
Selective Instruction Compression for Memory Energy Reduction in Embedded Systems

Luca Benini # Alberto Macii z Enrico Macii z Massimo Poncino z

Universit�a di Bologna

Bologna, ITALY 40136

z Politecnico di Torino

Torino, ITALY 10129

Abstract

We propose a technique for reducing the energy required by

�rmware code to execute on embedded systems. The method is

based on the idea of compressing the most commonly executed

instructions so as to reduce the energy dissipated in memory

accesses. Instruction decompression is performed on the
y by

a hardware module located between processor and memory: No

changes to the processor architecture are required. Hence, our

technique is well-suited for systems employing IP cores whose

internal architecture cannot be modi�ed.

We describe a number of decompression schemes and architec-

tures that e�ectively trade o� hardware complexity for memory

energy and bandwidth reduction, as proved by experimental data

collected by executing several sample programs.

1 Introduction

Power optimization for embedded systems is an active area of

research that has received considerableattention in recent times.

On one hand, hardware/software partitioning for low power and

software power optimization are key steps to achieve a global

control of power dissipation. On the other hand, hardware

power minimization is still essential, especially if it is targeted

at a very high level of abstraction [1].

A major contributor to the system power budget is the memory-

processor interface [2]. For this reason, several techniques that

allow a reduction of this component of the dynamic power have

been proposed in the literature. They can be categorized in

two broad classes: Bus encoding techniques [3, 4, 5, 6, 7] and

memory organization techniques [8, 9, 10, 11].

Bus encoding schemes reduce interface power by changing the

format of the information transmitted on the processor-memory

bus. In this way, the switching activity on the bus gets mini-

mized, and so does the power. Memory organization methods

change the way information is stored in memory so that the

address streams generated by the processor have already low

transition activity. Also in this case power savings come solely

from a reduced switching activity on the bus.

Although bus power is relevant, additional improvements can be

achieved by minimizing the dissipation due to memory accesses.

Power minimization through instructionmemory bandwidth op-

timization has been �rst exploited in the ARM7TDMI core [12].

Here, a 16-bit instruction set (called Thumb) consisting of 36

instructions is supported besides the regular 32-bit instruction

set. In order to exploit Thumb instructions, the architecture of

the basic processor core has been modi�ed. Moreover, software

tools for generatingThumb machine code are obviously required

and are supplied by ARM to the users of this processor.

An alternative approach to memory bandwidth reduction has

been presented in [13]. The basic assumption of this method is

that the �rmware running on a given embedded processor nor-

mally uses only a small subset of the instructions supported by

the processor. By replacing such instructions with binary pat-

terns of limited width (i.e., dlog2Ne, where N is the number of

distinct instructions appearing in the code), memory bandwidth

usage can be reduced, thus decreasing the total energy.

The solution of [13] does not require the availability of ad-hoc

source-code compilers; in fact, the original machine instructions

(by instruction we intend the complete k-bit pattern stored in

memory, i.e., op-code and operand(s), if any) can be automati-

cally replaced by dlog2 Ne-bit instructions by means of a script

after the subset of instructions used by the program is identi�ed

through execution pro�ling or instruction-level simulation, and

the number dlog2Ne is determined. The original machine code

can thus be compressed to reduce the memory bandwidth that

is needed to run the program. The so-called instruction decom-

pression table and the related control circuitry can be designed

and placed between the processor and the memory. Hence, the

architecture of the core processor is left unchanged. This is a

big plus for system designers employing third-party, o�-the-shelf

cores and microcontrollers that are either not disclosed (IP hard

or soft macros) or not easily modi�able.

Data compression techniques have been used to reduce the size

of executable programs; new ideas on the subject have thus been

explored, especially for what concerns the domain of embedded

systems (see, for example, [14] and [15]). However, memory

occupation, rather thanmemory energy consumptionhas always

been consideredas the objectiveof the optimization. To the best

of our knowledge, the approach of [13] is thus the �rst one that

explicitly targets memory energy optimization.

In this work we present a technique that builds upon themethod

of [13] by overcoming its major limitation: If the number of in-

structions used by the embedded software gets large, so does the

number of bits of the compressed instructions. Besides increas-

ing the size of the instruction decompression table, this may

excessively complicate the implementation of the control logic

that handles instruction fetching and decoding, especially when

the bit-width of the compressed instructions is not compatible

with the available memory addressing scheme (e.g., bit-width

di�erent from a multiple of 8 on a byte-addressable memory).

