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ABSTRACT
While guarded evaluation has proven an effective energy saving
technique in arithmetic circuits, good methodologies do not exist
for determining when and how to guard for maximal savings.
Three new internal guarding techniques are presented in adders
that increase energy savings up to 38% over existing external
guarding techniques. This allows guarded evaluation to be effec-
tive at duty cycles as much as 20% higher than are currently prac-
tical. A modeling methodology is presented defining the energy
and energy delay of a unit in a generic application space. These
models can easily be incorporated into an automated selection
technique to determine the optimal guarded implementation. This
technique is tested on a DSP ASIP, increasing overall energy
savings by preventing unnecessary guarding. The data is general-
ized and it is observed that guarding is most beneficial when the
ratio of guarding transistors to driven computational transistors is
1/10 or lower.
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1. INTRODUCTION
Guarded evaluation has proven to be a viable technique for the
reduction of power consumption in arithmetic circuits, but no
solid methodology exists to determine where and how to guard
functional units to maximize energy savings. Previous work fo-
cused in two distinct directions. The first, dealing with large
blocks of synthesized logic, focused on synthesizing guarding or
precomputation logic in a way that minimizes the overhead of the
technique[9]. The second, dealing more with arithmetic datapath
blocks, has dealt with the insertion of guarded functionality as an
afterthought to the design process[2][8]. Guards are inserted in
front of idly transitioning components, meaning the full overhead
of the guard and controlling logic must be incurred. This work
seeks to marry both approaches by incorporating guarding func-

tionality in datapath library components.

By incorporating guarding logic into the functional unit, it be-
comes possible to create more compact designs while reducing the
overhead of guarding itself. Increasing energy savings allows
guarded units to be used in situations where existing techniques
prove ineffective. A methodology is developed to determine the
best guarding technique in a generic application space defined by
active and idle behaviors of a given functional unit. This method-
ology suggests an automated selection process, removing the
where and how guesswork from the guard insertion process. Re-
sults of this modeling and selection process are measured in a
DSP ASIP. While previous work has looked at determining when
it is worthwhile to use guarding or precomputation in large blocks
of random logic[9], we have seen no work in this area specifically
targeting major datapath elements.

Finally, the data is generalized to other functional units by exam-
ining the tradeoffs between the cost of guarding and the combina-
tional depth of the functional logic.

2. GUARDING METHODOLOGY
Two techniques for guarding functional units in datapaths are the
insertion of latches or gates with controlling values (AND, NOR,
etc.) onto the input wires. Latches provide a way to freeze current
input values, preventing any spurious transitions from occurring.
Gates allow the input values to be forced and held at some level,
but one extra computation takes place as the inputs settle to the
controlled value. In spite of the extra calculation, gates can be
desirable in some cases, as their area and capacitance overhead is
lower than a latch.

While latches and gates are typically placed externally to a func-
tional unit, it is possible to use existing arithmetic circuitry to
implement part of the guard functionality. This work devised three
internal guard mechanisms, and built them into existing library
cell adders.

The first method, called internal latch, locks the value on the
adder output and severs all Vdd to GND paths inside the adder.
The second method, called float, severs the internal Vdd to GND
connections and uses gate capacitance to hold the outputs at the
present value. The final method, called internal gate, forces the
outputs to 0 and severs all internal Vdd to GND connections.

Each of the methods uses two techniques to reduce design power.
First, holding the outputs at a constant value prevents downstream
dynamic power consumption. Downstream logic is unable to tell



if the unit is guarded internally or externally. The second part is
the severing of Vdd to GND connections. While externally ap-
plied guarding techniques freeze the input logic values, this is
impractical for internal techniques. Since input wires fan out to a
large number of transistors, it becomes difficult to incorporate
those same transistors in holding their gates at any particular
level. Using pull up or pull down transistors to hold the inputs at a
given logic level can be excluded, as the static current contribu-
tion is likely to outweigh the savings in reduced transitioning.

The most efficient solution appeared to be the removal of the Vdd
to GND paths of transistors not used in the guarded state of the
adder. This removes the dynamic power contribution of transistors
and wires inside the guarded unit, although the gate capacitance
of transistors controlled directly by the input wires remains un-
changed.

2.1 Internal Guarding in a RCA
A ripple carry adder (RCA) can be used to demonstrate the
changes made to basic computational logic by adding internal
guarding techniques. This example is based on a 1-bit RCA as
implemented in Cascade’s hp14b library[4], which is based on a
.6µm process from Hewlett Packard.

