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Abstract

In this work we propose an exact technique for e�cient com-
putation of signal statistics during high-level synthesis for
low-power of general control-dominated designs. Our ap-
proach does not require iterative simulation: simulation is
performed once for all to collect boundary information that
will be repeatedly exploited for computing signal statistics
for alternative implementations.

1 Introduction

Advanced RTL power estimation techniques rely on activity-
based macro-models [2, 3, 4] whose evaluation requires the
computation of input-output switching activity and signal
probability (hereafter called boundary statistics, for brevity)
for all leaf cells in a design. Boundary statistics are usually
computed by performing RTL simulation, that is the most
time-consuming step in the estimation process.

Even though RTL estimators may provide power dissi-
pation estimates early and fast enough for designs speci�ed
directly at the register-transfer level, this approach is not
fully satisfactory for design styles based on high-level syn-
thesis. High-level synthesis can be seen as the process of au-
tomatically generating an optimized (for speed, area, power)
RTL description of a design speci�ed at the behavioral level.
The main steps in high-level synthesis are resource alloca-
tion, scheduling and binding [1]. If we want to use a RTL
estimator to drive high-level synthesis for low power, we
need to follow an iterative process that generates several
alternative RTL implementations from a given behavioral
speci�cation, estimates power consumption for each one of
them, and chooses the best. Clearly, this process is ine�-
cient, because it requires iterated RTL simulation to collect
boundary statistics for each implementation.

In this paper we propose a technique for reducing the
number of simulations required during high-level synthe-
sis for low power. We perform simulation of the design
after scheduling and before resource binding. Simulation
data are collected in a data structure that allows us to to
compute boundary statistics for every possible bindingwith-
out re-simulation. No approximations are made: boundary
statistics returned by our computation are exactly the same
provided by cycle-accurate RTL simulation performed after
binding. This is the main contribution of the paper, that

di�erentiates our approach from previously proposed high-
level estimation techniques for control-dominated circuits.

2 Background

The starting point for high-level synthesis is a HDL descrip-
tion compiled into a data structure known as control-data

ow graph [1]. The nodes in the CDFG represent operations,
and the edges represent control and data dependencies. We
use the notation adopted in [11]: data dependencies are rep-
resented by solid arcs, while control dependencies are rep-
resented by dashed arcs. Additional nodes (colored in gray
in our representation) are used to model control 
ow (end
of a computation, loop or conditional closing). Examples of
CDFGs are shown in Figures 1 (pure data 
ow graph) and 2
(control-data 
ow graphs).

We assume a high-level synthesis 
ow that �rst per-
forms resource allocation, then scheduling and �nally re-
source binding. During resource allocation, the number and
the type of functional macros that can be used to imple-
ment the operations in the CDFG is set. Scheduling creates
a partial order among operations. The CDFG is levelized
and every node is assigned to one level. Levels correspond
to clock cycles when operations are executed. Two oper-
ations assigned to the same level will be executed concur-
rently in the �nal implementation. Finally, resource binding
associates every node in a CDFG to a functional macro. Re-
source binding is sometimes called sharing because several
operations can share the same macro. After scheduling and
sharing, we know when each operation will be executed and
by which functional unit, and we can generate a RTL de-
scription of the circuit.

One of the main challenges in high-level synthesis for low
power is how to compute the cost metric that drives opti-
mization. Some early approaches [5, 6, 7] adopted a simple
constant power model, which assumes that every time a new
input pattern is supplied to a functional macro M, a con-
stant amount of energy EM is dissipated. If a functional
macro is shared among several operations Op1; : : : ;OpN ,
and each operation OpI executes Neval(OpI ) times, then
the total energy consumed by the macro over the set of pat-

terns is ETOT
M

= EM
PN

I=1
Neval(OpI). Since Neval(OpI)

can be computed by simulating the CDFG once for all be-
fore high-level synthesis, ETOT

M
can be statically computed

for any binding alternative. Unfortunately, the energy con-
sumption of a functional macro is not a constant, but it is
strongly dependent on its boundary statistics. Several re-
searchers have pointed out the lack of accuracy of the con-
stant power model, and have proposed more accurate power
models for functional macros [2, 3, 4]. Pattern-dependent
macro-models have the general form E(�), where E is a



function determined by characterization, and � is some com-
pact representation of boundary statistics.