We move from the observation that the number of machine in-

structions used by most software programs, although limited

with respect to the total number of instructions supported by

the processor, has a highly non-uniform statistical distribution.

In other words, some instructions are usually much more used

than others. This claim is con�rmed by some experiments we

have run on the MIPS R4000 RISC processor. We have pro�led

the execution of several software applications, we have deter-

mined how many times the various instructions are executed,

and in Figure 1 we plot the results regarding the 256 most used

instructions. The value reported on the y axis is the percentage

with respect to the total number of executed instructions.

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250

Dashboard
DCT

espresso
FFT

gs
gunzip

gzip
jedi

MatMult
sis

Figure 1: Pro�ling Results (Top 256 Instructions).

Table 1 provides a more complete summary of the pro�ling ex-

periments; in particular, it gives the total number of executed

instructions and the total number of distinct instructions. The

total number of times (percentagewith respect to the total num-

ber of executed instructions) the 256 most frequent instructions

are executed is also reported (column Percentage 256).

Program # of Executed # of Distinct Percentage

Instructions Instructions 256

Dashboard 3.06590e04 1972 75.077%
DCT 8.52347e08 366 99.999%
espresso 1.75454e06 5754 54.360%
FFT 1.32774e05 856 93.186%
gs 4.04896e05 3546 79.142%

gunzip 6.40040e04 1469 92.422%
gzip 1.19116e05 1619 89.238%
jedi 1.46909e07 3352 88.456%
MatMult 4.81175e07 246 100.000%
sis 7.47147e07 13609 61.111%

Table 1: Complete Pro�ling Results.

In view of these results, we propose to consider for compression

only the instructions used by the embedded code with the high-

est execution probability. This solution allows us to �x a priori

the bit-width of the compressed instructions (i.e., 8 bits, in our

particular case); the two-fold advantage we get from this choice

is that the size of the instruction decompression table is �xed

and limited, and the instruction fetching/decompression logic

has reduced complexity. We discuss four di�erent architectural

options for implementing such logic, and we compare their rela-

tive merit, in terms of achievable energy savings and execution

time improvement/degradation, from both the theoretical and

the practical points of view.

2 Memory Energy Reduction by Compression

We consider the processor-memory architecture of Figure 2(a).

For energy minimization purposes, in [13] such architecture has

been modi�ed as depicted in Figure 2(b).

The program is stored in memory in compressed format, i.e.,

each instruction is replaced with a dlog2Ne-bit binary pattern

which is in one-to-one correspondence with the original instruc-

tion. Every time an instruction is fetched from the memory,

it is �rst decompressed (i.e., the original format is restored) by

means of the instruction decompression table (IDT) and then

passed to the processor's decoding logic.

Core

Addresses

Instructions

(a)

k bits

Memory

k

Core

IDT

Addresses

Instructions

(b)

Memory

logN

k

logN bits

Figure 2: Original Architecture (a) and Modi�cation of [13] (b).

This architecture is motivated by the fact that software pro-

grams normally use only a subset, of cardinalityN , of all possi-

ble instructions o�ered by the processor's instruction set. Since

the width of the uncompressed instructions, k, is wider than

dlog2Ne, accessing the memory to retrieve the compressed in-

structions has the bene�cial e�ect of reducing both memory

energy and bus power with respect to the reference case.

Although in principle the solution illustrated above o�ers good

opportunities for energy optimization, as discussed in [13], there

is a number of issues that need to be addressed to make this

proposal applicable in practice.

It happens quite often that the number of distinct instructions,

N , used by a program is not so small. This statement is sup-

ported by the data of Table 1; out of the 10 programs that we

have pro�led, only one (MatMult) has less than 256 distinct in-

structions. It is then quite evident that the idea of compressing

all the instructions appearing in the code, as proposed in [13],

has three major disadvantages. First, the size of the IDT can

become very large, therefore area and power demanding. Sec-

ond, the bit-width of the compressed instructions (dlog2Ne)
may become comparable to the bit-width of the original in-

structions (k), thus making negligible the reduction in memory

bandwidth. Third, in case the memory is not bit-addressable,

values of dlog2Ne which are not multiples of 8 can not be han-

dled very e�ciently. In other words, storing the compressed

code in memory may result in a waste of space (for example, for

dlog2Ne = 9, two bytes are required to store each compressed

instruction). This problem can be solved by making the mem-

ory bit-addressable (if possible); however, the cost of the address

decoding circuitry may become sizable.

