
Post-Routing Timing Optimization with Routing Characterization

Chieh Changfanyz, Yu-Chin Hsuz, and Fur-Shing Tsaiz

yComputer Science Dept. University of California, Riverside

zAvant! Corporation, 46871 Bayside Parkway, Fremont, CA 94538

Abstract

Wire delay estimation has been a problem in designs
of Very Deep Submicron(VDSM) technologies with fea-
ture size under 0.25 um. Conventional back-annotation
approach does not guarantee timing convergence due to
di�erent estimation techniques for pre-layout and post-
layoout timing. To solve the problem, a tight integration
of logic synthesis with placement have been proposed re-
cently. However, timing discrepancies between pre-routing
and post-routing still exists due to unpredictable routing
and cross coupling e�ects. In this paper, a post-routing
timing optimization algorithm is presented. Experimental
results show that this algorithm provides better result after
detail routing is completed.

1 Introduction

With VLSI design technology advancing to under 0.25�m
feature size, the delay due to the parasitic of wire routing
has become a non-ignoring factor in circuit delay estima-
tion. Traditional back-annotation approach which relies
on the feedback loop between synthesis and layout cannot
solve the timing problem because wire delay cannot be ac-
curately estimated during the synthesis stage. It generally
takes many iterations between synthesis and layout, and
it does not guarantee on timing convergence.

To solve the problem, [1, 2] uses
oorplanning during
synthesis to estimate those long interconnect wires. A
novel wire-plan approach is proposed in [3] to plan wire
routing during synthesis. Methodologies are presented in
[4] to exploit placement information during logic optimiza-
tion. By working directly on a placement, more accurate
wire parasitic information than statistical wire load can
be used for logic timing optimization. However, there is
still considerable timing discrepancies between pre-routing
and post-routing estimation in a VDSM design. Table 1
shows some industrial designs on the timing estimation at
di�erent stages of physical design. It has shown timing dis-

Design Size Initial Slack(ns)
#cell #macro #net before after

routing routing
ckt1 39135 17 42637 -0.808 -0.905
ckt2 32357 1 32942 -0.023 -0.195
ckt3 21516 1 23713 -2.717 -3.200
ckt4 96653 57 103319 -2.032 -2.598
ckt5 125412 10 137241 -3.215 -2.643
ckt6 83729 8 94623 -1.972 -2.394
ckt7 153079 15 164286 -1.736 -2.364
ckt8 97463 10 100251 -1.947 -1.586

Table 1: Timing report at di�erent stages

crepancies between pre-routing and post-routing designs.

We study the reason for the timing discrepancy in this
paper. A post-routing logic optimization based on routing
characterization is presented. With characteristics of rout-
ing factors, we can approximate the routing e�ect during
optimization, thus better optimization result can be ob-
tained after routing is done. Experimental result shows
that optimization with routing characterization provides
good �delity between the timing of pre-routing and post-
routing designs.

2 Timing Fidelity Before and

After Routing

Minimal rectilinear spanning tree or Steiner tree is usually
used to estimate the wire load and delay for the intercon-
nects of a placement. For designs with feature size 0:5um
or larger, such an estimation is enough to achieve a �-
delity between the timing of pre-routing and post-routing
designs. However, in a VDSM design, routing congestion
is more severe than ever, wires have to detour around the
over-congested area and the coupling e�ect is usually large.
These factors will result in timing discrepancies between
pre-routing timing estimation and post-routing timing es-
timation. The timing �delity between these two stages

1

wire2

wire1 R1

R2

C1

C2

Cm

v1

v2

(a) (b)

Figure 1: Coupling e�ect modeling

is no longer guaranteed. Although there are other factors
that may cause timing discrepancies between pre-route and
post-route design, we observe that routing pattern and cou-
pling e�ect are the major factors that cause timing discrep-
ancies.

2.1 Coupling E�ect

More and more devices are placed in a single chip in a
VDSM design. Reduction in the interconnection wire and
transistor switching delay results in faster signal transition
time. All these factors increase the coupling e�ect between
interconnection wires. Coupling not only increases signal
delays, but also introduces noise over neighboring wires.