Pattern-dependent macro-models are much harder to use
during high-level synthesis than the constant model. In fact,
resource binding can drastically change boundary statis-
tics, thus making it impossible to compute total power as
a weighted sum of constant contributions. One obvious so-
lution to this problem is to perform simulation of the in-
put pattern set for every candidate solution generated by
high-level synthesis after binding. Simulation has complex-
ity O(K � Nop). Hence, evaluation of many candidate so-
lutions may be too slow if K is large (and it should be
large to obtain meaningful boundary statistics). Several
techniques have been proposed to bypass iterative simula-
tion [8, 9, 10, 11, 12]. All these techniques are based on the
same basic idea: simulation is performed before binding, but
transition activities and signal probabilities are stored in a
data structure that contains information on how boundary
statistics change with di�erent bindings. Whenever a new
binding is generated by synthesis, boundary statistics are
e�ciently extracted from the data structure, without the
need of time-consuming re-simulation.

The main limitation of all previously proposed techniques
is that they can accurately compute boundary statistics with-
out iterated simulation only for data-dominated designs,
with simple conditionals and no loops. For control-dominated
designs, boundary statistics computation is either impossi-
ble or approximate. The technique described in the next
section fully overcomes this limitation, and it allows us to
compute exact signal and switching probabilities for every
possible binding without re-simulation.

3 Computing boundary statistics

Our starting point is a CDFG representation of the behav-
ioral speci�cation after scheduling and before resource bind-
ing. We also assume the existence of a pattern set SK of
K consecutive input vectors, which represent typical input
stimuli for the target design. Boundary statistics compu-
tation is based on a single simulation of the CDFG with
SK input vectors. Simulation of the CDFG is performed by
propagating input stimuli through the nodes (representing
operations), following edges dependencies. During simula-
tion, nodes in the CDFG are processed in a total order which
is compatible with the partial order enforced by scheduling.
We call \iteration" the process of propagating an input vec-
tor though the nodes of a CDFG. Thus, each input vector in
SK corresponds to one iteration of the CDFG. Iterations are
identi�ed by a unique iteration index i = 1; 2; : : : ; K. An it-
eration terminates when propagation reaches the sink node
of the CDFG. Notice that a new iteration can begin before
the previous one is �nished, in this case, the CDFG is func-
tionally pipelined. Our task is to collect data during CDFG
simulation in such a way that it will be possible to estimate
boundary statistics for every functional macro that can be
associated to a set of CDFG nodes after resource binding
without repeating the simulation and for any legal binding.

Operations that can be performed by the same shared re-
source (i.e., by the same instance of a functional macro) are
said to be compatible. For the sake of clarity, we will restrict
our analysis to a single class G of compatible operations with
cardinality �. Multiple classes are processed independently,
using the same technique used for the single class case. For
a given pattern set SK, we denote by �(Op1; :::;OpN ) the
boundary statistics of a shared resource performing N oper-
ations Op1, ..., OpN in the order they are written (N � �).
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Figure 1: Example of a data 
ow graph.

We represent boundary statistics by means of average sig-
nal and transition probabilities at the inputs and outputs
of a resource: Pin, Din, Pout and Dout. In this section
we present a static approach to compute the exact values of
Pin(Op1; :::;OpN ), Din(Op1; :::;OpN ), Pout(Op1; :::;OpN )
and Dout(Op1; :::;OpN ) for any ordered set of compatible
operations. Without loss of generality, we refer only to in-
put statistics Pin and Din. Output statistics are of the
same nature and can be computed by applying (with no
modi�cation) the same methods described for input statis-
tics.

