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Abstract

This paper addresses the problem of efficient and accurate per-
formance analysis to drive the exploration and design of bus-based
System-on-Chip (SOC) communication architectures. Our tech-
nique fills a gap in existing techniques for system-level perfor-
mance analysis, which are either too slow to use in an iterative
communication architecture design framework (e.g., simulation of
the complete system), or are not accurate enough to drive the de-
sign of the communication architecture (e.g., techniques that per-
form a “static” analysis of the system performance). The proposed
system-level performance analysis technique consists of (i) initial
co-simulation performed after HW/SW partitioning and mapping,
with the communication between components modeled in an ab-
stract manner (e.g.,as events or data transfers), (ii) extraction of
abstracted symbolic traces, represented as a Bus and Synchroniza-
tion Event (BSE) Graph, that captures the activity of the various
system components and their communication over time, and (iii)
manipulation of the BSE Graph using the bus parameters, to derive
the behavior of the system accounting for effects of the bus archi-
tecture. We present experimental results on several example sys-
tems, including a TCP/IP network interface card sub-system. The
results indicate that our performance estimation technique is over
two orders of magnitude faster than performing a complete sys-
tem simulation, while being very accurate (within 2:2% of perfor-
mance estimates derived from accurate HW/SW co-simulation).

I. Introduction

Realizing the complete potential of SOC design depends heav-
ily on the availability of design tools and methodologies that help
the system designers to explore system-level tradeoffs. Specifi-
cally, the availability of fast and accurate analysis and modeling
techniques for metrics such as performance, power, and cost, is
critical to guide various design decisions. In this paper, we focus
on performance analysis to support the design of bus-based SOC
communication architectures.

While a large body of research on system synthesis has fo-
cussed on scheduling, partitioning, and mapping the target appli-
cation functionality to an optimal set of system components, often
equally important is the choice of communication architectures
for the SOC. The SOC communication architecture determines
the way in which the components communicate with each other
to synchronize and exchange data. For example, the choice of the
bus architecture and protocol to be used, the system memory or-
ganization to be used,etc., can also be selected and customized
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for the given application. Various studies (e.g. [1]) have demon-
strated the impact of the SOC communication architecture on the
system’s performance. The benefits of separating the interfaces
of components from their internal behavior/computation, starting
with the system specification stage through the system refinement
stages, were presented in [2].

Various techniques have been proposed for performance anal-
ysis of hardware [3, 4] and software [5, 6]. System-level perfor-
mance analysis techniques which consider the effects of commu-
nication can be broadly divided into the following categories:

� Approaches based on simulation of the entire system using
models of the components and their communication at dif-
ferent levels of abstraction [2, 7]. The use of communication
abstraction provides for a tradeoff between simulation time
and accuracy, however, these techniques still require a simu-
lation of the complete system.

� Static system performance estimation techniques that in-
clude models of the communication time [4, 8, 9, 10, 11].
These techniques often assume systems where the computa-
tions and communications can be statically scheduled. Fur-
ther, the communication time estimates used in these sys-
tems are either overly optimistic, since they ignore dynamic
effects such as wait time due to bus contention (e.g.[10, 11]),
or are overly pessimistic by assuming a worst-case scenario
for bus contention (e.g.[8]).

A. Problem Overview and Paper Contributions

In this subsection, we first highlight some important features of
bus-based communication architectures, and their implications on
system-level performance analysis. Later, we explain how these
issues are addressed in the techniques proposed in this paper.

Bus-based architectures are very commonly used to facili-
tate communication between the various system components [12].
Since buses are shared communication channels, they require
arbitration (through abus arbiter) in order to ensure that only
one component has control of the bus at a time. Thus, a com-
ponent that wishes to transfer data over the bus needs to first
handshakewith the arbiter. When multiple components seek to
use the bus simultaneously, the arbiter decides (typically based
on a priority scheme) which component is granted the right to
access the bus. In order to facilitate efficient transmission of
larger chunks/bursts of data, buses may also provide aDMA
or block trans f er modewherein a component pre-negotiates the
right to use the bus for multiple bus cycles. In order to pre-
vent any one component from monopolizing the bus and intro-
ducing a high latency to other component’s access requests, a
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maximum DMA block sizeis typically placed on the amount of
data that can be transmitted as a single DMA block.

