TRANSISTOR LEVEL MICRO-PLACEMENT AND ROUTING
FOR TWO-DIMENSIONAL DIGITAL VLSI CELL SYNTHESIS

Michael A. Riepe, Karem A. Sakallah
University of Michigan, Ann Arbor, M1 48109-2122
{ riepe karem} @eecs.umich.edu

Abstract

Thereisanincreasing need in modern VLS designs for circuits
implemented in high-performance logic families such as Cascode
\oltage Switch Logic, Pass Transistor Logic, and domino CMOS.
Circuits designed in these non-dual ratioed logic families can be
highly irregular with complex geometry sharing and non-trivial
routing. Traditional digital cell layout synthesis tools derived from
the row-based “ functional cell” style break down when confronted
with such circuit topologies. These cells require a full-custom 2-
dimensional layout style which currently requires skilled manual
design. In this work we define the synthesis of complex 2-dimen-
sional digital cells as a new problem which we call transistor-level
micro-placement and routing. To address this problem we develop
a complete end-to-end methodology which is implemented in a
prototype tool named TEMPO. Our primary focus in this work is
the micro-placement problem. We explore techniques for the mod-
eling and dynamic optimization of geometry sharing though tran-
sistor chaining and arbitrary geometry merging. Experiments
conducted with a new set of benchmark circuits show promising
results when TEMPO is compared to a commercial cell synthesis
tool.

1. Introduction

Library cells make up the lowest level of the digital VLSI
design hierarchy. Clearly, the quality of the cells has a direct
impact on the quality of the final design. The cells must be
designed to be compact and fast, with minimized power and para-
sitics, and with careful attention to requirements on the physical
appearance of the cells as viewed by the higher-level placement
and routing tools. Automated synthesis techniques have found lim-
ited application at the cell level because existing tools are unable to
match the quality of human designed cells. For thisreason cellsare
often designed by hand, requiring a significant investment in man-
power.

An additiona difficulty liesin the fact that the lifetime of atyp-
ical cell library may be as short as one or two years. Compaction
techniques may be used to migrate a cell library to a new process
technology if little more than alinear shrink is required, but thisis
unlikely to extend the lifetime for more than one or two genera-
tions before the loss in performance necessitates a complete rede-
sign of the library. These problems are only becoming worse as
device geometries shrink into the deep submicron regime.

In order to account for deep submicron effects, ever closer
interaction is required between front-end synthesis tools and back-
end placement and routing tools, power and delay optimization
tools, and parasitic extraction tools. In order to enable thisinterac-

tion, cell libraries must become ever more flexible. Multiple ver-
sions of each cell with different drive strengths are required. It may
even be necessary to support versions of cells in different logic
families with different power/delay trade-offs.

In addition to the need for families of cells which are parame-
terized in terms of their electrical behavior, it has been demon-
strated that standard-cell placement and routing tools are able to
obtain significantly higher routing quality if they have the ability to
choose between multiple instances of cells with awide variety of
pin orderings. In one experiment [13], an average reduction of
10.8% in the number of routing tracks was demonstrated over five
benchmarks circuits.

It seems clear that as the number of cellsin atypical cell library
grows from the hundreds into the thousands, adramatic increasein
designer productivity will be required, necessitating a move
toward more automated cell synthesis techniques. Several authors,
in fact, advocate a move completely away from static cell libraries
as we know them, toward a system which permits the automated
synthesis of cells on demand [3, 13]. This would permit: 1) logic
synthesis tools to request specific logic decompositions, doing
away with the traditional technology mapping step; 2) standard-
cell and datapath placement and routing tools to request cells with
an exact pin ordering; 3) interconnect optimization tools to request
cells with specific input and output impedance values; and 4)
power optimization tools to request cells, perhaps from one of sev-
eral different logic families, with specific power/delay trade-offs.

Such an on-demand cell synthesis system will require effort on
many fronts:

1. Automated transistor schematic generation: constraint driven
logic family selection, netlist creation, and transistor sizing.

2. Automated cell geometry synthesis.

3. Automated cell testing and characterization.

4. Development of enabling logic synthesis, placement and
routing, and power/delay optimization technology.

In this paper we address the second item in the above list: the
fully automatic synthesis of library cell mask geometry. The input
specification consists of a sized transistor-level schematic, a pro-
cess technology description (design rules, parasitics, etc.), and a
description of the constraints imposed by the higher-level place-
ment and routing environment. We refer to thislast item as the cell
template. A list of common cell template constraints are enumer-
ated in [13].

