EFFICIENT SOLUTION OF SYSTEMS OF ORIENTATION CONSTRAINTS

Joseph L. Ganley

Cadence Design

Systems, Inc.

ganley@cadence.com

ABSTRACT

One subtask in constraint-driven placement is enforcing a set of
orientation constraints on the devices being placed. Such con-
straints are created in order to, for example, implement matching
constraints or enforce regularity among members of an array of de-
vices. Here we present an efficient algorithm for solving systems
of discrete orientation constraints. The algorithm handles overcon-
straints by selectively relaxing constraints until the remaining set
can all be simultaneously enforced. The algorithm runs in linear
time in the absence of overconstraints.

1. INTRODUCTION

Part of the constraint-driven placement problem is finding a set
of orientations for the devices being placed that satisfies certain
orientation constraints. In this paper we present an efficient al-
gorithm that solves this problem. It has been implemented in the
rectilinear metric for four types of orientation constraints, and can
be easily extended to other metrics and other types of orientation
constraints.

For clarity of exposition, we focus on the rectilinear model, in
which only horizontal and vertical lines are allowed, since this is
the model we use in our implementation and under which most in-
tegrated circuits are fabricated. (Note, however, that our algorithm

l:

RO

:|

MY

=

MX

]

R180

mn . 1 M
R90 R270 MXR90 MYR90

Figure 1. The eight possible orientations.

Here we present an efficient algorithm that uses graph color-
ing to solve the following problem: given a set of devices and a
set of constraints on these devices, where each constraint is one
of the four described above, choose an orientation for each device
such that all the constraints are satisfied (if possible; see below).
If one is only concerned with the first three of these types of con-
straints, then a simple iterative algorithm that propagates orienta-
tions out from the devices with fixed orientations suffices to solve
this problem. However, not only is the coloring algorithm more
efficient than such an iterative algorithm, but it also handlese
OR MIRRORED ORIENTATIONcoNStraints. The iterative technique
is insufficient to handle such constraints; details are given in the
next section.

Sometimes all constraints cannot be satisfied simultaneously.

is applicable to any metric in which the orientation of a device can FOr €xample, suppose two devices are members of bethve

be described by a finite sequence of independent rotations and/o
reflections.) In the rectilinear model, there are eight possible ori-
entations of a device, which are shown in Figure 1 (we use the
standard Cadence nomenclature to describe them).

With respect to these orientations, the following constraints are
defined:

e A single device hasIXED ORIENTATION set to one of the
eight orientations.

e Every device in a set of two or more must have grmE
ORIENTATION.

e A pair of devices must hayaIRRORED ORIENTATIONabout
either thez- or y-axis.

e Every device in a set of two or more must have either the
SAME OR MIRRORED ORIENTATION(if mirrored, then about
either thez- or y-axis).

{ORIENTATION and aMIRRORED ORIENTATIONcoONStraint; clearly

these two constraints cannot be simultaneously satisfied. Such a
condition is called amverconstraintand it is handled byelaxing

(i.e. not enforcing) one or more of the constraints involved in the
overconstraint, such that the remaining constraints can be simul-
taneously satisfied. The coloring algorithm, unlike the previous
iterative algorithm, allows total control over the selection of which
constraints to relax in order to resolve overconstraints.

2. PREVIOUS WORK

To our knowledge, the literature contains no previous work on this
problem.

In the first release of our placement product, solving orientation
constraints was accomplished using a simple iterative algorithm.
This algorithm proceeds as follows: Initially the orientation of ev-
ery device is set taindefined Next the orientations of those de-
vices on which there is BIXED ORIENTATION constraint are set
appropriately. The algorithm then repeats the followorgenta-
tion propagationoperation: find an as-yet-unprocessed constraint,
some of whose members’ orientations have already been set, and
set the orientations of the remaining devices in the constraint ap-
propriately. If no such constraint exists, then pick a device whose
orientation is undefined and set its orientation arbitrarily, and re-
peat the orientation propagation loop.