One way of overcoming the problems listed above is suggested

by the pro�ling data of Table 1. For all the programs, out of the

total number of distinct instructions, only a few are executed

very often. In particular, the 256 most used instructions are

always executed for at least 50% (program espresso) and up to

99.99% (program DCT) of the time.

To take advantage of this result, we propose to compress only a

subset of �xed cardinality (256 elements, in our speci�c case) of

the instructions used by a program, namely, those that are exe-

cuted more often; less probable instructions are left unchanged

and stored as they are in memory. This choice guarantees a

�xed and limited size for the IDT, as well as a �xed compres-

sion ratio for the 256 most used instructions (i.e., k=8). On the

other hand, it requires the introductionof a controller that prop-

erly handles instruction fetching. This is because the program

stored in memory is a mix of compressed (many) and uncom-

pressed (few) instructions that must be manipulated di�erently.

The solution illustrated above can be implemented as in Fig-

ure 3. Several options are possible to realize it, and they depend

on a number of factors, such as memory organization, desired en-

ergy savings, allowed execution time penalty (if any), complexity

of the controller, type of program the system will execute. In

the next section we present four architectural schemes and we

discuss their relative characteristics, advantages and limitations.

Addresses

Instructions

Memory

8 bits

Buffer

8

CONTR

IDT

k

k0

1

Instructions

Core

Figure 3: Proposed Architecture.

3 Architectures for Memory Energy Minimization

3.1 Assumptions

We consider only RISC processors, such as those belonging to

the MIPS and the ARM families. This implies that all the sup-

ported instructions, including the op-code and the operand(s),

if any, have the same length (k = 32 bits, in our speci�c case)

and that they can be fetched from the memory in one bus cycle.

We assume instruction and data memory to be separated. This

is quite common for embedded systems, since the machine code

of the program is �xed and resides in either a ROM or a FLASH

memory, while data are normally stored in a RAM.

We consider byte-addressablememory and we assume that each

memory bank (which is made of 8-bit locations) can be disabled

by the processor on a bus cycle-by-cycle basis, for instance by

selectively de-activating the chip select input of the bank.

Our compression approach requires the storage in memory of

both compressed and uncompressed instructions; the control

logic that regulates instruction fetchingmust then be able to dis-

tinguish between the two cases. We reserve one 8-bit code, out

of the 256 available for the compressed instructions, and place it

in memory right before every uncompressed instruction. We re-

fer to this reserved 8-bit pattern as the mark. This technique is

in sharp contrast with the one implemented in the ARM7TDMI

processor, where processing of Thumb (16-bit) instructions is

activated/de-activated by speci�c instructions included in the

processor's assembly language. Although our choice may not be

optimal regarding the size of the compressed machine code, it

allows us to leave the architecture of the processor unchanged;

thus, it avoids the need of designing a new core or microcon-

troller and its related software development environment.

3.2 Evaluation Metrics

The architectural solutions that we present in the sequel will be

evaluated with respect to the following two metrics:

� Total dynamic memory utilization, E, required by a program,

measured as the total number of accesses to 8-bit memory

locations during instruction fetching. For a �xed instruction

memory architecture, E is roughly proportional to the total

energy spent in fetching instructions from memory.

� Total bus utilization, T , required by a program to complete,

measured as the total number of bus cycles (that can corre-

spond to 8-bit or 32-bit read operations, depending on mem-

ory organization). Usually, bus cycle time is much slower than

processor clock period, hence decreasing T improves perfor-

mance (i.e., program execution time).

In our analysis, E and T are evaluated for di�erent values of the

compression ratio, R (de�ned as the fraction of compressed in-

structions over the total number of executed instructions). More

precisely, R = 0 indicates no compression, while R = 1 corre-

sponds to the case where all the instructions have been com-

pressed. For clarity, we consider normalized values of E and T

(w.r.t. the value of the reference architecture of Figure 2(a)).

3.3 Code Compression Schemes

We have devised four architectural schemes of increasing com-

plexity that di�er in the way memory is organized and accessed.