2. Motivation

The CMOS cell synthesis problem has arich history going back
approximately 15 years. Most of this research has centered on a
formulation of the problem which was referred to as the “func-
tional cell” in a seminal paper by Uehara and VanCleemput [22].
In this style, an example of which isgivenin Figure 1, the transis-
tors take on a very regular structure. They are arranged in alinear
fashion so as to minimize the number of gaps in the diffusion
islands (so called “diffusion breaks”). We will refer to layoutsin

cdfe abhg

vdd

Z1
Gnd

Figure 1: Example of a complex gate designed in the
functional-cell style of Uehara & VanCleemput [22]

this style as 1-dimensional, or 1D, layouts.

The synthesis of 1D layouts can be formulated as a straightfor-
ward graph optimization problem: the identification of a minimal
dual Euler-trail covering for a pair of dual series-parallel multi-
graphs. Uehara and VanCleemput devel oped an approximate solu-
tion technique for this problem, while Maziasz and Hayes [14]
presented the first provably optimal algorithms.

A major drawback of the 1D layout style is that it applies
directly only to fully complementary non-ratioed series-parallel
CMOS circuits. Several significant systems have extended this
style to cover circuits with limited degrees of irregularity. Among
these are C5M [3], Excellerator [17], LiB [10], and Picasso-I|
[12]. Dynamic CMOS circuits, if the p-channel pull up transistors
are ignored, can be optimized using a single-row 1D formulation.
A good summary is presented by Basaran [1].

Despite the elegant formulation presented by the 1D abstrac-
tion, it must break down at some point. When designing aggressive
high-performance circuits the designer may call upon logic fami-
lies such as domino CMOS, pseudo NMOS, Cascode Voltage
Switch Logic (CVSL), and Pass Transistor Logic (PTL). These
provide the designer with different size/power/delay trade-offs
than are available with a static CM OS implementation. However,
such non-complementary ratioed logic families often result in
physical layouts which are distinctly 2-dimensional (2D) in
appearance.

An example of such acircuit is shown in Figure 2. The example
is a hand designed mux-flipflop standard cell implemented in a
complementary GaAs process [2]. This example demonstrates a
number of properties which deviate from the standard 1D style:

1. Itishighly irregular. Some regularity is present in the rows,
or “chains’ of merged transistors, but these chains are of non-
uniform size and are not arranged in two simple rows.

2. Thereareinstances of complex geometry sharing, such asthe

“L" shaped structure in the upper-left corner.

. Thetransistors are given awide variety of channel widths.

. Therouting is non-trivial.

. The port structure required by the back-end placement and

routing tools must be taken into account.

b~ w

2.1. PreviousWork

A variety of approaches have been taken to address the 2D cell
synthesis problem. Tani et al [21] and Gupta and Hayes[9] discuss
a style in which 2D layouts are formed from multiple 1D rows.
The former presented a heuristic technique based on min-cut parti-
tioning while the latter presented an exact formulation, called
CLIP, based on integer linear programming. To distinguish this
style from non-row-based 2D styles, we refer to it as being 1-1/2
dimensional.

Xiaet a [23] developed a method for BICMOS cell generation.

16.0 2,0}
[1640
i—|160 of
11640 14.1
12.04[t2
== 1 L

77

7

ozt

i

7

i

4

SN AV

55

E7
[

Figure 2: A manually designed cell showing complex
two-dimensional layout structure

They group MOS transistors into locally optimal chains which
behave as fixed blocks in the design. Bipolar transistors are treated
individually and are given a fixed area with a flexible aspect ratio.
A branch and bound algorithm is used to explore a slicing tree
floorplanning model of the circuit to find a placement of minimal
area.

Fukui et al [8] developed a system for 2D digital transistor
placement and routing. A simulated annealing algorithm is used to
find good groupings of transistors into diffusion-shared chains and
a greedy exploration of a slicing structure is performed to find a
2D virtual grid floorplan. A symbolic router is used to perform
detailed routing, and afinal compaction step is used to permit tran-
sistors within chainsto dlide into locally optimal positions.

In amore recent work by the same group, Saika and Fukui et al
[19] present a second tool which operates by statically grouping
the transistors into maximally sized series chains and then finding
a high quality 1D solution in order to form more complex chains.
Then asimulated annealing algorithm is used to modify this linear
ordering by placing the diffusion connected groups onto a 2D vir-
tual grid. Routing is done by hand.