As mentioned above, this algorithm is sufficient to handle the

A B C D

Orientation][R90? | MX? [MY? |

RO No No No
’? ? MX No Yes No
e, || Mirored | g | Sameor MY No | No | Yes

Mirrored i i Mirrored
Fixed Orientation ortentation Orientation Fixed R180 No Yes Yes
Orientation Orientation R90 Yes No No
(RO) (RO) R270 Yes Yes Yes
MXR90 Yes Yes No
Figure 2. A Test Case for the Iterative Algorithm. MYR90 Yes | No | Yes

first three types of constraints, but it faces a problem when pre-
sented with aSAME OR MIRRORED ORIENTATION constraint. Table 1. Operations applied to produce each orientation.
Within the local context of the constraints and devices being con-
sidered in each orientation propagation step, there is insufficient
information with which to choose whether to enforceave oOR
MIRRORED ORIENTATION constraint as asAME ORIENTATION
constraint or as aMIRRORED ORIENTATION constraint. In our
implementation, one of the two was arbitrarily chosen; however,
this can lead to situations where no solution is found to a system
of constraints that does, in fact, have a solution satisfying all con-
straints.

Consider Figure 2, which illustrates a set of constraints on four
devicesA, B, C, andD.

The algorithm begins by setting devicdsand D to orientation
RO. However, it must then decide whether to enforce each of the
SAME OR MIRRORED ORIENTATIONCONStraints as 8AME ORI-
ENTATION constraint or as ®IRRORED ORIENTATIONcONStraint.

Due to thevIRRORED ORIENTATIONcoONStraint betweeB andC,

the two SAME OR MIRRORED ORIENTATIONCONStraints must be
enforced oppositely—one asaME ORIENTATIONconNstraint and

the other as aMIRRORED ORIENTATION constraint—but there is

no way to determine this while considering only the constraints in-
volving devices whose orientations have already been determined

One can easily devise a strategy to deal with this particular test
case, but we can construct a similar but longer cha#vofE ORI-
ENTATION, MIRRORED ORIENTATION, andSAME OR MIRRORED
ORIENTATION constraints, terminated at the endsryED ORI-
ENTATION constraints, to defeat any such ad hoc strategy.

The iterative algorithm also deals poorly with overconstraints.
The way they are handled in our implementation was that if the
orientation of a device is already set, and a constraint now being
considered would force that device to have an orientation different
from its current one, then there is an overconstraint and the current
constraint is relaxed.

The iterative algorithm has time complexi9((n + m)?),
wheren is the number of devices and is the number of con-
straints. This running time could probably be improved by the use
of suitable data structures, but in light of our new algorithm this
hardly seems worthwhile.

or not to apply each of these operations. Table 1 shows, for each of
the orientations shown in Figure 1, which of these operations are
applied to produce that orientation.

We will now construct three graphs. graphG = (V, E) con-
sists of a collectior’/ of verticesand a collectionE of edges
where each edge has two vertieegandv as endpoints. Such an
edge is denotefu, v). Edges are undirected, $0,v) and (v, u)
denote the same edge between vertices\dv. If edge (u,v) is
in B, then we say that andv areadjacentand are one another’s
neighbors The graphs will be colored using two colors: red and
green. A coloring is valid if, for every edde, v), verticesu andv
have different colors. Note that this implies that if two vertiags
andu; are adjacent to a vertex—i.e. (u1, v) and(uz, v) are both
edges inE—thenw; andus, must have the same color.

We will now construct three graphs, denot& X, andY,
which correspond to the three orientation components R90, MX,
and MY. In each graph, there is initially a vertex for each device,
and there are initially no edges. For a given device, the correspond-
ing vertices inR, X, andY arewvg, vx, andvy, respectively (if
there is no danger of confusion, then these three vertices are col-
lectively referred to aw). We are going to color each of these
three graphs using two colors, red and green, such that adjacent
vertices have different colors. After the graphs have been success-
fully colored, if a vertexvr in R is green, then the R90 operation
is to be applied to the corresponding deviceyifis red, then the
R90 operation is not to be applied. Similarly, the colors of the ver-
tices inX andY indicate whether the MX and MY operations,
respectively, are to be applied to the device corresponding to each
vertex.

Initially, the color of every vertex is undefined. AXED ORI-
ENTATION constraint is implemented for the device corresponding
to vertexv by setting the colors of verticasz, vx, andvy to the
appropriate values to implement the orientation as prescribed in
Table 1.