3.1 Data-dominated designs

Consider a shared resource M performing operations Op1
and Op2 of the DFG of Fig. 1. We denote by In1 and In2
the streams of bit vectors at the inputs of the two operations.
Each vector of In1 is uniquely identi�ed by an apex, called
evaluation index, that represents its relative position in the
stream. Since in a pure data 
ow graph each operation is
evaluated once per iteration, the evaluation index is equal
to the iteration index. Pattern Ini1 is the concatenation of
the values of A and B at the i-th iteration, pattern Ini2 is
the concatenation of the values of n1 and C at the same
iteration. During data-path evaluation, patterns from In1
and In2 alternate at the inputs ofM, generating a new input
stream with statistics Pin(Op1;Op2) and Din(Op1;Op2),
that can be directly computed from the data stream during
DFG simulation:

Pin(Op1;Op2) =
1
K

PK

i=1

jjIni
1
jjH+jjIni

2
jjH

2BW
(1)

Din(Op1; Op2) = 1
2K�1

(
dH (InK

1
;InK

2
)

BW
+

PK�1

i=1

dH (Ini
1
;Ini

2
)+dH (Ini

2
;In

i+1

1
)

2BW
) (2)

In the equations above, K is the number of primary input
patterns, BW is the number of inputs of Op1 and Op2, jjxjjH
is the Hamming measure of x (i.e., the number of ones in x),
dH(x1; x2) is the Hamming distance between x1 and x2 (i.e.,
the number of bit di�erences), and apex i is the evaluation.
We observe that Equation 1 can be rewritten as:

Pin(Op1;Op2) =
Sc(In1) + Sc(In2)

BW (Neval(Op1) +Neval(Op2))
(3)

where Sc(In1), hereafter called signal count of In1, is the
total number of ones in stream In1 (in symbols, Sc(In1) =PNeval(Op1)

i=1
jjIni1jjH). Similarly, we can express Din as:



Din(Op1;Op2) =
Tc(In1; In2) + Tc(In2; In1)

BW (Neval(Op1) +Neval(Op2)� 1)
(4)

where Tc(In1; In2), hereafter called toggle count of In1In2,
is the total number of input transitions observed when switch-
ing from a pattern of In1 to the subsequent pattern of In2
(Tc(In1; In2) =

PK

i=1
dH(In

i
1; In

i
2)).

Neval and Sc are �rst-order counts, since they are prop-
erties of single input streams, Tc is a second-order count,
since it is a property of a pair of input streams. Equations 3
and 4 show that Pin(Op1;Op2) and Din(Op1;Op2) can be
statically computed from the �rst and second-order counts
of In1 and In2, that, in their turn, can be computed during
simulation.

Example 1 Fig. 1.3 shows a three-pattern simulation for
the DFG of Fig. 1.2. According to the schedule shown in the
DFG, simulation of each input pattern requires 3 c-steps. In
Figure 1.3, rows represent c-steps and horizontal lines de-
note iteration boundaries. For the sake of simplicity, oper-
ations denoted by + are assumed to be module-4 additions
(i.e., the data path has width 2). We want to compute input
statistics for a shared resource M implementing Op2 and
Op3. From the trace we obtain Sc(In2) = 8, Sc(In3) = 6,
Tc(In2; In3) = 8 and Tc(In3; In2) = 4. Since all opera-
tions have Neval = K = 3 and BW = 4, from Equations
3 and 4 we obtain: Pin(Op2;Op3) = 8+6

4(3+3)
= 0:583 and

Din(Op2;Op3) = 8+4
4(3+3�1)

= 0:6.