It is aso relevant to discuss work in analog circuit placement
and routing in this context. One such system is Koan/Anagram by
Cohn et al [6]. This system uses simulated annealing to find a
placement of analog components, simultaneously seeking to opti-
mize device connectivity through arbitrary geometry sharing,
while satisfying design rule constraints as well as analog con-
straints such as device symmetry and matching. It then uses a cus-
tom area router with aggressive rip-up and re-route capability to
make the remaining required connections.

2.2. Proposed M ethodology

In this work we present the architecture for a 2D cell synthesis
system which targets complex non-complementary digital MOS
circuits. As our top level framework we adopt the flow of stepsdia-

transistor dynamic transistor
netlist chaining

> g—

static | . .
clustering |> placement |> routing |>compact|on

cell template,
design rules

Figure 3: Proposed cell synthesis methodology

grammed in Figure 3. In the first step, clusters of transistors are
formed, each representing a set to be composed into a single
merged structure, or transistor chain. Clusters of size one repre-
sent degenerate chains of individual transistors. These clusters are
passed to the placement step where they are assigned a position
and an orientation and their chain ordering is optimized. The com-
pleted placement is routed and compacted to remove un-utilized
space.

Central to our methodology are techniques for the modeling
and optimization of transistor geometry sharing. When electrical
connections are made through geometry sharing areais saved both
because of the overlapping geometry and because of the elimina-
tion of wiring. In existing 2D cell synthesis systems[8, 19, 23] this
optimization is performed as a static chaining step before place-
ment. Koan [6], which is targeted at analog synthesis, performs no
explicit chain formation, but instead allows arbitrary merged struc-
tures to form dynamically during placement. A unique aspect of
the methodology in Figure 3 is that it adopts the strengths of both
approaches. We make use of a late binding process in which
explicit transistor chains are optimized dynamically during place-
ment and arbitrary shared structures are allowed to form through
dynamic geometry merging. During placement the chain optimiza-
tion process thus has access to global placement and routing infor-
mation which is not available in a static pre-processing step.

2.3. Outline

In the remainder of this paper we discuss each step of our meth-
odology and discuss how our methods extend those of previous
authors. In Section 3 we discuss the relevant aspects of transistor
chaining theory. Section 4 introduces the details of our methodol -
ogy. Section 5 discusses the implementation of our experimental
system, which is named TEMPO, and presents some experimental
results. Section 6 provides asummary and conclusions.

3. Transistor Chaining Theory

It should be clear from the layout shown in Figure 2 that most
geometry sharing in digital circuits, even the complex digital cir-
cuits with which we are concerned, takes place within transistor
chains. However, note that the chains do not normally appear in
dual pairs as in the functional cell style of Figure 1. In this section
we review the theory behind non-dual transistor chain optimiza-
tion. We begin by establishing some basic terminology.

Definition 1: Transistor Cluster. A transistor cluster is an
unordered set of same-polarity transistors which can be reached
through an unbroken sequence of source or drain terminal connec-
tions. These are also often referred to as channel-connected com-
ponents (CCCs).

Definition 2: Transistor Chaining. A transistor chaining is a
mapping which assigns a unique ordering to the source-drain ter-
minals of the transistorsin a cluster.

Definition 3: Transistor Chain. A transistor chain isatransis-
tor cluster which has been assigned a chaining. This is a well
defined physical structure for which a design-rule correct layout
can be generated.

Definition 4: Diffusion Break. A diffusion break is a position
within a transistor chain at which two neighboring transistors do
not share a common electrical terminal. Therefore these two termi-
nals will not be able to share geometry and must be separated by
the proper design rule distance.

Definition 5: Transistor Sub-Chain. A transistor sub-chain is
a subset of atransistor chain which is free of diffusion breaks. We
will make use of this definition in our dynamic chaining approach
discussed in Section 4.2.

The process of transistor chain optimization involves two steps.
First the transistors in the design must be partitioned into clusters.
Second, a chaining must be found for each cluster. Chain optimiza-
tion is the process of finding a chaining which minimizes the num-
ber of diffusion breaks, and hence the width of the chain, and at the
same time optimizes the chain with respect to the global cell place-
ment and routing.

Transistor chain optimization is traditionally posed as a graph
problem. A graph called the diffusion graph is constructed for each
cluster by associating a vertex with each electrical net. Edges rep-
resent transistors and span the corresponding source-drain terminal
vertices. It is known that the minimum width solutions correspond
to solutions with a minimum number of covering Euler trails of
this graph. It is also known that there are exponentially many cov-
ering Euler trails for any given cluster [1]. For example, in
Figure 4 we show two different chainings for the same transistor
cluster. Both chains have one diffusion break, but note that chain b
requires one fewer horizontal routing track than chain a.