We will now add edges and intermediate vertices between the
vertices corresponding to devices involved in each constraint, such
that a valid 2-coloring of each graph translates to an orientation

3. THE COLORING ALGORITHM for each device such that all constraints are satisfied. This is ac-
complished using the fact that adjacent vertices must have differ-
The key observation leading to our coloring algorithm is that the ent colors and pairs of vertices each connected to an intermediate
orientation of a device in the rectilinear metric can be representedvertex must have the same color.
by the independent application or nonapplication of three opera- A sAME ORIENTATION constraint is implemented as follows. If
tions: the constraint involves more than two devices, then this operation
is applied pairwise between an arbitrarily chosen devide the
constraint and each additional device in the constraint (clearly if
e Mirror the device about the-axis (MX). all devices have the same orientationgsthen they all have the
e Mirror the device about thg-axis (MY). same orientation). For each such pair,dedndv be the vertices
corresponding to the pair of devices. Intermediate verpigedx,
If two or more of these operations are applied, then they must beandpy are added tak, X, andY’, respectively. Edgetur,pr)
applied in this order; i.e., R90 is applied before MX or MY, and and(pr,vr) are added to R, and similarly edgésx, px) and
MX is applied before MY. These operations, if applied, start from (px,vx) are added taX and edgeguy,py) and (py,vy) are
the default orientation RO. Thus, each of the eight possible orienta-added toY". In this way,ur andvg are forced to be colored the
tions can be precisely and uniquely described by choosing whethersame color, as arex andvx as well asuy andvy. Thus, the

¢ Rotate the device 90 degrees counterclockwise (R90).

Figure 3. The vertices and edges added for 8AME ORIENTA-
TION constraint.

Figure 4. The vertices and edges added for ®IRRORED ORF
ENTATION constraint about the z-axis.

devices corresponding toandv are forced to have the same ori-
entation. This configuration is shown in Figure 3.

A MIRRORED ORIENTATIONcoNStraint is implemented as fol-
lows. Assume without loss of generality that the constraint is with
respect to the-axis. AMIRRORED ORIENTATIONcoONStraint must
include exactly two devices; letandv be the vertices correspond-
ing to these two devices. Intermediate vertiges and py are
added toR andY’, respectively. Edge$ur,pr) and (pr, vr)
are added td, and edge$uy, py) and(py, vy) are added td".

A single edggux, vx) without an intermediate vertex is added to
X. Inthis way,ur andvg are forced to have the same color, as are
uy andvy. The verticeasx andvx are forced to have different

Figure 5. The vertices and edges added for 8AME OR MIR-
RORED ORIENTATIONcoONstraint about the z-axis.

sen deviceA in the constraint and each additional device in the
constraint (again, if all devices satisfy the constraint with respect
to A, then they must satisfy it with respect to one another). For
each such pair, let andv be the corresponding pair of vertices.
We again add intermediate vertgx and edgequgr,pr) and
(pr,vr) to R and add intermediate vertgx and edge$uy, py)
and(py,vy) toY. No edge is added betwear andvx. In this
way, verticesur andvg must have the same color, as must ver-
ticesuy andvy. Verticesux andvx may either have the same
color, in which case the devices corresponding tmdv will have

the same orientation, or they may have different colors, in which
case the devices correspondingutandv will have mirrored ori-
entation about the-axis (again, this can be verified by examining
Figure 1 and Table 1). This configuration is illustrated in Figure 5.

Again, aSAME OR MIRRORED ORIENTATIONcoNstraint about
they-axis is similar, but withX andY reversed throughout. That
is, we add verteyr and edgesur,pr) and(pr,vr) to R, and
we add verteyx and edge$ux,px) and(px,vx) to X.

We have shown how to construct gragdsX, andY such that a
valid 2-coloring of each graph translates to an orientation for each
device such that all constraints are satisfied. What remains to be
shown is how to compute such a coloring, and how to deal with
overconstraints.