The above factors make the estimation of the system perfor-
mance in the presence of the bus a complex task. The time taken
by a component to transmit a piece of data over the bus depends
not only on the amount of data, but also on the bus protocol and
values of bus parameters mentioned above, and on the activity
(bus access requests) from other system components. As a fur-
ther complication (as shown later in Section III), not only does the
bus architecture directly impact the time taken for a communica-
tion across the bus, but it also indirectly impacts the timing of the
other operations performed by the system components. In order
to account for these indirect effects, it is imperative to analyze the
bus architecture in conjunction with the other parts of the system.

Thecontribution of this paperis an efficient and accurate sys-
tem performance estimation technique for evaluation of SOC bus
architectures. Our technique is based on a two-phase approach.
An initial co-simulation is performed using information about the
refinement of the system components (HW/SW partitioning and
mapping), but with the communication between components mod-
eled in an abstract manner. From this initial phase, we extract ab-
stracted symbolic traces (represented as aBus and Synchroniza-
tion Event Graph) that capture the activity of the various system
components and their communication over time. In the second
phase, these traces are manipulated using the values of the various
bus parameters selected by the designer (e.g., bus width, priorities,
support for DMA, DMA block size, arbiter handshake overhead,
etc.), to derive the timing behavior of the system accounting for
the effects of the bus architecture.

We have implemented our performance analysis tool and vali-
dated it on several example systems, including a TCP/IP network
interface card sub-system. The results indicate that our perfor-
mance estimation technique isover two orders of magnitude faster
than performing a complete system simulation, while beingvery
accurate(within 2:2% of performance estimates derived from ac-
curate HW/SW co-simulation).

The rest of the paper is organized as follows. Section II
presents further motivation for our performance estimation tech-
nique, Section III presents an overview of our performance analy-
sis technique, and how it fits into a generic system design method-
ology/flow. Section IV presents some algorithmic details of our
performance estimator. Section V presents experimental results
and conclusions.

II. Effect of Bus Architectures and Protocols on
System Performance

In this section, we present effects of customizing bus-based
communication architectures on the performance of a hard-
ware/software system-on-chip through several experiments. Our
investigation motivates the need for fast and accurate performance
analysis to enable efficient exploration of the system design space,
and selection of bus architectures and protocols to optimize sys-
tem performance.

We start by analyzing the performance of a TCP/IP Network
Interface System [1] under differing memory and communication
architectures. The sub-system consists of the part of the TCP/IP
protocol related to the checksum computation (Figure 1). For
incoming packets, the taskCreatePacketreceives a packet and
stores it in a memory. When it finishes, it sends the information
about the starting address of the packet in memory, the number
of bytes and the checksum header to thePacketQueue. From
this queue,IP Chk retrieves a new packet, overwrites parts of the
checksum header (which should not be used in the checksum com-
putation) with 0s, and signals to theChksumtask that a new packet

   Create
Packet

IP Chk Chksum NETWORK Packet
Queue

Figure 1: The TCP/IP Network Interface System

can be checked for checksum consistency.Chksumperforms the
core of the computation, accessing the packet in memory and ac-
cumulating the checksum for the packet body. When it is done,
it sends the computed 16-bit checksum back to theIP Chk task,
which then compares the computed checksum with the incoming
transmitted checksum, and flags an error if they do not match. The
flow for outgoing packets is similar, but in the reverse direction,
and there is no need for comparison of the final checksum.

A. Effect of Bus Architectures

Figure 2 shows one partitioning and mapping, where the
tasksCreatePacketandPacketQueueare software tasks and are
mapped to a MIPS R3000 processor, while the remaining tasks
IP ChkandChksum— are mapped to dedicated hardware. While
most previous research has concentrated on HW/SW partitioning
and mapping, we show that choosing an optimal communication
architecture is also critical to the system performance. Figure 2(a)
shows a candidate communication architecture where the system
components access a shared multi-port memory through dedicated
links.
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Figure 2: Alternative communication architectures

This architecture allows the packets arriving serially into the
system to be processed in a pipelined fashion by the tasks. While
Chksumis processing packeti, IP Chk can process packeti + 1
andCreatePacketcan be working on packeti +2 all at the same
time. At any given moment, the various tasks in the system ac-
cess different parts of the memory because each is operating on a
different packet. Hence, the concurrent tasks can operate without
any conflict, resulting in superior performance.

An alternative architecture is shown in Figure 2(b). Here the
components of the system access a shared single-port memory
through a common system bus. In this shared bus architecture,
an arbiter resolves conflicts resulting from simultaneous attempts
to access the bus.

We have performed experiments to observe the performance
of the TCP/IP System under various memory and communication
architectures using POLIS [13] as the Hardware/Software co- de-
sign tool, and PTOLEMY [14] for system-level simulation. We
have used a behavioral bus arbiter model [1] to take into account
the effect of the bus architecture on system performance.