3.3.1 Architecture 1

The program memory consists of one, 8-bit bank. The accesses

to such memory are thus always 8-bit wide. In the worst case

(R = 0), this architecture requires �ve, 8-bit memory accesses

for each uncompressed instruction (the mark plus the 32-bit in-

struction). The bus utilization T is then 5 times the original,

while the dynamic memory utilization E is 1:25 times the orig-

inal. In the best case (R = 1), the bus utilization equals that

of the original architecture (there is one, 8-bit memory read per

instruction instead of four), while the total E is reduced to 0:25

of the reference value. T and E decrease linearly with respect

to R:

T (R) = 5� 4R E(R) = 1:25� R

3.3.2 Architecture 2

The programmemory consists of four, 8-bit banks. Compressed

instructions are fetched with 8-bit reads (during this phase, the

three unused memory banks are disabled to avoid useless power

dissipation). On the contrary, uncompressed instructions re-

quire one, 8-bit access (for the mark) plus one 32-bit access for

the instruction. As a consequence, in the worst case, the pro-

gram requires exactly twice as many bus cycles than in the refer-

ence architecture (i.e., T = 2), while the total dynamic memory

utilization is again 1:25 of the original (�ve, 8-bit memory ac-

cesses are required to fetch one uncompressed instruction). In

the best case, this scheme performs like the �rst one. Although

there are four banks, only one of them is accessed, while the

remaining three are disabled. Therefore, T = 1 and E = 0:25.

Again, T and E decrease linearly with respect to R:

T (R) = 2� R E(R) = 1:25�R

3.3.3 Architecture 3

The programmemory consists of four, 8-bit banks. Compressed

instructions that are located consecutivelyare packed into 32-bit

words (i.e., four compressed instructions per word). However,

any time an uncompressed instruction occurs, a mark is placed

back-to-back with the last compressed instruction and the un-

compressed instruction is stored in the following 32-bit memory

location. This implies that uncompressed instructions are al-

ways word-aligned, and therefore there is a chance that some

8-bit memory locations are left unused.

Unlike the previous architectures, the formula that gives the

value of T as a function of R does not represent a single curve

but, rather, a whole family. The parameter that distinguishes

the various members of the family is the relative placement

(i.e., the factor of interleaving) between compressed and un-

compressed instructions. All the curves in the family share the

extreme points. In particular, for R = 0, eight 8-bit memory

accesses are required to fetch each instruction (four bytes for

the mark and four bytes for the instruction); therefore, T = 2.

For R = 1, four compressed instructions are always packed into

a memory word, resulting in a four-fold reduction; therefore,

T = 0:25. On the other hand, it can be demonstrated that

the line obtained by interpolating the two extremes represents

the upper bound (corresponding to non-interleaved placement

of compressed and uncompressed instructions) of the family of

curves. Clearly, since memory bank disabling is not allowed in

this architecture, the curves of E are similar. The equations

representing the upper-bound lines of T and E, called TU and

EU , are then:

T
U
(R) = 2� 1:75R E

U
(R) = 2� 1:75R

3.3.4 Architecture 4

This architecture is a variant of architecture 3, where the pack-

ing of the instructions is extended to the uncompressed ones.

This implies that uncompressed instructions are in general not

aligned to 32-bit boundaries, and that there are no unused 8-bit

locations in the memory.

This complete �lling of the memory makes execution time inde-

pendent of the placement of the instructions, unlike architecture

3. The worst-case value of T can be derived by observing that

�ve bytes (the mark plus the four bytes of a uncompressed in-

struction) need to be read instead of four (the uncompressed

instruction alone); thus, T = 1:25. Obviously, E behaves simi-

larly. The equations for T and E are then:

T (R) = 1:25� R E(R) = 1:25�R

3.4 Comparison and Discussion

To better clarify how the four architectures exploit the compres-

sion scheme, in Figure 4 we show how a sample code is stored

in the memory in the four cases.

0
1
2
3
4
5
6
7

(a)

LSBMSB

L1*

L2*

L3*

L4

L5*

L6*

L7

L8*

(b)

S1

S2

S3

M

S5

S6

M

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

L7−1
L7−2

L7−3

L7−4

L4−1
L4−2

L4−3

L4−4

S8

(e)

LSBMSB

S1S2S3M

S5S6M

0
1
2
3 S8

L4−4 L4−3 L4−2 L4−1
L7−1

L7−2L7−3L7−4

(d)

LSBMSB

S1S2S3M

S5S6M

0
1
2
3
4 S8

(c)

S1

S2

S3

M

S5

S6

M

0
1
2
3
4
5
6
7
8
9

MSB LSB

S8

L4−1L4−2L4−3L4−4

L4−1L4−2L4−3L4−4

L7−1L7−2L7−3L7−4

L7−1L7−2L7−3L7−4

Figure 4: Memory Maps of a Sample Code Fragment.