Figure 1 shows how the existing logic in a 1-bit RCA can be used
to implement guarded functionality for both the internal latch and
float techniques. The float method is implemented by adding cut-
off transistors, shown in the figure with a striped gray back-
ground, to the existing logic. These transistors are controlled by
guard and guard-bar signals, and prevent charge leakage on the
wires that drive the two output inverters. Charge leakage may
become a problem when using this method and this can severely
effect energy savings.

To create the internal latch adder, all of the cutoffs are inserted as
well as the transistors shown with the solid gray backgrounds. The
cutoffs serve the same purpose as in the float implementation,
while the remaining transistors form a latch to hold the outputs at
the present level. Note that the output inverters form half of the
latches’ cross-coupled inverters.

The equivalent functionality implemented with external latches
requires the addition of three latches on the first bit and two on
every bit thereafter. The area cost of using one of these two inter-
nal techniques will be lower than the external latching. Depending
on the implementation, all of the cut off transistors can be merged
into single NMOS and PMOS transistors. The cutoff will effect
the delay of the circuit, but the impact should be small and man-
ageable through proper transistor sizing. The area and delay pen-
alties for our RCA examples are shown in Table 1, but it should
be noted that minimal effort was put forth optimizing either of

these aspects in the internally guarded designs. The guarded func-
tionality was inserted into the original library parts with no func-
tional redesign or resizing of transistors. Even with this minimal
redesign effort, the area penalties for the internal methods are
significantly lower than the corresponding external implementa-
tions. Because the transistors were not resized however, the delay
penalty is greater.

Figure 2 shows the implementation of the internal gate method.
The transistors with the solid gray background force the outputs to
0, while the transistors with the striped gray background prevent
charge from flowing to GND. The equivalent implementation
using external gates requires the addition of AND gates on the
inputs, three on the first bit and two on each bit thereafter. The
impact on speed and area will be smaller here than in the previous
two methods.

While this same functionality could be implemented with NAND
gates, this would cause the adder inputs and outputs to go to all
1s, and would likely cause a larger number of transitions in the
settling downstream logic, than an output of all 0s would. NOR
gates could be used to force the adder outputs to all 0s, but require
a different value for the guard signal than is used for latches in
this library, meaning designers could not simply “swap in” the
part without changing control logic.

Similar work was done on the other two adders in the hp14b li-
brary, a carry select and a carry lookahead adder. For all three
types of adders, 8-bit versions of each of the discussed guarding
possibilities were constructed from the baseline or unguarded
adder: internal latch, float, internal gate, external latch, and ex-
ternal gate. For the RCA, 64-bit versions were created for each
guarding possibility. The carry lookahead adder also had 4 64-bit
versions built, the baseline, both external guarding techniques,
and the internal gate. No 64-bit versions of the carry select adder
were built since it consisted of RCA and mux cells, and behaved
very similarly to the RCA adder.

3. ASSESSING ENERGY CONSUMPTION
The effectiveness of a guarding technique can be measured by
comparing the positive and negative contributions. Positive con-
tributions arise from the reduction of transitions in the guarded
logic, which lowers switched capacitance in the design. Negative
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Figure 1. Internally guarded RCA. Dotted boxes show cutoff
transistors of the float method. Adding transistors in dashed

boxes as well creates the internal latch method.

Adder Area Penalty Delay Penalty

Unguarded 0% 0%
External gate 155% 0%
Internal gate 26% 19%

External Latch 182% 8%
Internal Latch 83% 69%

Float 31% 38%
Table 1. Area and Delay Penalties in a RCA
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Figure 2. Internal gate guarded RCA. Transistors in the
dotted boxes force the outputs to 0 while those in the dashed

circles cut off internal GND paths.



contributions are due to additional interconnect and transistor
requirements and the additional switched capacitance of the
guards themselves during unguarded cycles. Controlling the
guards also adds a negative contribution, but this is not measured
in our experiments. Although some overheads vs. savings com-
parisons are made in [8], they are over a specific application
space. Here, the measurements are designed to model a generic
application space.

When guarding functional units, there are two main factors to
consider. First is the duty cycle of the unit, or what percentage of
time the unit does useful work. Second is the guard cycle of the
unit, or how many consecutive cycles it remains idle. Just know-
ing the duty cycle is not enough, as a 50% duty cycle can repre-
sent a calculation performed every other cycle or 10 busy cycles
followed by 10 idle ones. Various guarding techniques perform
differently under each duty/guard cycle combination.