In the absence of overconstraints, a 2-coloring of each graph

colors. Inspection of Figure 1 and Table 1 shows that this forces can be eas”y Computed in time linear in the number of vertices

the devices corresponding toandwv to have mirrored orientation
about thez-axis. This configuration is illustrated in Figure 4.

The implementation of MIRRORED ORIENTATION constraint
with respect to thg-axis is similar, but withX andY reversed
throughout. That is, we add vertexz and edges(ur,pr)
and (pr,vr) to R, we add vertepx and edgegux,px) and
(px,vx)to X, and we add edg@:y,vy) toY.

The final constraint is theAME OR MIRRORED ORIENTATION

constraint. Again, assume without loss of generality that the con-

straint is about the-axis. This type of constraint can include more
than two devices; as with th@AME ORIENTATION constraint, the
following operation is applied pairwise between an arbitrarily cho-

and edges in the graph. One way to do so is by using a depth-
first search (see Cormen, Leiserson, and Rivest [1, pp. 377-485],
for a description of depth-first search, and see Kozen [2, p. 119],
for an explanation of 2-coloring using depth-first search). First,
choose a vertex whose color has already been set due kox&D
ORIENTATION constraint. If no such vertex exists, then choose
an arbitrary vertexw» and assign it the color green (in the latter
case, there are at least two valid solutions with opposite colors, so
the choice of color for the starting vertex is irrelevant). We add
a field parent(u) to each vertex:; the contents of this field will

be the vertex that was visited befage Now, apply the following
procedure starting froro.

Color(v):

For each neighbo of v not already colored:
1. Assignu the opposite color frona 2
2. Setparent(u)towv
3. Color(u)

Time (seconds) ¢

In the absence of overconstraints, when this procedure com-
pletes it will have produced a valid 2-coloring of the graph.

An overconstraint can be recognized if, in Step (1) above, a
neighboru of v has already been assigned the same colar. as
In this case, the graph edges corresponding to the constraints in
the overconstraint either form a cycle, or else they form a path
whose endpoints are vertices whose colors were assigned due to a
FIXED ORIENTATION constraint. Using thearent field, we trace
backward fromw until we either encountex again or encounter

a vertex whose color was assigned due toX@&D ORIENTATION 100
constraint. One of these two events must occur, since if we do
not encounter a vertex whose color was assigned duerto&n Figure 6. Running times for the given numbers of devices and

ORIENTATION constraint, then we must find a cycle starting and gnstraints.
ending atu, or elseparent(v) would be equal ta:.
Having found the overconstraint, we form a set of constraints 4, EXPERIMENTAL RESULTS

corresponding to the edges that th‘? algorithm traced, plus the edgebur coloring algorithm has been implemented as part of a Cadence
(u, v). We pass this set of constraints to a procedure that relaxesy| .ement product. Experimental results of running the algorithm

one of the constraints, and then we start all over, build the graphs P
' SR . >on a number of randomly generated test cases are shown in Fig-
R, X, andY’, and attempt to 2-color them again. This procedure is ure 6 (detailed numerical data available on request).

repeated once for each overconstraint until all overconstraints have The test cases are randomly generated so as to avoid the most

?ﬁi%:ﬁ;ﬁg’%ds&n% Wt%epror%‘éz%jé’?gd dgé?gleoml?cﬁfci?]‘;?rgiﬁpgdegenerate types of overconstraints: constraints between two de-
y P vices that both have fixed orientation, and multiple constraints of

g%g{ € r'gd:%elgg:r;tf tht.gf] i!?r?srtlﬁgrgt tlh% troi:ég?gtgm c‘g"s(ggstodifferent types between the same pair of devices. Each type of
y reg whi ! P u constraint is equally probable. Each data point is the result of run-

(rj(lela(lij N?]te_that this (?lffe_rshfromtghiwgy (?vercl:onstraﬂnts are han- in 1000 tests. Note that because our test cases are randomly gen-
dled by the Iterative algorithm, which simply relaxes the constraint erated, despite being generated as to avoid simple types of over-
it '%%%Ze;tlgl%ogség%;nng ?égingégfnovfézoqsgzm I?edt%t?rcatﬁg constraints, they still contain far more overconstraints than would
late the co\;orls of eachI tr%o of vertices ba?(lzjk inf(:: ;n (I)rigntation for atyplcal regl design. T_he majority OT the running time of the algo-
rithm on this test data is spent dealing with these overconstraints,