Equations 3 and 4 can be generalized to compute bound-
ary statistics for any shared resource, based only on �rst and
second order counts:

Pin(Op1; :::;OpN ) =
Sc(In1)+:::+Sc(InN )

BW (Neval(Op1)+:::+Neval (OpN ))
(5)

Din(Op1; :::;OpN ) =

=
Tc(In1;In2)+:::+Tc(InN�1 ;InN )+Tc(InN ;In1)

BW (Neval(Op1)+:::+Neval (OpN )�1)
(6)

The rationale behind the two equations is intuitively
clear. Pin is computed as the ratio between the total num-
ber of ones at the inputs of the shared resource, divided by
the total number of bits in the composed input stream. Din
is the ratio between the total number of switching bits (com-
puted as the sum of pair-wise contributions) and the total
number of transitions. Equations 5 and 6 actually provide
a constructive proof of the following theorem.

Theorem 1 Given a scheduledDFG and a workload, bound-
ary statistics can be statically computed for any binding so-
lution using only �rst-order counts of nodes in the DFG and
second-order counts of pairs of compatible operations. First
and second-order counts are computed during behavioral sim-
ulation of the DFG with the target workload.

To understand the meaning of Theorem 1, remember
that there are � compatible operations in class G. The num-
ber of possible sharing alternatives is 2��1, while the num-
ber of �rst-order counts to be collected during simulation is
linear, and the number of second-order counts is quadratic
in �. We store �rst-order counts in two integer arrays of
size � (Neval[] and Sc[]), and second-order counts in a
matrix of integers with size � � � (Tc[][]). Values in the
data structures are incrementally computed during the be-
havioral simulation run performed before binding. This is a

worst-case O(�2�K) operation whose complexity is greater
than that of a single simulation run O(��K), but is much
smaller than that of repeated simulations for each possible
binding, which is O(2����K). It is also worth noting that
data structure updates are usually much faster than simula-
tion steps. Hence, data structures can be easily constructed
during simulation.

Example 2 Data structures Neval[], Sc[] and Tc[][] are
shown in Fig. 1.4 �lled with the values computed from the
simulation trace of Fig. 1.3. According to Equations 5 and
6, we use the pre-collected data to compute input statistics
for a shared resource implementing all compatible operations
Op1, Op2 and Op3.

Pin(Op1;Op2;Op3) =
Sc[1]+Sc[2]+Sc[3]

BW (Neval[1]+Neval[2]+Neval[3])
= 0:528

Din(Op1;Op2;Op3) =
Tc[1][2]+Tc[2][3]+Tc[3][1]

BW (Neval[1]+Neval[2]+Neval[3]�1)
= 0:531

Notice that only table lookup's and algebraic computation
have been performed to compute the exact input statistics
for the shared resource.

3.2 Control-dominated designs

Equation 5 of Section 3.1 is completely general: it can be ap-
plied without modi�cation to arbitrary CDFGs to compute
signal probabilities (Pin) at the inputs of shared resources.
On the contrary, Equation 6 relies on the implicit assump-
tion that the input stream of a shared resource can be ob-
tained by interleaving the input streams of the operations it
implements, taken in a �xed order. This assumption is al-
ways veri�ed for DFGs without control, but it does not hold
any longer for arbitrary CDFGs. In fact, if the execution
of (some of) the compatible operations to be implemented
by the same resource is conditioned to the run-time value of
some input or internal signal, the way the input patterns of
each operation alternate at the inputs of the shared resource
may change dynamically.

Example 3 Fig. 2.a shows a simple CDFG together with
its behavioral speci�cation, simulation trace and counts. Eval-
uation of Op3 is conditioned to the values of primary in-
put C and internal signal n1: only when n1 > C operation
Op3 is evaluated. This is clearly illustrated by the simula-
tion trace of Fig. 2.a.3: in iteration 2 Op3 is not evalu-
ated since n1 = 2, C = 3, n1 < C. The input stream for
a shared resource M implementing Op2 and Op3 would be
In12; In

1
3; In

2
2; In

3
2; In

3
3. The missing pattern In23 brakes the

regular alternation between In2 and In3, giving rise to a
direct transition from In22 and In32 at the inputs of M.