In our experiments, 1000 vectors were simulated using Star-Sim
running in ACS mode [7] and the average energy measured over a
variety of duty and guard cycle combinations. The first experi-
ment was performed on the 8-bit adders, attempting to determine
at what guard cycle each particular guarding technique became
effective when performing only one useful computation. The sec-
ond round of experiments measured the energy consumption of
the 64-bit adders for duty cycles ranging from 50% to 100% with
guard cycles of 1 to 5 consecutive idle cycles. The power lines on
these adders were separated to allow measurements to be made on
a variety of adder widths. These experiments determine which
implementations perform best under various conditions, and cre-
ate energy surfaces, allowing for automated selection of guarding
techniques in datapaths.

3.1 Guarding Low Duty Cycles
The first set of experiments attempts to determine the number of
consecutive idle cycles required before a guarded implementation
becomes beneficial. Low duty cycle activities characterize the
behavior of units such as rounders, which may only be used fol-
lowing a long period of calculation at some internal bit width,
before sending the result to the outputs. Results were measured
for the 8-bit RCA, carry select, and carry lookahead adders. The
x-axis uses a log scale to show the guard cycle of the adder. Val-
ues on the x-axis can be translated to duty cycles by 1/x+1.

For the RCA shown in Figure 3, all of the guarding schemes are
beneficial beyond a guard cycle of 2, with only the gated methods
consuming more power than the unguarded adder until that point.

This occurs because of the additional computation performed
when the gates force the adder inputs to the controlled value,
causing a situation not unlike the unguarded adder. The curves for
the two gated and two latched methods are almost identical in
shape, but the internal methods provide additional savings of 25%
and 8% respectively over their external counterparts. While the
float method begins as the most beneficial method due to its low
overhead, when guard cycles become sufficiently long, its power
consumption increases as the wire capacitance can no longer hold
the charge required to keep the inverters at full strength. Although
not shown here, the carry select adder behaved in a similar man-
ner, but the savings of the internal gate over the external gate
method was 38%. In the carry lookahead adder, the internal meth-
ods have behavior much closer to the external methods. The in-
ternal latch actually had higher power consumption than the ex-
ternal latch because more transistors are required to latch the
adder internally as opposed to externally. The internal gate sav-
ings were a few percentage points higher than the external gate.

One theme throughout these experiments is that gated methods
consume less energy than latched methods as the guard cycle
increases. When latches are used as guards, no spurious transi-
tions are seen in the adder, while gates cause an additional com-
putation. But gates have a smaller capacitive overhead, so less
capacitance switches as the data toggles on the uncontrolled input.
As the guard cycle increases, the additional computation becomes
less important than the capacitance of the guard, and the gated
methods prove more efficient.

3.2 Guarding High Duty Cycles
It is apparent that guarding a single calculation at duty cycles
below 50% is generally beneficial, but information is still needed
about more active units. This set of experiments examines the
effects of guarding duty cycles ranging from 50% to 100% when
holding the guard cycle constant at 5 cycles. Experiments were
conducted on the 64-bit RCA and carry lookahead adders with
separated power lines. Duty cycles appear on the horizontal axis.
The unguarded adder creates a horizontal line since it performs
the same number of additions regardless of the true duty cycle.

The data for an 8-bit RCA is shown in Figure 4. Even at higher
duty cycles, gated techniques prove to be superior to the latched
ones, with the internal gate method proving to be viable up to an
85% duty cycle. The performance of the internal gate is about
20% better than that of the external gate. While the two latched
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methods have roughly the same performance, the float version
provides identical behavior at 20% energy savings, keeping it a
viable guarding mechanism beyond the 75% duty cycle. Both
external methods and the internal latch only save energy for duty
cycles below 60%.

Figure 5 plots the same data, but for a 64-bit RCA. The shape of
the curves are similar, but are shifted upwards rather significantly.
For the 8-bit adder, all of the guarding mechanisms are useful at
the lower duty cycles, but at 64 bits, only two of the internal ver-
sions are ever useful, and even they become ineffective at duty
cycles above 60%. The difference here is due to the distribution of
the guard signal over the entire functional unit. This cost is most
evident from the decrease in energy consumption going from a
duty cycle of 99% to 100%. At the 100% point, the guard line
never transitions.