Coupling between two neighboring wires can be char-
acterized by a simple model in Fig 1. In this model, we
ignore the inductive coupling and consider only capacitive
coupling between two wire segments. Let v1, v2 be the
voltages at the outputs of the driver, R1, R2 be the wire
resistances, C1 and C2 be the intrinsic capacitances of each
wire respectively, and Cm be the coupling capacitance be-
tween wires.

In general, each element in a chip is coupled with ev-
ery other element. Coupling capacitance decreases rapidly
when an element is out of the neighborhood of the other
element. Moreover, coupling capacitance between perpen-
dicular wires is very small. Therefore, we assume coupling
capacitance only exists between neighboring parallel wires.
It can be estimated by

C = � �
length

distance�
(1)

where length is the length of paralleled wire segments,
distance is the distance between two wires, � and � are
constants[5].

Smaller feature size means smaller wire width, which
also means smaller intrinsic capacitance Ci of a wire. In
the mean time, higher integration causes smaller distance
between wires and longer average paralleled wires. These
factors result in large coupling capacitance Cm between

source

(a) (b)

source

Figure 2: Routing pattern e�ect

wires. In VDSM technology, coupling capacitance may
even exceed the intrinsic capacitance and dominates the
wire load.

2.2 Routing Pattern E�ect

In timing analysis of a pre-routing design, the routing of a
net is usually assumed to be a minimal spanning tree or a
rectilinear Steiner tree, as shown in Fig 2(a). A minimal
rectilinear Steiner tree represents a lower-bound in terms
of total wire length. In this �gure, the shaded area indi-
cates routing congested area which is impossible for new
wires to be added, and the boxes represent routing block-
ages. To avoid routing through the blockage areas, the �-
nal detailed routing may look like the one in Fig 2(b). The
capacitance of this routing tree is larger than the one with
minimal Steiner tree, therefore the actual delay along this
net is larger than the delay estimated by a minimal Steiner
tree. The more the routing congestion is, the larger the
probability a physical routing of a net will detour, and the
larger the timing discrepancy will be found after routing.

3 Routing Characterization

As described in the previous section, routing pattern and
coupling e�ect are the major reasons of no timing �delity
between the timing estimation of pre-route and post-route
designs. If the e�ect of these two factors can be predicted,
the timing estimation of pre-routing design can be used for
timing optimization. By analyzing the existing routing, we
can characterize the coupling e�ect of the whole design,
and predict the routing pattern.

3.1 Coupling Characterization

To characterize the coupling capacitance, the layout
oor-
plan is �rst divided into 3D routing plane of small regions,
each of which can be viewed as a single-layer rectangular
area, as shown in Fig 3. Within each region r, the routing

2

Figure 3: Coupling characterization

congestion is de�ned as

(r) = N(r)=T (r);

where N(r) is the number of nets in this region, and T (r)
is the routing capacity (number of tracks) of this region.
Assume that wires in each region are distributed evenly,
the expected distance between two wires can be estimated
by �d(r) = Æ=
(r), where Æ is the space between two tracks.
If a wire goes through this region by length L, according to
Eq. 1, the expected coupling capacitance is (� � L= �d(r)�),
or equivalently (��L�(
=Æ)�(r)). We can characterize the
unit-length expected coupling capacitance within region r
as

Cl(r) = �0 �
�(r):

For each region, the unit-length expected coupling ca-
pacitance is characterized. The smaller the regions, the
more accurate the coupling factor is characterized. With
this characterization, we can estimate the coupling capac-
itance for a new net by the length within the regions it
goes through.

3.2 Routing Pattern Prediction

Even with a good characterization of coupling e�ects, we
still cannot obtain accurate coupling capacitance because
the regions a net will go through are still unknown. A rout-
ing pattern prediction is required to predict which regions
the �nal routing will go through. If there is blockage or
over-congested area, we will use routing pattern prediction
to estimate the possible routing at this stage. This pre-
diction can be passed down to a detailed router to guide
the �nal routing so that more accurate prediction at the
placement level can be achieved.