Figure 4(a) depicts the code placement in the reference archi-

tecture. Here, all instructions are 32-bit long and are denoted

with Li. Those marked with a \?" are the instructions that will

be compressed.

The memory maps of the sample code fragment after compres-

sion are shown in Figures 4(b)-(e). Here, compressed instruc-

tions (8-bit long) are denoted as Si, while the mark used to sig-

nal the presence of an uncompressed instruction is represented

by symbolM . Also, the individual bytes of the generic uncom-

pressed instruction Li are denoted with Li � k; k = 1; : : : ; 4. In

the pictures, the shaded areas indicate memory locations that

do not contain useful information.

Figure 5 plots the normalized values of E and T as a function

of the compression ratio R. The values are actually obtained by

generating various streams with the desired value of R, and by

evaluating the corresponding values of E and T . For architec-

ture 3, only the worst-case curves (i.e., EU (R) and TU(R)) are

plotted.

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 D
yn

am
ic

 M
em

or
y

U
til

iz
at

io
n

Compression Ratio

Reference Architecture
Architecture 3

Architectures 1, 2, 4

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 B
us

 U
til

iz
at

io
n

Compression Ratio

Reference Architecture
Architecture 1
Architecture 2
Architecture 3
Architecture 4

Figure 5: Plots of E(R) and T (R) for the Four Architectures.

3.5 Assignment of the Compressed Codes

In [13], the codes to the compressed instructions were assigned

randomly. Obviously, this choice has no impact on memory

access energy; however, if we consider architectures 1 and 2,

we notice immediately that all the compressed instructions are

stored in the samememory bank, say the right-mostone. There-

fore, the higher the value of the compression ratio, the higher

the chance that a compressed instruction crosses the memory

output pins of the right-most bank immediately after another

compressed instruction.

We propose to assign minimumHamming distance binary codes

to the compressed instructions that have high probability of ap-

pearing in sequence on the memory output pins of the right-

most bank. This will have the bene�cial e�ect of reducing the

switching power dissipated by charging and discharging the ca-

pacitances associated to the memory-bus interface. To perform

this task we have resorted to the tool for low-power op-code gen-

eration described in [16]; the algorithms implemented in such

tool are similar to those developed for state assignment in the

logic synthesis domain, and rely on pro�ling information about

the adjacency of instruction pairs.

As mentioned earlier in this section, non-random code assign-

ment is only e�ective for architectures 1 and 2, while it does not

provide any relevant bene�t in the case of architectures 3 and

4. This is because instruction packing is likely to destroy the

sequentiality of the compressed words at the output pins of the

memory banks.

4 Architectural Issues

In this section we focus on the hardware architecture of the

instruction decompression block that extracts standard, full-

length instructions from a compressed instruction stream. The

basic requirements for the decompressor implementation are:

� Decompression should be performed on the
y, in response to

instruction fetches;

� The decompressormust be able to interfacewith the processor

with the same protocol used by instruction memory;

� Decompression should be fast.

� The complexity of the decompressor should be kept as low

as possible, because the power dissipated in decompression

must be substantially lower than the power saved by reducing

memory tra�c.

We implemented the decompression block for a DLX proces-

sor [17] core. This choice is motivated by several factors. First,

many synthesizable HDL models of DLX cores are available in

the public domain (we used that of [18]), giving us the possibility

of thoroughly testing the processor-decompressor interface with

cycle-accurateHDL simulation. Second,DLX instruction set ar-

chitecture is a pure 32-bit RISC. Several high-performance pro-

cessor cores for embedded systems implement similar instruc-

tion set architectures (for instance, ARM and MIPS instruction

sets are 32-bit RISC). Third, the basic DLX core implemented

in [18] is simpler than most commercial core processors, thereby

simplifying the development of our prototype decompressor.

Among the compression schemes presented in the previous sec-

tion, we analyze the implementation of the third one, namely

the architecture that reads four compressed instructions at a

time from memory. Uncompressed instructions are
agged by

the reserved mark byte. The presence of the mark in any word

indicates that the next word in memory should be fetched, be-

cause it contains the uncompressed instruction.

The block diagram of the decompressor interface with proces-

sor and instruction memory is shown in Figure 6(a). The DLX

core communicates with the decompressor using the standard

instruction memory interface based on a four-phase protocol.