The more complex logic of the carry lookahead adder yields very
different results when examining the viability of the three imple-
mented guarding schemes at the higher duty cycles. Whereas the
gated techniques always outperformed latched ones in the RCA,
the latched scheme proves slightly better at lower duty cycles for
the carry lookahead adders. At this level of logic complexity and
activity, the extra calculation cannot be amortized away and the
unit is inactive enough that the higher capacitance of the latch is
not detrimental. The gated schemes regain their superiority around
the 60% duty cycle, but maintain only a slight edge until becom-
ing useless at duty cycles above 85%. The internal gate method
increases savings by a few percent over its external counterpart.
There is little difference in the shape or crossover points on the
curves when moving from 8 to 64 bits, so only the 64-bit data is
shown in Figure 6.

4. CREATING ENERGY SURFACES TO
AUTOMATE GUARD STYLE SELECTION
The previous set of experiments explored a range of duty cycles
while keeping the guard cycle constant. In reality, guard cycles of
adders in various applications cover a range of values, just like the
duty cycle.  By varying both duty cycles and guard cycles, an
energy consumption surface, rather than line, can be derived for
each adder implementation.

4.1 Energy Surfaces and Automating Guard
Style Selection
Energy surfaces were created by experiments conducted on 64-bit
adder implementations over duty cycles of 50% to 100% and
guard cycles ranging from 1 to 5 consecutive cycles. These ex-
periments create several planes in the experimental design space,
one for each adder implementation. The unguarded adder plane
cuts horizontally across this space, just as the unguarded adder
line horizontally bisected the two dimensional space in Figure 5
and Figure 6. The various guarded energy planes each have some
slope to them and cut across the unguarded plane at various
points, creating a figure too complex to display here.

From these intersecting planes, a minimum energy surface can be
created in that design space. At each coordinate point (guard cy-
cle, duty cycle), the Z value is set to be the lowest energy value
seen across all the adder implementations. A table lookup associ-
ates each point (guard cycle, duty cycle) to the minimum energy
implementation. This suggests an easy way to automate the selec-
tion of the best implementation. Guard and duty cycles can easily
be determined by examination of the applications.

When inserting guards into a datapath, it is important to consider
the delay introduced by the guards. In order to take this into ac-
count, minimum energy delay (ED) [5] surfaces, rather than
minimum energy surfaces, are used. This tempers the energy sav-
ings of the guarding implementation with any increases in the
delay of the critical path of the circuit.

5. EXAMPLE: A MOTOROLA DSP56K
SUBSET
To demonstrate the guard selection process, an 11 instruction
processor based on the Motorola DSP56000 ISA [3] was built.
The design contains three adders, all of the carry lookahead type:
a 16-bit address adder, a 56-bit accumulator, and a 33-bit rounder.
The processor is capable of running three typical applications: a
4-tap FIR filter, 64-tap FIR filter and an adaptive LMS filter[1].
Each application places very different access patterns on the add-
ers as shown in Table 2. Guard and duty cycles are easily derived
from the assembly code or functional simulations of the DSP.
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kahead adders with a guard cycle of 5.
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Figure 7 shows the minimum ED surface used to select the best
implementation for the 16-bit address adder. The usage patterns of
the two FIR programs both lie in the flat region of the plane,
which corresponds to the unguarded adder. This is not surprising
since the adders are in almost constant use (duty cycles of 85%
and 98%) and only idle for a single cycle. The 58% duty cycle and
2 clock period guard cycle data point of the LMS program lies on
the sloped portion of the plane, at a point corresponding to the
external latch method. Designers can apply knowledge as to the
likelihood that each type of program will be executed to determine
which of the two methods is likely to be best. In the absence of
designer intervention, the decision can be made by which method
is most frequently chosen as the best.

The same methodology can be applied to the 56-bit accumulator
using the minimum ED surface in Figure 8. While the behavior in
the 64-tap FIR lies at a point where the unguarded adder is the
lowest ED choice, the 4-tap FIR and LMS both have behaviors
that lie on the sloped region of the surface at points that corre-
spond to the external latch method. The rounder will also benefit
from guarding, but the points lie off the edge of the graph. By
extrapolating the data, the external latch method is the best im-
plementation for this adder.

The effectiveness of the predictions was measured by implement-
ing two versions of the DSP ASIP, one with guarded adders and
the other without. Both designs were built using a standard cell
design flow through place and route. Back-annotated capacitance
and design information was used with the gate level design to

calculate energy. Estimations were made using an in house tool
based on transition counting[6]. The results of this comparison are
presented in Figure 9.