The routing pattern prediction problem can be formu-
lated as follows.

Problem 1. Routing Pattern Prediction Problem
(RPP)
Given a routing graph G = (V;E) with routing solutions
for nets 1, ..., m � 1, the problem is to �nd a set S of

Figure 4: Routing prediction

connected regions which cover all terminals of this net with
the objective to

Minimize
X
r2S

l(r) � Cl(r)

subject to capacity constraints

(r) �
m(r) for each region r;

where l(r) is the expected length within region r, and

m(r) is the maximum congestion allowed within region
r. �

Fig 4 shows an example of a region assignment for rout-
ing prediction. The X mark is the source of the net, and
the black spots are the sinks. The dark-shaded regions are
blockages or over-congested areas, and the light-shaded re-
gions are selected regions. The complexity of a bruise force
approach to all possible solution is O(2n), where n is the
number of regions. Such an approach is not suitable for
our application.

A weighted rectilinear Steiner tree heuristic [7] is
adopted to our application. The cost of the edge connect-
ing two neighboring regions r1 and r2 at the same layer is
(Cost(r1)+Cost(r2))=2, where Cost(r) = Cl(r)=(
m(r)�

(r)): Based on the cost function, the cost will approach
to in�nity when
(r) is close to the maximum congestion

m(r). A pseudo code of this algorithm is shown in Fig 5.

4 Post-Routing Optimization

The post-routing logic optimization
ow is shown in Fig 6.
The proposed approach includes incremental optimization
on a routed design by iterating the following steps: incre-
mental timing analysis, cluster selection, logic transforma-
tion, incremental placement and routing characterization.
The pseudo code of this algorithm is as shown in Fig 7.

3

Routing_Prediction(

localized_window R,

net N,

placement PL,

routing_characteristic RC)

{

T = Prim_MST(N,PL,R); /* localized within R */

L[0] = empty;

for j = 1 to number_of_edge(T)

{

min_cost=infinite;

e[j] = an edge of T;

P[j]= a subset of staircase layout of edge e[j];

for i = 1 to sizeof(P[j])

{

Let P[j,i] be the i-th element of P[j];

Q[j,i] = Merge(L[j-1], P[j,i]);

cost = Weight(Q[j,i],RC);

if (cost < min_cost)

{

L[j]= Q[j,i];

min_cost = cost;

}

}

}

}

Figure 5: Algorithm for routing prediction

LOGIC

OPTIMIZATION

layout

timing
met?

Yes

stop

No

CLUSTER
SELECTION

TIMING-
DRIVEN

INCREMENTAL
PLACEMENT

selected
cluster

optimized
cluster

ROUTING
EFFECT
PREDICTION

constraintlayout
initial FRONT END + BACK END

ROUTING
CHARACTERIZATION

Figure 6: Post-routing timing optimization
ow

Post_Routing_Logic_Optimization(

netlist N,

library L,

timing_constraint T,

placement PL,

routing RT,

localization_window_size WS)

{

iteration = 0;

SlackGraph = Timing_Analysis(N,L,T,PL,RT);

RC = Characterize_routing(N,PL,RT);

while (timing_constraint_violated &&

stop_criteria_not_reached_yet)

{

/* cluster selection */

s = seed_selection(N,SlackGraph,PL,WS,iteration);

W = get_localization_window(s,WS);

N0 = Cluster_grouping(s,N,SlackGraph,iteration,W);

/* logic optimization */

N1 = Logic_Optimization(N0,L,W);

/* incremental placement */

PL1 = TIP(N,L,T,PL,N0,N1,W);

/* routing prediction */

RT'=routing_prediction(W,N,PL1,RC);

/* incremental timing analysis */

SlackGraph1 = Incr_Timing_Analysis(N-N0+N1,L,T,PL1);

if (critical_slack(SlackGraph1) >

critical_slack(SlackGraph))

{

/* timing improved */

N = N - N0 + N1;

PL = PL1; /* use new placement */

SlackGraph = SlackGraph1;

}

/* else: give up current change */

iteration++;

}

}

Figure 7: Algorithm for post-routing optimization

4.1 Cluster Selection

To select clusters to be optimized, the algorithm selects a
set of gates around critical paths. Such selection can be
divided into two steps: seed selection and grouping. In the
seed selection step, candidate gates are selected from the �-
network, which is de�ned as a cluster where all signals have
a slack in the range of (Critical Slack; Critical Slack+�),
where Critical Slack is the critical slack of this design and
� is a constant. During the grouping step, the neighboring
gates around each seed are selected to form a logic clus-
ter. Since the optimization is done at the post routing
stage, the cluster size is limited to very small so that the
perturbance to the layout is minimal.