A further example is provided by the CDFG of Fig. 2.b,
where Op2 is within a data-dependent loop. The number of
times Op2 is evaluated at each iteration depends on the pri-
mary input values: it is evaluated once in iteration 1, twice
in iteration 3, while it is not evaluated at all in iteration 2.

In presence of control statements the evaluation index is
no longer equal to the iteration index and di�erent opera-
tions may have di�erent (and multiple) evaluation indexes at
the same iteration. To deal with control-dominated designs
we need, �rst, to generalize the de�nition of Tc(In1; In2).
The toggle count of In1In2 is rede�ned as the sum of the
Hamming distance between all pairs (Ini1; In

j

2) such that:

i) Ini1 precedes Inj2 in the simulation trace, and ii) there

are no patterns of In1 and In2 between In
i
1 and In

j
2 in the

trace.
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Figure 2: Example of CDFGs. (a) CDFG with a conditional statement. (b) CDFG with a data-dependent loop.

Example 4 The extended de�nition of Tc allows us to com-
pute toggle counts for the compatible operations of the CDFG
of Fig. 2.a. For instance, Tc(In2; In3) is the sum of only
two contributions: dH(In

1
2; In

1
3) and dH(In

3
2; In

3
3). Simi-

larly, Tc(In3; In2) = dH(In
1
3; In

2
2). Toggle counts for all

compatible resource pairs are reported in matrix Tc[][] . If
we use Equation 4 to compute input statistics for a resource
M implementing operations Op2 and Op3, we obtain

Din(Op2;Op3) =
Tc[2][3]+Tc[3][2]

BW (Neval[2]+Neval[3]�1)
= 0:375

However, if we compute Din(Op2;Op3) directly from the
trace we obtain a di�erent result: 8=16 = 0:5 6= 0:375.
The di�erence is due to the transition from In22 and In32,
whose contribution (2 switching bits) is not accounted for
by Equation 4. For a similar reason, 6 fails in computing
Din(Op1;Op2;Op3): it provides 0.429 while the actual value
is 0.5. The missing transitions are those from In22 and In31.

The reason why Equations 4 and 6 failed in comput-
ing input activities for the CDFG of Example 4 is two fold.
First, some of the contribution to the overall toggle count do
not appear in the equations. This is the case, for instance,
of the contribution of dH(In

2
2; In

3
2) to Din(Op2;Op3). Sec-

ond, matrix Tc[][] does not retain su�cient information
about the simulation trace. For instance, the only infor-
mation about dH(In

2
2; In

3
2) contained in matrix Tc[][] is

the intra-stream toggle count of In2 (entry [2][2] of ma-
trix Tc) that is the sum of dH(In

2
2; In

3
2) and dH(In

1
2; In

2
2).

While the �rst term has to be accounted for when computing
Din(In2; In3), the second one has not. In fact, In12 and In

2
2

are not consecutive input patterns for the shared resource,
due to the presence of the intermediate pattern In13.

To compute the exact value of Din(Op2;Op3) we should
split the cumulative count Tc(In2; In2) into two partial counts:
Tc(In2; In2j0) and Tc(In2; In2j1). Tc(In2; In2j0) repre-
sents the total Hamming distance between pairs of pat-
terns of In2 having no patterns of In3 in between, while
Tc(In2; In2j1) represents the total Hamming distance be-
tween pairs of patterns of In2 having at least one pattern of

In3 in between. If we assume that such partial counts are
available, Din can be computed as:

Din(Op2;Op3) =
Tc(In2;In2 j0)+Tc(In2 ;In3)+Tc(In3;In2)