%%gr?rtﬁ:pgrgﬂﬂg %?éﬁeags.'cneg tqfﬁ;agséaé'eonnzfs'yeﬁeg aTr?l())lre.e%"_as evidenced by the fact that for large numbers of constraints the
ation s Ichl that o constra';l/tls tr¥va|t e;le ok rela elg Hie b 0 Ier- running time actually decreases with increasing numbers of de-
lon su : w Xed du VT vices, due to fewer overconstraints.

constraints are satisfied. Each coloring attempt reqaes+ m) We can get more realistic measurements by running on test cases
time [2], wheren is the number of devices and is the number . ; :
; e . with the number of constraints equal to half the number of devices.
ggfg?sgaa'ggs.r(]v‘{ngh r';’ vr\]/g)hlnTﬁ.;:or;thaenstsmg;tlplg“o;stk;ﬁ enu:g;: e In such test cases, we see approximately one overconstraint for
ges | grapns). IS p ’ w ; p every50 constraints, whereas for the first set of data we often see
dure that decides which constraint in an overconstraint to relax,

s repeated once sach tme an overconsraint s found. Thus, cpe,cr morS CSEChUant forevery o constrans The et
there are: overconstraints andl(n, m) is the time required by the ’

overconstraint resolution procedure, then the total time required is

O(c(n+m+ f(n,m))). Atypical overconstraint resolution pro-
cedure requires at mo6(n + m) time itself, which makes the 5. CONCLUSIONS
total time required equal 10 (c(n + m)). We have presented an efficient algorithm that uses graph coloring

In the actual implementation, there is no need to construct threeto solve an important subproblem in constraint-driven placement:
separate graphs. Instead, one can compute a single graph, eac$plving systems of orientation constraints. This algorithm is more
of whose vertices contains three separate colors and three separasficient than its predecessor, handles overconstraints more effec-
sets of edges (one for each Bf X, andY). In addition, there is tively, and finds solutions in difficult cases that defeated the previ-
no need to explicitly add the intermedigtevertices; rather, one ous algorithm.
can simply set a flag on the appropriate edges such that they are While we have discussed only the four constraints that were in-
treated as though were present. teresting in our application, this technique can enforce any arbi-

In addition, it might be possible to reconstruct only the portions trary constraint that involves a fixed, same, or different relation
of the graphs involved in an overconstraint when one is found, among the three orientation components R90, MX, and MY. For
rather than reconstructing the graphs entirely and 2-coloring themexample, one application that arose after the initial implementa-
from scratch. However, there are typically few or no overcon- tion of this algorithm was complete was in the placer's handling
straints, and the algorithm runs in linear time for each overcon- of fences One can define a rectangular region called a fence, and
straint, so this optimization is probably not cost-effective. then require that certain devices be placed within the fence. In

Running time (seconds)

1000 2000 200 am 5000 60w 7000 S o0m 10000
Devices (= Constraints * 2)

Figure 7. Running times with the given numbers of devices
and half that many constraints. The bars indicate the actual
running time, and the line is a curve of O(c(n+m)) fit to the
actual data.

some cases, if the fence and a device that it will contain are both
long and thin, then the device may only fit if it is oriented such that
its long dimension matches that of the fence. In other words, we
would like to enforce for this device that the R90 component of its
orientation be fixed, while the MX and MY components are free
to vary. This is easily handled by our algorithm.

In addition, the technique can be easily generalized to handle
more general sets of orientations, as long as they can be uniquely
described by a discrete set of independent rotation and reflection
operations.

6. ACKNOWLEDGMENTS
Thanks to Enrico Malavasi and Kathy Jones for many helpful com-
ments. The algorithm described here is patent pending.
REFERENCES

[1] CORMEN, T. H., LEISERSON C. E.,AND RIVEST, R. L.
Introduction to Algorithms MIT Press, Cambridge, Mas-
sachusetts, 1990.

[2] KozEeN, D. The Design and Analysis of Algorithn&pringer-
Verlag, 1992.

	Main Page
	ISPD'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