During the seed selection step, the set of candidate gates
in the �-network is selected at each iteration of incremen-
tal optimization. The selection is based on a cost function
with four weighted criteria. The �rst criteria is the criti-
cality of the gate. The second is the di�erence among the
arrival times of the inputs to the gates, which indicates the
potential of timing improvement by restructuring the gate.
The third criteria is the number of fan-in's and fan-out's of
the gates in the �-network, which shows the potential tim-
ing in
uence of the gate on the logically adjacent gates.
The fourth criteria is the congestion of the neighboring
area. Instances in the congested area are not preferred be-

4

(a) Original placement and routing

(b) Add pseudo instances for localization

Figure 8: Localization of changes

cause changes within this area will cause larger disturbance
on the routing characteristics.

After a seed is selected, the grouping process clusters the
adjacent instances to the seed selected to form a partition.
A user-speci�ed window size is given to control the logic
change within a localized area. A window centered at the
seed instance is considered in grouping process. When
grouping instances, we follow the logic connection of seed
to �nd the instances to be grouped. If a instance is not
within the window, it will not be selected even if it connects
to the seed.

4.2 Incremental Placement

As soon as the new instances are generated by logic re-
structuring, they are placed back to the design within the
window the old cluster is selected. To restrict the change
within the window, when a wire crosses the boundary of
the window, a pseudo instance connected to this wire will
be created at the boundary of the window, as shown in
Fig 8. The size of windows can be decided according to
the congestion of the design.

An incremental placement algorithm presented is ap-
plied to solve this problem. This approach is divided into
two steps: timing-driven global placement and overlap re-
moval.

In the global placement phase, we try to �nd a place-
ment solution for new instances which maximizes the crit-
ical slack with consideration of cell density. The objective

function of our problem is

Maximize Minfri � ai; for each constrained port i in top levelg
(2)

where ri is the required time at node i, and ai is the arrival
time.

In order to apply the �rst-order derivative to this objec-
tive function, we transform this objective function into an
analytical form:

Minimize
X

i2constrained ports

e�(ri�ai): (3)

Here linear model is assumed. That is, the gate delay
from input i to output j is d(i; j) = ui;j1 Cj

w + ui;j0 . By
applying �rst-order partial derivative over the location xk
of instance k, we obtain

X
i2CP

e�(ri�ai)

0
@ X

(i;j)2IP

ui;j1
@Cj

w

@xk

1
A = 0 (4)

where CP is the set of constrained ports, IP is the set of
internal delay edges(gate input to output) along the path,
Cj
w is the output load at gate output j including wire load

and gate capacitance. To speed up the computation, some
insigni�cant terms are eliminated from our equation. Since
for each location variable xk, an equation is generated,
there are 2n simultaneous equations which will decide the
placement of these n instances.

The overlap removal algorithm removes overlap viola-
tion by moving these instances subject to their maximum
move constraints while maximizing critical slack simulta-
neously. The maximummove constraint is given according
to the local congestion and the criticality of an instance.
localization constraints are applied to restrict the place-
ment change within a localized window.

4.3 Routing Characterization

A quick routing tree prediction algorithm described in
Sec. 3.2 is applied to the partially routed design. The
coupling capacitance is estimated by the regions the rout-
ing tree goes through. For nets extended to outside of the
window, there must exist a corresponding pseudo instance
at the window boundary. When estimating the routing,
we only connect this net to the pseudo instance instead of
connecting it outside the window. In this way, the routing
outside the window will not be changed. An example of
localized routing prediction is shown in Fig. 9.