BW (Neval(Op2)+Neval(Op3)�1)
= 0:5

Though the previous equation has been obtained ad hoc
for example 4, it contains all the elements to provide a gen-
eral solution to the problem of computing boundary statis-
tics for CDFGs. All we need is to split all pair-wise toggle
counts to retain some information about intermediate in-
put patterns. To this purpose, we de�ne the conditional
toggle count of In1; In2 subject to condition c (denoted by
Tc(In1; Inmjc)) as the partial toggle count Tc(In1; In2) re-
stricted to those pairs (Ini1; In

j
2) satisfying condition c. The

condition we are interested in is the presence of input pat-
terns from other streams between Ini1 and In

j
2. For a set of

� compatible operations, we express condition c as a string
of � Boolean 
ags taking value "1" (present), "0" (absent).
If the k-th Boolean 
ag in c has value \1" then the toggle
count is restricted to pairs of In1, In2 patterns having at
least one pattern of Ink in between. If the k-th Boolean 
ag
in c have value \0", then we restrict toggle count to pairs
In1, In2 patterns that do not have a pattern of Ink between
them.

Example 5 Consider the simulation trace of Figure 2.b.3.
The conditional toggle count of In1, In3 subject to c = 010
is

Tc(In1; In3j010) = dH(In
1
1; In

1
3) + dH(In

3
1; In

3
3) = 3

that is \the total number of transitions between pattern pairs
In1, In3 that have one or more In2 patterns in between".
Notice that we conventionally assign value 0 to the Boolean

ags in c corresponding to In1 and In3 (i.e., the streams for
which conditional counts are computed).

In the following, we use the shorthand notation \�"
(don't care) to compactly represent sets of conditions. For
instance, condition c = 0 � 0 indicates the set of pattern
pairs of In1, In3 that either have or do not have a pattern
of In2 in between.



In principle, all conditional toggle counts could be stored
in a three-dimensional matrix of size �� �� �c, where �c
is the number of di�erent conditions, i.e., the number of
possible con�gurations of c, that is exponential in �. Data
structures of exponential size are usually of little practical
interest. Fortunately, the matrix is extremely sparse in the
third dimension since most conditions are either impossible
or they are never veri�ed in the actual simulation trace.
What we need is an e�cient representation of conditional
toggle counts, allowing us to represent and compute only
signi�cant values.

To e�ciently represent conditional toggle counts we use
a � � � matrix of hash tables, Tc[i][j](c). Entry (i; j)
is a hash table containing all signi�cant conditional toggle
counts of Ini, Inj. Condition c is the hash key. This hy-
brid representation has three main advantages: (i) we do
not need to construct the entire matrix beforehand (the
data structure is initialized as a square matrix of empty
hash tables); (ii) only signi�cant entries are represented
and computed; (iii) conditional toggle counts are incremen-
tally computed during simulation. In practice, Tc[i][j](c)
contains the minimum amount of information required to
compute boundary statistics without repeating simulation.
Most important, the construction of Tc[i][j](c) has the
same worst-case complexity of the construction of the un-
conditioned matrix used for DFG with no control, namely
O(�2 �K).

Example 6 Figure 2.b.5 shows a schematic representation
of a matrix of hash tables containing the conditional toggle
counts computed from the simulation trace reported on Fig-
ure 2.b.3. Notice that Tc has 13 entries that has been com-
puted from a simulation trace consisting of three iterations
(9 evaluations). The construction of Tc required 27 steps.
Now suppose that there are � = 10 compatible resources in
the CDFG, but only Op1;Op2 and Op3 are evaluated in the
three iterations that represent our workload. Though Tc will
be a matrix of 100 hash tables, it will still have 13 signi�cant
entries computed in 27 steps. Incidentally, we remark that
the sum of the entries in each hash table is the unconditioned
toggle count of the corresponding pair of streams.

The last issue to be addressed is how to use conditional
toggle counts to compute boundary statistics. This is done
by the generalized form of Equation 6, expressing the switch-
ing activity for a shared resources implementing N opera-
tions from a class G of � compatible operations:

Din(Op1; ::;OpN ) =

P
N

i=1

P
N

j=i
Tc(Ini;Inj jcij )

BW (Neval(Op1)+:::+Neval (OpN )�1)
(7)

where cij is a string of � symbols, one for each compatible
operation, whose L-th symbol is "0" if and only if OpL is one
of the N operations implemented by the resource, "�" oth-
erwise. The rationale behind this equation is that in CDFG
any pair of operations i and j sharing the same resource
contributes to its input activity whenever a pattern from
Ini and a pattern from Inj are to be evaluated in sequence.
This happens if there are no input patterns of other shared
operations in between.