Our experimental results show that theprocessing time per
packet of each component for the shared bus architecture of Fig-
ure 2(b) is upto40%higher than that for the dedicated link case of
Figure 2(a). The degradation is because the shared bus introduces



“conflict waiting time” whenever two components simultaneously
request access to memory, whereas in a dedicated bus architec-
ture the components are permitted to concurrently access mem-
ory. These results demonstrate the significant impact of bus and
memory architectures on system performance. They also show the
importance of making a judicious selection of the communication
architecture when mapping an application to produce a high per-
formance application-specific system-on-chip.

B. Effect of Bus Protocols on Performance

Our next experiments show that even after the bus and memory
architectures have been selected and fixed, the bus protocols and
parameters used can greatly influence the performance of the sys-
tem. Consider the execution traces of two packets by the TCP/IP
tasks,CreatePacket, IP Chk, andChksum, under three different
cases, as shown in Figure 3. Case 1 reflects the case when the
second packet can be processed byCreatePacketandChksum,
without any conflict. This execution trace can be generated by us-
ing a dedicated link architecture like Figure 2(a). Cases 2 and 3
are possible execution traces under a shared bus architecture, the
difference being in the way the priorities have been assigned. As-
suming static priority based arbitration, for Case 2CreatePack
is assigned the highest priority among the competing tasks while
in Case 3 it has the lowest. Figure 3 shows that the times at
which processing of each packet is completed by the different
tasks depends not only on the bus architecture used (dedicated
vs. shared), but also the task priorities used. Depending upon the
composition of the system critical path from the different tasks,
the system performance can be greatly affected [4]. In general,
besides task priorities, other bus parameters like the DMA size
used for bus/memory transfers, significantly affect the system per-
formance, as will be illustrated by the next experiment.
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Figure 3: Variation of processing time with priority assign-
ments
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Figure 4: Example system to illustrate effect of DMA size
on performance
Effect of DMA size on system performance:Consider a simple
system shown in Figure 4 that consists of two components,C1
andC2, that read and write to a global memory through a shared
bus. In addition, the components synchronize with each other in
order to ensure correct system operation. Each component makes
requests to the arbiter which grants access to the shared bus in a
manner similar to that described for the TCP/IP sub-system. The
system supports DMA mode transfers across the shared bus.
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Figure 5: Effect of DMA size on performance

We performed several experiments to investigate the effect of
the variation of DMA block size on the performance of the system.
Here we present a test case, where the componentC1 performs
computations of average size 10 cycles and memory transfers of
average size 10 bus words whileC2 performs computations of av-
erage size 10 but memory transfers of average size 100. Figure 5
shows the effect of varying DMA sizes (x-axis) on system perfor-
mance (y-axis). We observe the following:

� The choice of bus parameters like DMA size can signif-
icantly affect system performance. For example Figure 5
shows the performance range forC2 for varying DMA sizes
is 117-250 clock cycles.

� The optimal values of bus parameters like DMA block size
depend heavily on the characteristics of the traffic seen on
the bus. While increasing the DMA block size generally im-
proves the performance ofC2, it has a negative effect onC1,
whose computation and bus access profile is different from
that ofC1.

The above investigation demonstrates the criticality of select-
ing the optimal bus architectures and protocols, and thereby the
need for fast and accurate performance analysis techniques that
can evaluate the numerous possible bus architecture and parame-
ter choices.

III. Overall Performance Estimation Methodology

Our tool for evaluating SOC bus-based communication archi-
tectures is based on a two-phase performance estimation method-
ology for HW/SW system design. In a generic system design flow,
we envision that performance estimation will be used to (i) sup-
port the refinement (e.g., HW/SW partitioning and mapping) of
various parts of the system functionality, and (ii) refinement of
the communication between the system components. In the first
phase, conventional system-level performance analysis tools such
as HW/SW co- simulation could be used, with the communica-
tion between components described and simulated in an abstract
manner (e.g., as abstract data transfers or events). The perfor-
mance analysis technique presented in this paper fits into the sec-
ond phase, thus it complements most of the existing technology
for system-level performance analysis. Please note that while we
treat these phases to be separate in this paper, it is conceivable
to consider them in an integrated manner as a single system-level
performance analysis tool.