After the routing prediction is done, timing analyzer
may use the coupling capacitance to estimate the timing

5

(a) Routing before optimization

new cell inserted

(b) Routing prediction after optimization

Figure 9: Routing prediction strategy

after routing. If it improves the timing, this change will be
committed, and the routing characteristics will be updated
according the global routing tree. The global routing tree
will also be recorded so that it can be used to guide the
detailed routing of the optimized netlist.

5 Experimental Results

The post-routing timing optimization algorithm proposed
in this paper has been implemented and tested on the cases
shown in Table 1. The result is shown in Table 2.

The initial design has been optimized by the algorithm
presented in [4] and routed by commercial routing tools.
The algorithm in [4] is applied to the routed design again,
and the result is shown in the column Pre-routing Opt.
The algorithm presented in this paper is also applied
to the same design, and result is shown in the column
Post-routing Opt. As shown in this table, pre-routing
optimization algorithm fails to hold �delity after routing.
The post-routing optimization algorithm gives a good �-
delity and thus further improves timing after routing.

6 Conclusions

In this paper, we study the timing correlation problem
between pre-route and post-route designs. Coupling ef-
fect and routing pattern e�ect are identi�ed to be the two
major factors that cause the timing discrepancies. We pro-
pose a post-routing timing optimization algorithm based
on routing characterization. Experimental result shows

Design Pre-routing Opt(ns) Post-routing Opt(ns)
routing before after before after
ckt1 -0.869 -0.934 -0.755 -0.775
ckt2 -0.143 -0.221 -0.175 -0.186
ckt3 -3.099 -3.175 -3.167 -3.186
ckt4 -1.478 -4.407 -1.396 -1.830
ckt5 -1.908 -3.012 -1.894 -1.925
ckt6 -1.424 -2.144 -1.521 -1.642
ckt7 -1.312 -1.986 -1.324 -1.335
ckt8 +0.012 -0.921 -0.354 -0.435

*

design size and initial slack are shown in Table 1.

Table 2: Experimental Results

that algorithm considering coupling e�ect and routing pat-
tern preserve good correlation after ECO routing.

References

[1] H.P. Su, A. Wu, Y.L. Lin, \Performance-Driven Soft-
Macro Clustering and Placement by Preserving HDL
Design Hierarchy", Proc ISPD 1998, pp. 12-17.

[2] A.H. Salek, J. Lou and M. Pedram, \A DSM
Design Flow: Putting Floorplanning, Technology-
Mapping, and Gate-Placement Together", Proc DAC
1998, pp.128-133.

[3] R. H.J.M. Otten and R. K. Brayton, \Planning for
Performance", Proc DAC 1998, pp.122-127.

[4] M. T-C. Lee, T-Y. Liu, K. F-S. Tsai, E. S-Z. Lin, and
Y. C. Hsu, \Incremental Timing Optimization for Phys-
ical Design by Interacting Logic Restructuring and Lay-
out," International Workshop on Logic Synthesis, June,
1998.

[5] T. Sakurai and K. Tamaru, \Simple formulas for two
and three dimensional capacitance," IEEE Trans. Elec-
tronic Devices, 1993.

[6] H. Zhou and D.F. Wong, \Global Routing with
Crosstalk Constraints," Proc DAC 1998, pp.374-377.

[7] C. Chiang, M. Sarrafzadeh, and C.K. Wong, \A power-
ful global router: Based on Steiner min-max tree." Proc
DAC 1989, pp.2-5.

[8] J. Lee and D.T. Tang, \An algorithm for incremental
timing analysis" Proc DAC 1995, pp.696-701.

[9] K.J. Singh, A.R. Wang, R.K. Brayton, and
A.Sangiovanni-Vincentelli, \Timing Optimization of
Combinational Logic," Proc ICCAD 1988, pp282-285.

[10] R.L. Rudell, Logic Synthesis for VLSI Design. PhD
thesis, Electronics Research Lab., Univ. of California,
Berkeley, Apr. 1989.

6

	Main Page
	ISPD'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