To establish the ordering of the transistors within chains we
have adopted the algorithms in [1] which were developed for 1D
linear transistor array width minimization. It iswell known that an
Euler trail can be embedded in a DAG if and only if the graph has
either zero or two odd-degree vertices. In order to make the graph
Eulerian an artificial vertex (the “super-vertex”) is added and
edges are drawn connecting it to all odd degree vertices. The algo-
rithm in Figure 5 is used to find an Euler trail on this graph begin-
ning at the vertex v, and ending at the vertex vi. A covering trail
must begin and end at the super-vertex, though any internal vertex
may be used if the input graph was already Eulerian. The order in
which the graph edges are visited corresponds to the ordering of
the transistors in the chain, with the super-edges corresponding to
diffusion breaks. In Figure 4 we show the diffusion graphs associ-
ated with each chaining; the super-vertex islabelled “S’.

4. Cell-Level Transistor Micro-Placement

In order to attack the general 2D cell synthesis problem our
methodology adopts a very general approach based on uncon-
strained placement and routing. However, there are a number of
differences which distinguish this problem from traditional macro-
block placement and routing. We refer to our problem as transistor-
level micro-placement and routing. In the remainder of this section
we discuss the implementation of each of the steps in the method-
ology outlined in Section 2.2.

c b a

b c h g
(b) two-track solution

Figure 4: Two chainings with different maximum
route density

EULER(vg, vp)
if vy has no edges
return vy
starting fromvyy create a wal k of
G never visiting the same edge
twice, until vgis reached again;
| et [va,vl],...,[v,,,vB] be this wal k;
delete[vu,vl],...,[v,,,vB] fromG
return (EULER(vy), ELLER(Vvy), . ..,
EULER(v,,) , vp)

Figure 5: Algorithm to find an Euler path in an Euleri-
an graph [16]

O©CoO~NOUA~WNERE

4.1. Static Transistor Clustering

In thefirst step, transistor clustering, the task isto determine the
optimal number of transistor chains and which transistors belong
in each chain. At this stage very little information is available, only
the transistor connectivity and the sizes of each transistor, so the
choices can only be heuristic in nature. Figure 2 shows the cluster-
ing used in the manually designed CGaAs mux-flipflop circuit.

Authors in previous works have used a wide variety of heuris-
tics at this stage. In [8] the authors use simulated annealing. In [19]
only simple chains made up of maximum length series chains are
created and larger chains are formed during the 1D optimization
step. It is also fairly common, especially in 1D tools, to approach
clustering by performing logic gate recognition, asin [12].

We begin with an initial set of clusters formed from the set of
all maximal channel-connected components (MCCCs). We then
make use of a Fidducia-Mattheyses (FM) bipartitioning algorithm
[7] to recursively partition these clusters until a user-supplied
upper size bound is met. An optional feature allows the user to
specify an upper limit on size variation among the transistorsin a
particular cluster.

4.2. Dynamic Transistor Chaining

Aswe mentioned in Section 4.1, it is very difficult to determine
an optimal static clustering of the transistors into diffusion-con-
nected chains. This is because the clustering step has no informa-
tion about the relative positions of the chains in the final
placement. Traditional chain optimization algorithms can locate a
chaining solution with minimum width and minimum internal
routing cost, but such chainings may not be globally optimal when
externa area and wiring costs are taken into account. It is thus not
clear a priori to which chain a particular transistor should be
assigned, and which chain ordering should be chosen.

The following technique allows the placement step to dynami-
cally alter the chainings in order to find a configuration that mini-
mizes global area and wiring costs. During clustering we form
relatively large static clusters of transistors. During placement,
when these large clusters are assigned a chaining, they are split at
the diffusion breaks and the resulting sub-chains are passed to the
placement engine as the atomic placeable objects.

It is easy to see that there will be many Euler trail coverings for
agiven chain, and that all of them will have the same number of
diffusion breaks. Thus the number of sub-chains being placed will
remain constant. When a new Euler trail isfound for a chain, indi-
vidual transistors may move from one sub-chain to another, and
the individual sub-chains may grow or shrink in size. The sub-
chains are free to be placed in any 2D arrangement that optimizes

(break) 85432561 2 (break) 7

t }

5 (break)

(break) 8 54 32 (break) 756 1 25 (break)

Figure 6: A chain modification performed with Basa-
ran’s iterative method [1]

the area and the external routing. Note that we are not attempting
to optimize the height of these transistor chains, asistraditiona in
the literature. In fact, the height of the chain isfixed by the transis-
tor channel widths in the input schematic. However, the chain
geometry generator will report the number of internal chain nets
which cannot be routed on top of the chains, and these are added to
the global routing cost. Thus the sub-chains are automatically opti-
mized such that their internal routing cost is taken into account as
well asthe resulting global routing cost.