At the beginning of every instruction fetch cycle, the proces-

sor outputs the instruction address on Iaddrbus and lowers the

IStart L signal. When the decompressor is ready to return a de-

compressed instruction, it outputs the instruction on Instrbus

and lowers signal IWait. Upon receiving the new instruction,

the processor raises IStart L, and the compressor raises Iwait.

Fetch cycle sequencing is shown in Figure 6(b).

(a)

Istart_L

Iaddrbus

Iwait

Insrtbus

(b)

(c)

0

1

254

CIB

Control
 Logic

IDT

Decompressor
Memory

Istart_L

OutOfSeq

Processor

Iaddrbus

Instrbus

ImemWait

ImemAddrbus

ImemICompbus

ImemStart_L

Iwait

Figure 6: (a) Decompressor Interface; (b) Handshake Protocol Be-
tween Processor and Compressor; (c) Decompressor Block Diagram.

An additional signal is speci�ed in the decompressor-processor

interface, called OutOfSeq. Whenever OutOfSeq is high, the pro-

cessor is issuing a fetch instruction which is not in sequence

with the previous one (i.e., the target of a taken branch or

jump). Notice that this signal can be autonomously generated

by the decompressor, by simply observing when two consecu-

tive addresses di�ers by a number larger or smaller than four.

The purpose of OutOfSeq is to indicate that the decoder should

read from memory directly at the address provided by the pro-

cessor, by-passing its internal memory address generation logic

(described later).

The decompressor-memory interface is based on the same pro-

tocol used in the decompressor-processor interface. The hand-

shake signals are ImemStart L and ImemWait. The address bus

is ImemAddrbus and the compressed instruction bus from mem-

ory is ImemICompbus. One 32-bit word at a time is read from

memory, which is equivalent to four compressed instructions.

The main functional blocks of the decompressor are shown in

Figure 6(c). The instruction decompression table (IDT) con-

tains 255 32-bits words. The address of each word is the com-

pressed code of the instruction stored in the word. Decompres-

sion is performed simply by reading the content of the IDT at

the address speci�ed by the byte of the compressed instruction.

The compressed instruction bu�er (CIB) is a 32-bit register that

can be accessed byte-by-byte. Words coming from memory are

stored in the CIB and are decompressed one byte at a time. Fi-

nally, the control logic block coordinates interface signals, IDT

look-up, CIB read/write and manages the direct transfer from

memory to processor of uncompressed instructions. A key func-

tion of the control block is address generation. If the proces-

sor reads addresses in sequence, the controller generates one

new memory address every four processor fetch cycles. In the

remaining three cycles, compressed instructions are extracted

from the CIB. On the contrary, if either the processor is fetch-

ing the destination address of a branch/jump or the mark is

found, a new read cycle to instruction memory is initiated.

The hardware cost of the decompressor is dominated by the IDT

(a 255 � 32 = 8K memory). Similarly, decompression perfor-

mance is set by IDT read time. When the compressor is process-

ing compressed instructions, it performs one memory bus cycle

every four fetch cycles. When it does not involveCIB re�ll, fetch

time for compressed instructions reduces to IDT read time. This

is the most common case. In the remaining cases fetch latency

is longer. Memory access time plus IDT read time is the time

required for fetching a compressed instruction immediatelyafter

a CIB re�ll. The worst case fetch time is experienced when the

�rst instruction after a CIB re�ll is not compressed; here, two

instruction memory reads are needed to fetch an instruction.

5 Experimental Results

In this section, we report experimental data concerning the use

of the proposed compression schemes and the corresponding ar-

chitectures. The results include both dynamic memory utiliza-

tion (E) and bus utilization (T) �gures, and the software pro-

grams used for the experiments are the same listed in Table 1.

Program executionpro�ling has been performed using the pixie

utility available in the MIPS development kit.

Table 2 shows the results. For each example, the total dynamic

memory utilization (Column E), the total bus utilization (Col-

umn T), and the switching activity at the memory output pins

(Column SW) are reported. Data are normalized to the corre-

sponding values of the reference architecture.

As expected, dynamic memory utilization is substantially im-

proved for all the compression schemes, with some advantage

for architectures 1, 2 and 4. On the other hand, bus utiliza-

tion is much more in
uenced by the chosen compression scheme.