The topmost pair of columns shows the total energy consumption
of all three adders over all three applications. Within the columns
are breakdowns for each adder and any guarding latches if pres-
ent. The remaining three pairs of columns show the results for
each individual program.

Looking at the address adder energy, the technique correctly pre-
dicted the adder should not be guarded in either of the FIR pro-
grams. In the actual designs, guarding this adder increases energy
consumption by 13% and 3% for the 4-tap and 64-tap FIR pro-
grams respectively. Only in the LMS application are guard latches
beneficial, which matches the predictions. For the accumulator,
the predictions were correct 2 out of 3 times. In the 64-tap FIR,
the best adder was predicted to be the unguarded one, but there is
an 8% saving when comparing the two designs. In the case of the
rounder, the external latch implementation was picked to save
energy in the design and the results confirm the prediction. Using
the ED surfaces to select the best implementation would have
prevented the energy losses from guarding the address adder.

6. GENERALIZING TO OTHER DATA-
PATH UNITS
The lessons learned working with adders can be extended to other
datapath logic if the cost of guarding is thought of in terms of the
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number of transistors required to guard an input as compared to
the number of transistors driven by the input. Figure 10 illustrates
this point. It displays the energy savings for the modeled adders
normalized by the bit width of the unit. The energy savings are an
average over all measured guard cycles with a 50% duty cycle.
The x-axis is the ratio of the number of transistors needed to
guard an input to the average number of transistors driven by the
inputs. The number of driven transistors includes those directly
driven by the input lines as well as the transistors they drive, and
so on. Each point on the line represents a different bit width ad-
der.

There is a clear trend of decreasing savings as the overhead of the
guarding logic increases. Two interesting features appear in the
lines besides the overall trend. The peak in the curves of the
RCAs is caused by the cost of distributing the guard signal over
long distances. In the carry lookahead adders, this cost was
masked by the more complex logic, but is quite apparent here.
Around a ratio of .12 however, this effect begins eating away the
savings from reduced transitioning, becoming more devastating as
width increases. When moving to other functional units, the dis-
tribution cost must be weighed against the complexity of the
arithmetic logic it is being delivered to.

The second feature, a sharp savings decrease at the right side of
the curve, appears in the externally guarded carry lookahead im-
plementations. This drop off corresponds with smaller bit widths,
suggesting there is a minimum bit width necessary to get maximal
benefits from guarding. The leveling off point here appears
around ratios of .1 and .2, which corresponds to about 12 bits.
The drop off is greatly reduced in the internally guarded method.

Similar graphs were created for other duty cycles, and while the
shapes of the curves remain fairly constant, their positioning var-
ied. Higher duty cycles caused the curves to shift down, since
energy savings decreased. Relative positions also changed, with
external techniques falling faster than their internal counterparts.
Latched techniques tended to have a faster loss rate, and at higher
duty cycles ended up with less savings or greater losses than the
gated methods, having fallen prey to the higher capacitance of the
latches.

Overall, the best results come when the ratio of guarding logic to
computational logic is less than about 1 guard transistor for every
10 driven computational transistors.

7. CONCLUSIONS
This work has presented a new approach to implementing guarded
evaluation in major datapath elements through the incorporation
of the guarding functionality into the computational logic of li-
brary cell functional units. Three different internal implementa-
tions are presented and evaluated in adders. These techniques
reduce the overhead of guarding by incorporating it into the func-
tional logic. The reduction in overhead brings with it an overall
energy savings of up to 38% over comparable external guarding
methods. This allows guarded evaluation to remain a viable en-
ergy saving technique at duty cycles up to 20% higher than are
practical for external guarding techniques.

A modeling methodology is presented that allows energy and ED
characteristics of a generic application space to be defined in
terms of functional unit usage and idle patterns. Based on models
of the various guarding techniques in RCA, carry select, and carry
lookahead adders, an automated technique for selecting the opti-
mal guarding style is proposed. Selections are based on guard and
duty cycle characteristics of target applications, removing the
guesswork as to which style of guarding will maximize energy
savings in the design. The selection technique was tested on a
DSP ASIP, and proved to be effective 89% of the time, allowing
overall energy savings to be increased.

The modeling is generalized to other functional units by looking
at the overhead of guarding to functional logic depth. It was found
that guarding is most beneficial when the ratio of guard transistors
to driven computational transistors is below 1/10.
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