It is the task of the placement engine to explore the universe of
all possible chainings for each cluster. This corresponds to the set
of all possible Euler trails in each cluster’s diffusion graph. We
make use of the following iterative technique due to Basaran [1]
for generating one valid chaining from another. As shown in
Figure 6, we select arandom sub-trail from the current chaining
and reset the edges of this sub-trail in the diffusion graph. We then
call algorithm Eul er () to generate a different sub-trail with the
same two endpoints. Notice how the sizes of the two sub-chains
changed as aresult of thistransformation. It can be shown that this
operation is complete, and can thus be used to construct every pos-
sible Euler trail which can be embedded in the selected graph.

4.3. Support for Arbitrary Geometry Sharing

In addition to explicitly merged chains we also alow arbitrary
pieces of geometry to merge during the placement step, thus per-
mitting larger merged structures to form and taking advantage of
less obvious patterns of connection. Thisis atrick often used by
skilled human designers, and also is the primary method for geom-
etry merging in the Koan [6] analog placement tool. We call the
resulting merged objects second-order shared structures. An
example in Figure 7 shows two small transistors merging with a
single larger transistor.

In order to support arbitrary geometry merging at the transistor
level we use a fairly simple mechanism. If two objects are in the
proper configuration such that they have electrically compatible
ports facing each other, the design rule constraint &, can be
relaxed to asmaller value, &, , to allow those portsto overlap. This
may result in design rule violations in the final placement if the
ports do not line up precisely, but this can be repaired in a post-
processing step.

Figure 7: Example of a second-order shared struc-
ture

4.4. Modeling of the Placement Search Space

Of particular importance is the selection of a method with
which to model the placement search space. We have chosen to
base our placement engine on the symbolic Sequence Pair repre-
sentation recently introduced by Murata et a [15]. This choice was
made because we conjecture that symbolic methods provide a
more efficient and rigorous framework with which to traverse the
search space than direct representations of the object coordinates
as used in Timberwolf [20] and Koan [6]. In particular we chose
the Sequence Pair over symbolic Slicing Trees because some valid
placements are not representable in the latter representation.

In order to systematically explore the Sequence Pair solution
space, asin [15], we use simulated annealing. This space is defined
by the set of al rotations and mirrorings ofr each object and the set
of all permutations of two sequences, ' and I . This pair of
seguences represent the relative x-axis and y-axis positions of the
objects, respectively. The following set of moves are used by the
simulated annealing engine:

1. Swap apair of objectsin r", T orinboth .

2. Trandlate one object to a different positionin T, T orin
both

3. Rotate and/or mirror one object into a different orientation

4. Re-order aselected chain as explained in Section 4.2.

Our simulated annealing engine makes use of a standard adap-
tive cooling schedule, automated initial temperature selection,
range limiting, and statistical move selection [5]. The cost function
is aweighted combination of the placement cost (area, perimeter,
aspect ratio violation, etc.) and an estimate for the routing cost:

cost = w, [placement + w, [fouting (1)

4.5. Routing M odel

Because of the serialized split we have made between place-
ment and routing, during placement we are forced to make use of
computationally efficient estimates of the actual routing cost. The
routing model which we use during placement accounts for routing
effects in two ways. The routing component of the cost function in
(1) isincluded to encourage the simulated annealing algorithm to
find a placement, among all minimum area placements, which has
low routing complexity. This is estimated by approximating the
multi-terminal signal nets as rectilinear minimum spanning trees
(RMSTs). RMSTs provide afairly tight lower bound on the actual
routing cost and can be computed in linear time.

In addition to the routing component of the cost function we

= -
=1l -
e EEIR e
_5 uj= Illll
il ;"“'E%%:%%Ell s [

(a) before space insertion

(b) after space insertion

Figure 8: Demonstration of routing space insertion

must also account for the extra space that this routing will require.
Without inserting extra space between the transistors prior to rout-
ing we will most likely present the router with an infeasible prob-
lem. However, to do this precisely would require us to find a
complete global routing. As an aternative we make use of the fol-
lowing approximate technique which is a variant of the technique
used in [15].