Example 7 Fig. 3.2 shows how to apply Equation 7 to
compute the switching activity at the inputs of a shared re-
source implementing operations Op1 and Op2 of the CDFG
of Fig. 2.b. Formulas for computing the input activity of a
shared resource implementing all compatible operations are
also shown in Fig. 3.2. Equation 7 leads to exactly the same
results obtained by simulating the input stream.

n3 = n1 * n2;

out = n4 + d;
n4 = a + n1;

n2 = c + d;
n1 = a + b;addA)

addB)

addC)
addD)

n1 = x - y;
n2 = y - x;

  while (x != y)
if ((n1 != x) && (n2 != y)) 

      y = y - x;
    else
      x = x - y;

    if (x < y) 

out = x;
data_valid = 1;a) b)

data_valid = 0;
subA)
subB)

subC)

subD)

cmpA)
cmpB)

cmpC,D)

Figure 4: Behavioral speci�cation of two benchmark designs:
(a) simple data-path computing (a+b)(c+d)+a+d, and (b)
greatest common divisor (GCD) algorithm.

In summary, we showed that exact switching activities
(and signal probabilities) for any resource sharing in general
CDFGs can be computed without re-simulation by storing
data from a single simulation run in a matrix of hash tables.
Data-collection complexity is quadratic in the number of
compatible operations � and linear in the input pattern set
S. Switching activity estimation is performed by simply
evaluating Equation 7.

4 Experimental results and conclusions

The approach described so far has been implemented in C
and linked to Monet, a high-level synthesis and design ex-
ploration tool by Mentor Graphics. A cycle-accurate CDFG
simulator has been developed to perform pre-binding sim-
ulation. The power estimation 
ow can be summarized as
follows. After scheduling, CDFG simulation is performed
only once with a given set of input patterns to construct
the matrix of hash tables. The matrix is then exploited to
compute signal statistics at the boundaries of the functional
units for any alternative binding. Power dissipation in func-
tional units is estimated using pre-characterized LUT power
models [4]. In our experiments, we pre-characterized a set
of functional macros taken from the Monet's library and
synthesized using Synopsys's Design Compiler. An accu-
rate gate-level power simulator (namely, PPP [13]) has been
used to provide reference power values for characterization
and validation. We present results on two case studies: a
data-path without control performing arithmetic computa-
tions, and the greatest common divisor (GCD) algorithm.
Their behavioral speci�cations are shown in Fig. 4. For
each design, allocation and scheduling have been repeat-
edly performed byMonetwith di�erent area and timing con-
straints. CDFGs have been simulated right after scheduling
with biased sequences of 1000 input patterns to construct
data structures Neval[], Sc[] and Tc[][]() for each set of
compatible operations.

Fig. 5.a shows the results obtained for the design of Fig.
4.a. Bars represent the average energy (in pJ) required to
perform the four 8-bit additions in the data path according
to a given binding. Labels on the x axis represent shar-
ing alternatives (operations are denoted by A,B,C and D,
operations bound to di�erent resources are separated by a
minus). Operations A and B were scheduled concurrently,
hence, they were not compatible for sharing. The two series
of bars represent results obtained with two library elements.
The impact of sharing on power consumption is evident: the
di�erence between two sharing alternatives may be greater
than 30%. This is only due to the changes induced on
boundary statistics. Finally, we remark that the minimum-
power binding solution is AC-BD, that is also a minimum-
area solution. The energy e�ciency of this solution can be
explained by observing that, at each iteration, operations A