Clearly, there is a trade-o� here. The more complex the decom-

pression logic, the faster the execution time. Finally, the switch-

ing activity at the memory output pins decreases in most of the

cases, although for this experiment compressed codes have been

assigned randomly.

It is interesting to observe that program MatMult uses less than

255 distinct instructions. Consequently, the compression ratio

is ideal (i.e., R = 1) and so are the the energy savings and the

program execution times.

Application Architecture 1 Architecture 2 Architecture 3 Architecture 4

E T SW E T SW E T SW E T SW

Dashboard 0.50 1.99 0.68 0.50 1.24 0.81 0.65 0.65 0.76 0.50 0.50 0.66

DCT 0.25 1.00 0.31 0.25 1.00 0.30 0.25 0.25 0.30 0.25 0.25 0.20
espresso 0.70 2.82 1.05 0.70 1.45 1.32 1.00 1.00 1.28 0.70 0.70 1.07

FFT 0.32 1.27 0.44 0.32 1.06 0.48 0.36 0.36 0.43 0.32 0.32 0.38
gs 0.45 1.83 0.68 0.45 1.20 0.78 0.58 0.58 0.72 0.45 0.45 0.65

gunzip 0.32 1.30 0.44 0.32 1.07 0.47 0.37 0.37 0.43 0.32 0.32 0.40
gzip 0.35 1.43 0.47 0.35 1.10 0.51 0.42 0.42 0.49 0.35 0.35 0.47

jedi 0.36 1.46 0.44 0.36 1.11 0.52 0.44 0.44 0.51 0.36 0.36 0.45

MatMult 0.25 1.00 0.23 0.25 1.00 0.23 0.25 0.25 0.22 0.25 0.25 0.22
sis 0.64 2.55 0.89 0.64 1.38 1.15 0.92 0.92 0.95 0.64 0.64 1.22

Average 0.41 1.66 0.56 0.41 1.16 0.66 0.52 0.52 0.61 0.41 0.41 0.57

Table 2: Experimental Results.

In a second set of experiments, we have compared the switch-

ing activity results obtained after applying the low-energy code

assignment algorithm to those determined with random code

assignment. As mentioned in Section 3.5, the comparison is

meaningful only for architectures 1 and 2. Table 3 summarizes

the experimental data.

Application Architecture 1 Architecture 2

Rand Low-En Rand Low-En

Enc Enc Enc Enc

Dashboard 0.68 0.59 0.81 0.70
DCT 0.31 0.21 0.30 0.20

espresso 1.05 0.96 1.32 1.19
FFT 0.44 0.33 0.48 0.34
gs 0.68 0.54 0.78 0.63
gunzip 0.44 0.36 0.47 0.36
gzip 0.47 0.40 0.51 0.41

jedi 0.44 0.36 0.52 0.42
MatMult 0.23 0.14 0.23 0.14

sis 0.89 0.80 1.15 1.02

Average 0.56 0.47 0.66 0.54

Table 3: Impact of Low-Energy Compressed Code Assignment.

As expected, the switching activity at the memory-bus interface

is further reduced by approximately 15% for both architecture

1 and architecture 2, without any penalty in memory access

energy and execution time.

These results show that our instruction compression scheme has

good potential for reducing the power consumption in instruc-

tion memory and memory-processor interface. The drastic re-

duction of E implies that memory reads are reduced, thereby

saving active memory power. The reduction of the number of

bus cycles observed for architectures 3 and 4 is an indication

that further power reductions could be achieved by trading o�

some performance slack for decreased power (for example, by

choosing slower and less power-consuming memories). Needless

to say, further investigation in required to assess the impact of

the decompression block on the cycle time of the processor. Re-

garding the decompressor's power dissipation, the small size of

the IDT and of the surrounding control logic does not rise major

concerns.

6 Conclusions

We have presented a method for improving the energy e�ciency

of instruction fetch for embedded processors. Our approach is

based on the selection of a \dense subset" of the instructions of

a program, derived by evaluating their relative occurrence. The

instructions in this subset are encoded with 8-bit patterns and

stored in memory instead of the original (32-bit) instructions;

in this way, memory bandwidth is reduced, and so is the energy

required to execute the program. Program execution time may

also get shorter as a side, yet positive e�ect.