Figure 8(a) shows an intermediate placement without the addi-
tion of routing space. It is clear that some nets will be unroutable.
Figure 8(b) shows the same placement with the addition of extra
routing space. Here each object istrandated from its original coor-
dinate (x;, y;) to anew coordinate (x;’, y;") based on an estimate
of the total routing resources which will be required below it and
to itsleft. In the figure (x;, y;) correspond to the coordinate of the
lower-left corner of each object. The additional boxes demonstrate
the movement of each object—their lower-left corners mark
(%, y;) and their upper-right corners mark (x;", y;") for objectsi
appearing at their upper-right corners.

This cell expansion is performed as follows. We first calculate a
value for (X' Ymax) » the new upper right corner of the place-
ment bounding box, using the equation

o) Ho
X = X +BT|1—DgN 2

where T is the routing pitch, N is the set of all nets, and H; isthe
height of net i’s bounding box. 3 is a user defined scaling factor.
We then assign new coordinates to the blocks based on the follow-
ing eguation:

X:
— i
Xi' =Xt (Xmax' _Xmax)x ©)
max

(A similar pair of equations is used to calculate y,.." and y;".)
This method approximates the total number of horizontal and ver-
tical routing tracks that will be required, assuming that each net
reguires one horizontal and one vertical track, and distributes these
evenly throughout the design. We therefore call this the uniform
expansion method.

As afinal observation, note that our method does not break
apart second-order shared structures (one is marked with an arrow)
which are present in the original un-expanded placement. Thisis
explicitly supported in the expansion algorithm by identifying

instances of geometry sharing and assigning the same expansion
factor to all objects in the shared structure, namely that of the
object occupying the lower-left corner of the structure’s bounding
box.

5. Experiment Results

To validate the approach outlined in the previous sections we
have conducted an extensive series of experiments using a new set
of high performance benchmark circuits. In the following we
describe some details of our prototype implementation and bench-
mark circuits and report the results of our experiments.

5.1. Implementation

A prototype tool called TEMPO (Transistor Enabled Micro
Placement Optimization) has been designed as a framework to
explore the ideas discussed in this paper. TEMPO is implemented
in approximately 48,000 lines of C++ code and has been tested
under the Sun Solaris and Linux operating systems. To complete
our end-to-end flow we make use of the Anagram-11 [6] router for
post-placement routing and the Masterport leaf cell compactor
from Duet Technologies, Inc. We have adopted a datapath-style
cell template for the current set of experiments. Internal routing is
performed in poly and metal-1. Control inputs are assumed to
arrive vertically in metal-2 and data/power/ground inputs arrive
horizontally in metal-3. Prior to routing we place these inputs as
overcell routing tracks in aposition which is as close as possible to
the center of the associated net’s bounding box.

5.2. Benchmarks

The lack of a standard set of 2D cell synthesis benchmark cir-
cuits has made comparison with competing approaches difficult.
For the following set of experiments we make use of a new set of
22 benchmark circuits which we have assembled from the solid-
state circuits literature. These circuits are representative of the
class of high performance and low power library cells for which
this system is targeted. Included are circuits designed in domino
and zipper CMOS, static and dynamic CVSL, as well as single-
and double-ended PTL. The transistors were tuned with a heuristic
non-linear gradient descent algorithm using models from a com-
mercial 0.5um CMOS process.

The characteristics of these circuits are described more com-
pletely in [18], and they can be obtained from the authors at the
internet address in [11]. In addition to problems in transistor-level
layout synthesis, we expect these benchmarks to prove useful on
other problems in high-performance cell-level integrated circuit
design automation. Other possible applications include: transistor-
level circuit synthesis, transistor tuning, cell testing and character-
ization, and performance-driven technology mapping.

5.3. Results

We report the results of a series of experiments which compare
TEMPO to the LAS synthesis tool [4] from Cadence Design Sys-
tems inc. TEMPO was run on a 300MHz Intel Pentium-I1 based
workstation while LASwas run on a 170MHz Sun Ultrasparc sys-
tem; both had 128 megabytes of RAM. We assume a standard
0.5um CMOS process and make use of the MOSI S scalable sub-
micron design rules (rev. 7.2) with a lambda value of 0.3um.
TEMPO cells were optimized for minimum area under our datap-
ath style cell template. LASis a 1-1/2 dimensional row-based sys-

ptl-rba
dpl-fa

sa-ff

dcvsl-xord
xor-ff

dptl-42comp
muxff
aoi-ff

blair-ff
ghz-mux8-la

diff-fa

dec-csa-mux

gnp-fa
dcsl3-42comp

t17-fa
sa-mux-ff

ghz-cou-prop
zip-fa2

ghz-cou-merge
ptl-42comp
emodl-ola
mux2-sdff

Benchmark

Figure 9: TEMPO vs. LAS percentage area improve-
ment

tem which assumes the standard-cell style template. To minimize
the overhead of the metal-1 power railsin LAS we forced these to
have minimum width. LAS was run in full optimization mode to
explore all possible transistor foldings and cell aspect ratios.