Din(Op1;Op2) =
Tc[1][1](00�)+ Tc[1][2](00�)+ Tc[2][1](00�)+ Tc[2][2](00�)

BW (Neval[1]+ Neval[2]� 1)
= 0:45

Din(Op1;Op2;Op3) = (Tc[1][1](000)+ Tc[1][2](000)+ T[1][3](000)+ Tc[2][1](000)+ Tc[2][2](0� 0) + Tc[2][3](000)

Tc[3][1](000)+ Tc[3][2](000)+ Tc[3][3](000))
1

BW (Neval[1]+ Neval[2]+ Neval[3]� 1)
= 0:531

Figure 3: Two examples of switching activity computation at the inputs of a shared adder.

a)

A
-B

-C
-D

A
B

-C
-D

A
C

-B
-D

A
D

-B
-C

B
C

-A
-D

B
D

-A
-C

C
D

-A
-B

A
B

-C
D

A
C

-B
D

A
D

-B
C

A
B

C
-D

A
B

D
-C

A
C

D
-B

B
C

D
-A

A
B

C
D

add

0

50

100

150

200

250

300

350

400

b)

A
-B

-C
-D

A
B

-C
-D

A
C

-B
-D

A
D

-B
-C

B
C

-A
-D

B
D

-A
-C

C
D

-A
-B

A
B

-C
D

A
C

-B
D

A
D

-B
C

A
B

C
-D

A
B

D
-C

A
C

D
-B

B
C

D
-A

A
B

C
D

sub

0

100

200

300

400

500

600

700

800

900

1000

c)

A
-B

-C
-D

A
B

-C
-D

A
C

-B
-D

A
D

-B
-C

B
C

-A
-D

B
D

-A
-C

C
D

-A
-B

A
B

-C
D

A
C

-B
D

A
D

-B
C

A
B

C
-D

A
B

D
-C

A
C

D
-B

B
C

D
-A

A
B

C
D

cmp

0

200

400

600

800

1000

1200

1400

Figure 5: Average energy per iteration (in pJ) required to perform (a) the four additions in the data path of Fig. 4.a, (b) the
four subtractions and (c) the four comparisons in the control/data path of Fig. 4.b.

and C (B and D) have the same left-hand operand, hence,
sharing reduces the overall switching activity.

The behavioral speci�cation of the GCD algorithm shows
two sets of compatible operations: 4 subtractors and 4 com-
parators. Each operation was scheduled in a di�erent c-step,
thus making all sharing alternatives worth to be explored.
Results obtained for subtractors and comparators are sep-
arately reported in Figg. 5.b and 5.c. While binding has
only a marginal impact on the power consumed to perform
subtractions, it may reduce by 50% the power spent in per-
forming comparisons. Once again, this can be explained by
looking at the design speci�cation: at each iteration, com-
parisons A and B have the same inputs. If a shared compara-
tor providing both \6=" and \<" output signals is used, the
overall cost is signi�cantly reduced. Moreover, comparisons
A and B are within the inner loop of the algorithm, that
is repeatedly evaluated for each input pattern. That's why
all binding solutions using the same macro to perform com-
parisons A and B achieve 50% power savings. The speed-up
obtained by our method with respect to iterated simulation
was of two orders of magnitude without accuracy loss. It
is also worth noting that the speed-up would grow linearly
with the simulation length and exponentially with the num-
ber of compatible resources.

4.1 Conclusions

We described a technique for computing input-output statis-
tics during high-level synthesis of control-dominated speci-
�cations, without iterative simulations. Simulation is per-
formed only once, after scheduling and before resource bind-
ing. Information on signal probabilities and switching ac-
tivities is collected in a complex data structure. Whenever
the high-level optimization algorithm computes a new bind-
ing, signal statistics can be estimated by performing a set of
lookups in the data structure. Signal probability and switch-
ing activity computation based on our technique does not
imply any accuracy loss with respect to iterated simulation
and it is much more e�cient.
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