The proposed scheme does not require any modi�cation of the

processor, since it always executes full-size instructions. This

result is achieved by interposing an instruction decompressor

between the processor and the instruction memory. We have

introduced four hardware architectures for instruction decom-

pression with di�erent complexity and performance. To demon-

strate the feasibility of our solution we have also implemented

and simulated one of such architectures; for the experiment, a

simpli�ed version of the DLX processor has been used. Experi-

mental results, obtained on a set of test programs indicate that

good energy savings can be obtained. The cost in power and

performance of the decompression block, as well as the trade-

o�s involved in the selection of the size of the decompression

table are currently under investigation.

References

[1] E. Macii, M. Pedram, F. Somenzi, \High-Level Power Modeling,

Estimation, and Optimization," IEEE TCAD, Vol. 17, No. 11,

pp. 1061-1079, Nov. 1998.
[2] C. L. Su, C. Y. Tsui, A. M. Despain, \Saving Power in the Con-

trol Path of Embedded Processors," IEEE Design and Test, Vol. 11,

No. 4, pp. 24-30, Winter 1994.
[3] M. R. Stan, W. P. Burleson, \Bus-Invert Coding for Low-Power

I/O," IEEE TVLSI, Vol. 3, No. 1, pp. 49-58, Jan. 1995.
[4] L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano, \Asymp-

totic Zero-Transition Activity Encoding for Address Busses in Low-

Power Microprocessor-Based Systems," GLSVLSI-97, pp. 77-82,

Mar. 1997.
[5] L. Benini, G. De Micheli, E. Macii, M. Poncino, S. Quer, \Reducing

Power Consumption of Core-Based Systems By Address Bus Encod-

ing," IEEE TVLSI, Vol. 6, No. 4, pp. 554-562, Dec. 1998.
[6] E. Musoll, T. Lang, J. Cortadella, \Working-Zone Encoding for Re-

ducing the Energy in Microprocessor Address Buses," IEEE TVLSI,

Vol. 6, No. 4, pp. 568-572, Dec. 1998.
[7] L. Benini, A. Macii, E. Macii, M. Poncino, R. Scarsi, \Synthesis

of Low-Overhead Interfaces for Power-E�cient Communication over

Wide Buses", DAC-36, Jun. 1999.
[8] S. Wuytack, F. Catthoor, L. Nachtergaele, H. De Man, \Global

Communication and Memory Optimizing Transformations for Low

Power Design," IWLPD-94 pp. 203-208, Apr. 1994.
[9] P. R. Panda, N. D. Dutt, \Reducing Address Bus Transitions for

Low Power Memory Mapping," EDTC-96, pp. 63-67, Mar. 1996.
[10] P. R. Panda, N. D. Dutt, \Low Power Mapping of Behavioral

Array to Multiple Memories," ISLPED-96, pp. 289-292, Aug. 1996.
[11] J. P. Diguet, S. Wuytack, F. Catthoor, H. De Man, \Formalized

Methodology for Data Reuse Exploration in Hierarchical Memory

Mappings," IEEE TVLSI, Vol. 6, No. 4, pp. 529-537, Dec. 1998.
[12] S. Segars, K. Clarke, L. Goudge, \Embedded Control Problems,

Thumb and the ARM7TDMI," IEEE Micro, Vol. 15, No. 5, pp. 22-

30, Oct. 1995.
[13] Y. Yoshida, B.-Y. Song, H. Okuhata, T. Onoye, I. Shirakawa,

\An Object Code Compression Approach to Embedded Processors,"

ISLPED-97, pp. 265-268, Aug. 1997.
[14] S. Y. Liao, S. Devadas, K. Keutzer, \Code Density Optimization for

Embedded DSP Processors Using Data Compression Techniques,"

IEEE TCAD, Vol. 17, No. 7, pp. 601-608, Jul. 1998.
[15] H. Lekatsas, W. Wolf, \Code Compression for Embedded Systems,"

DAC-35, pp. 516-521, Jun. 1998.
[16] L. Benini, G. De Micheli, A. Macii, E. Macii, M. Poncino, \Reducing

Power Consumption of Dedicated Processors Through Instruction

Set Encoding," GLSVLSI-98, pp. 8-12, Feb. 1998.
[17] J. L. Hennessy, D. A. Patterson, Computer Architecture - A Quan-

titative Approach, II Edition, Morgan Kaufmann Publ., 1996

[18] Mississippi State University, Micro-Systems Prototyping Lab., \The

DLX Processor Core," http://WWW.ERC.MsState.Edu/mpl, 1998.

	Main Page
	ISLPED'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