The improvement in benchmark cell area obtained with
TEMPO isdisplayed in Figure 9. The results are encouraging: with
two notable exceptions, the TEMPO layouts were consistently
smaller than the LASlayouts. In 15 of the 22 circuits this improve-
ment exceeded 10% and in 8 of the 22 the improvement exceeded
20%. Two representative layouts are shown in Figure 10. The
upper cell is the dcvsl-xor4 benchmark which provides a visually
appealing example of a 2D transistor arrangement with fairly
sparse routing. This isin contrast to the row-based transistor
arrangement and channel routing used by LAS. An area improve-
ment of 39.69% was obtained for this circuit. Our second example,
the ptl-rba circuit, is one of the two cases for which LAS produced
asuperior layout. In this case LASwas able to obtain an extremely
efficient linear transistor arrangement with little wasted space,
while TEMPO could not achieve a competitive placement. In this
case the LASareais 61.45% smaller than TEMPO's.

Because TEM PO makes use of a stochastic optimization algo-
rithm it is likely that it will achieve a different result every time it
is run. We were interested in observing the statistical spread in the
final layout area obtained in this way. Our experimental results
reported in Figure 9 use the smallest area obtained over 100 differ-
ent trials. Figure 11 shows a histogram of the area spread observed
for the sa-ff benchmark.

In Figure 12 we show some data indicating the run-time perfor-
mance of TEMPO. Clearly, TEMPQO’s simulated-annealing 2D
placement algorithm, and the Anagram-11 router’s aggressive rip-
up and re-route strategy, come at a substantial cost. This cost must
aso be multiplied by the number of trials conducted in the effort to
obtain the best layout. Improving the predictability of the place-
ment results to eliminate this high cost will be a significant topic of
future work.

6. Conclusions

In this paper we have outlined anew problem in thefield of cell
level digital layout synthesis: 2D cell synthesis for high-perfor-
mance non-dual digital VLSI cells. We have discussed a new meth-
odology to address this problem based on an unconstrained 2D
micro-placement and routing framework. Our philosophy empha-
sizes methods for modeling and optimizing geometry sharing
among the transistors. One novel aspect of our approach isthe late-
binding of transistors to chains, alowing the chains to be dynami-

—_—

-
+

==t
2

T

==
% ‘

i s

LAS area = 2499um?

TEMPO area = 1789um?

(a) dcvsl-xor4 benchmark

TEMPO area = 6237pm?

e o

q
i
11
=
Tl

FH
i
i

il e

e
-

=,
[=—
’Ef::

LAS area = 3863pum?

(b) ptl-rba benchmark

Figure 10: Two representative cell layouts produced
by TEMPO and LAS (shown approximately to scale.)

cally adjusted during the placement step. This approach enables
chain optimization to proceed with detailed knowledge of the
placement and global routing cost function.

We have developed a prototype implementation of a transistor-
level micro-placement tool based on these ideas, and assembled a
complete end-to-end synthesis flow that makes use of third-party
tools for detailed routing and post-routing compaction. An initial
set of experiments comparing our system to Cadence LAS demon-

instances

1200 1400 1600 1800 2000 2200 2400 2600 2800
area (sg. microns)

Figure 11: Layout area distribution for 100 experi-
mental trials of the sa_ff benchmark

N
o

=
a1

. compaction time
H |:| route time
! place time

Time (x 10° sec)
=
o

a1

sa-ff

dcvsl-xor4
muxff

blair-ff
xor-ff
mux2-sdff
dpl-fa
ptl-42comp

diff-fa
dcsl3-42comp
ghz-mux8-la

aoi-ff
dptl-42comp

sa-mux-ff
ptl-rba

t17-fa
dec-csa-mux

ghz-cou-prop
zip-fa2

gnp-fa
emodl-ola

ghz-cou-merge

Figure 12: TEMPO run time statistics

strates encouraging results. However, the lack of predictability in
the results produced by stochastic optimization result in a high
computational cost that needs to be remedied in the future.

We are also pursuing further work in a number of additional
areas: parasitic cost extraction, transistor folding, symmetric and
partially symmetric chaining, well and well contact insertion,
accurate routing area insertion, and congestion-aware routing cost
estimation.

Acknowledgment

This research was supported by DARPA under contract
DAAHO04-94-G-0327.

