the fact that for large numbers of constraints the
running time actually decreases with increasing numbers of de-
vices, due to fewer overconstraints.

We can get more realistic measurements by running on test cases
with the number of constraints equal to half the number of devices.
In such test cases, we see approximately one overconstraint for
every50 constraints, whereas for the first set of data we often see
one or more overconstraints for every two constraints. The results
of running on these more realistic test cases are shown in Figure 7.

5. CONCLUSIONS

We have presented an efficient algorithm that uses graph coloring
to solve an important subproblem in constraint-driven placement:
solving systems of orientation constraints. This algorithm is more
efficient than its predecessor, handles overconstraints more effec-
tively, and finds solutions in difficult cases that defeated the previ-
ous algorithm.

While we have discussed only the four constraints that were in-
teresting in our application, this technique can enforce any arbi-
trary constraint that involves a fixed, same, or different relation
among the three orientation components R90, MX, and MY. For
example, one application that arose after the initial implementa-
tion of this algorithm was complete was in the placer’s handling
of fences. One can define a rectangular region called a fence, and
then require that certain devices be placed within the fence. In



0

5

10

15

20

25

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Devices (= Constraints * 2)

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

Figure 7. Running times with the given numbers of devices
and half that many constraints. The bars indicate the actual
running time, and the line is a curve of O(c(n+m)) fit to the
actual data.

some cases, if the fence and a device that it will contain are both
long and thin, then the device may only fit if it is oriented such that
its long dimension matches that of the fence. In other words, we
would like to enforce for this device that the R90 component of its
orientation be fixed, while the MX and MY components are free
to vary. This is easily handled by our algorithm.

In addition, the technique can be easily generalized to handle
more general sets of orientations, as long as they can be uniquely
described by a discrete set of independent rotation and reflection
operations.

6. ACKNOWLEDGMENTS

Thanks to Enrico Malavasi and Kathy Jones for many helpful com-
ments. The algorithm described here is patent pending.

REFERENCES

[1] CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L.
Introduction to Algorithms. MIT Press, Cambridge, Mas-
sachusetts, 1990.

[2] K OZEN, D. The Design and Analysis of Algorithms. Springer-
Verlag, 1992.


	Main Page
	ISPD'99
	Front Matter
	Table of Contents
	Session Index
	Author Index