References

[1] B.Basaran, “Optimal Diffusion Sharing in Digital and Ana-
log CMOS Layout”, Ph.D. Dissertation, Carnegie Mellon
University, CMU Report No. CMUCAD-97-21, May 1997.

[2] B. Bernhardt et a, “Complementary GaAs (CGaAs™): A
High Performance BiCMOS Alternative’, in proc. 1995
GaAs IC Symposium, pp. 18-21.

[3] J Burnsand J. Feldman, “C5M—A Control Logic Layout
Synthesis System for High-Performance Microprocessors,”
|EEE Trans. on CAD, 17(1), Jan. 1998, pp. 14-23.

[4] S. Chow, H. Chang, J. Lam, and Y. Liao, “The Layout Syn-
thesizer: An Automatic Block Generation System,” in proc.
1992 CICC., pp. 11.1.1-11.1.4.

[5] J Cohn, “Automatic Device Placement for Analog Cellsin
KOAN,” Ph.D. Dissertation, Carnegie Mellon University,
CMUCAD-92-07, 1992.

[6] J. Cohn, D. Garrod, R. Rutenbar, and L. R. Carley, “Analog
Device-Level Layout Automation”, Kluwer Academic Pub-
lishers, Boston MA., 1994.

[71 C. Fiduccia, R. Mattheyses, “A Linear-Time Heuristic for
Improving Network Partitions,” in proc. 19th DAC, 1982,
pp. 241-247.

[8] M. Fukui, N. Shinomiya, T. Akino, “A New Layout Synthe-
sisfor Leaf Cell Design”, in proc. 1995 ASP-DAC, pp. 259-
263.

[9] A.Gupta J.P. Hayes, “CLIP: An Optimizing Layout Gener-

[10]

[11]
[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

ator for Two-Dimensional CMOS Ceélls” in proc. 34th
Design Automation Conference, 1997, pp. 452—455.

Y. Hsieh, C. Huang, Y. Lin, Y. Hsu, “LiB: A CMOS Cell
Compiler,” |EEE Transactions on Computer Aided Design,
10(8), August 1991, pp. 994-1005.
http://andante.eecs.umich.edu/tempo/ispd99_bench

M. Lefebvre, D. Skall, “Picassoll: A CMOS Leaf Cell Syn-
thesis System,” in proc. 1992 MCNC International Work-
shop on Layout Synthesis, vol. 2, pp. 207-219.

M. Lefebvre, D. Marple, C. Sechen, “The Future of Custom
Cell Generation in Physical Synthesis” in proc. 1997
Design Automation Conference, pp. 446-451.

R.L. Maziasz, J.P. Hayes, “Layout Minimization of CMOS
Cells,” Kluwer Academic Publishers, Boston, 1992.

H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kgjitani, “ Rectan-
gle Packing Based Module Placement,” in proc. 1995
ICCAD, pp. 472-479.

C. Papadimitriou, K. Steiglitz, “Combinatorial Optimiza-
tion Algorithms and Complexity,” Prentice-Hall, 1982, p.
413.

C. Poirier, “Excellerator: Custom CMOS Leaf Cell Layout
Generator,” |EEE Transactions on Computer Aided Design,
8(7), July 1989, pp. 744-755.

M. Riepe, “Transistor-Level Micro-Placement and Routing
for Two-Dimensional Digital VLS| Cell Synthesis” Ph.D
Dissertation, The University of Michigan, 1999.

S. Saika, M. Fukui, N. Shinomiya, T. Akino, “A Two-
Dimensional Transistor Placement Algorithm for Cell Syn-
thesis and its Application to Standard Cells’, IEICE Trans.
Fundamentals, E80-A(10), Oct. 1997, pp. 1883-1891.

C. Sechen, A. Sangiovanni-Vincentelli, “The TimberWolf
Placement and Routing Package”, |IEEE Journal of Solid
State Circuits, SC-20(2), Apr. 1985, pp. 510-522.

K. Tani et a, “Two-Dimensional Layout Synthesis for
Large-Scale CMOS Circuits’, in proc. 1991 ICCAD, pp.
490-493.

T. Uehara, W.M. VanCleemput, “Optimal Layout of CMOS
Functional Arrays,” IEEE Transactions on Computers, C-
30(5), May 1981, pp. 305-312.

H. Xia, M. Lefebvre, D. Vinke, “Optimization-Based Place-
ment Algorithm for BIiCMOS Leaf Cell Generation”, |EEE
J. Solid State Circuits, 29(10), Oct. 1994, pp. 1227-1237.

	Main Page
	ISPD'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