An overview of our tool’s inputs and outputs, and of how we
have integrated it into an existing HW/SW system design flow,
are provided in this section. We have currently integrated our per-
formance estimator into the POLIS [13] and PTOLEMY [14] co-
design environment, although our techniques can also be used in
conjunction with other co-design frameworks as well. The sys-
tem specification (a set of communicating processes) is partitioned
(manually or automatically) into HW and SW, and possibly parts
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methodology

of it are mapped to pre-designed cores. For example, a proces-
sor core is selected to implement the SW parts. As is the case in
several current co-design systems, the above steps are performed
without specifying anything about the system communication ar-
chitecture. HW/SW co-simulation, using the PTOLEMY simu-
lation environment, provides performance estimation. The co-
simulation uses an (event-based) abstract model of communica-
tion between system components [13].

Our tool extracts, from the HW/SW co-simulation, a set of
symbolic computation and communication tracesfor each com-
ponent in the partitioned and mapped system specification. We
represent these traces using a data structure called theBus and
Synchronization Event Graph(BSE graph). The BSE graph is a
vertex-weighted directed acyclic graph with the following proper-
ties:

� Vertices represent computations, data transfers over the bus,
and synchronization between components.

� The weight of a vertex is the duration of the computation,
data transfer, or synchronization.

� Edges represent precedence constraints between vertices.
An edge exists fromv1 tov2 if the computation or communi-
cation represented byv2 cannot occur until that represented
by v1 has completed. Edges arise due to the sequentiality
of operations within a component or due to inter-component
communication [4].

In the BSE graph generated from the initial HW/SW co- simu-
lation, each abstract data transfer over the bus is represented as
a single vertex. Since communication is modeled as exchange
of abstract events during the initial co-simulation, no information
about the timing of communication vertices is available in the ini-
tial BSE graph.

The performance estimator takes as inputs the BSE graph, and
values of various bus parameters chosen by the designer. It gen-
erates an augmented BSE graph that captures the behavior of the
system incorporating the bus effects. The augmented BSE graph
contains additional vertices (introduced by our tool) that represent
protocol overhead and synchronization overhead. In addition, the
estimator ensures that at most one data transfer is active for the
bus at any given time (conflict resolution/arbitration), and splits
bus transfer vertices into multiple smaller vertices, if necessary,
due to the DMA block size restriction. While traversing and ma-
nipulating the BSE graph, the estimator computes atime-stamp

for each vertex in the augmented BSE graph. The time-stamps of
the vertices are used to generate various outputs including:

� System performance statistics incorporating the effects of
the bus architecture. Performance statistics can include com-
pletion times of specific computation(s), generation times of
specific event(s), separation between specified event(s),etc.

� The system critical path, which can run through multiple
components [4].

� A symbolic system execution trace that indicates the activity
of the system over time (the trace is symbolic in the sense
that the actual data values are not included since they are
abstracted out in the generation of the BSE graph).

� Bus-related statistics such as the amount of time each com-
ponent spends waiting for the bus, handshaking with the
arbiter, and waiting for synchronization events from other
components.

The designer can use the results of performance estimation to
modify the bus architecture and thus iteratively explore the design
space for system-level bus-based communication architectures.

A. Accuracy and Efficiency Issues

The efficiency of our performance estimation tool is derived
from the fact that we abstract out the details of the computations
and communications (bus accesses) between the system compo-
nents, and cluster them into vertices while deriving the BSE graph.
For example, in the case of a computation vertex, we only care
about the difference between its start and finish times. In the case
of a bus access vertex, we only care about the amount of data trans-
ferred. As a result, a BSE graph that represents millions of cycles
of execution of an entire system might contain only hundreds of
vertices and edges. This abstraction is especially necessary since
the BSE graph is constructed from the dynamic traces resulting
from co-simulation,i.e., it represents the execution of the system
“unrolled in time” . Overall, the computational complexity of our
performance estimator islinear in the size of the BSE graph, hence
much faster than complete system co-simulation. The efficiency
of our performance analysis technique is further borne out by the
experimental results presented in Section V.

The accuracy of our performance estimation technique is due
to two factors:

� Since we are using a dynamic execution trace derived from
co-simulation, the control flow within each component is
fully determined (e.g., we don’t need to worry about predict-
ing how many times each loop is executed, how each branch
is takenetc.).

� Since we are not isolating the bus accesses from the rest
of the system (computation vertices, synchronizations), it is
possible to account for the direct effects as well as indirect
effects of the bus architecture. The importance of accounting
for such indirect effects is illustrated later in this section.

It bears mentioning at this point that we assume that the ac-
tual operations performed in the computation nodes and the data
transferred in the memory access nodes are not dependent on the
bus effects. Put in a different way, the bus architecture can affect
the timing of the various computations and communications in the
system, but not the functionality. We believe that this assump-
tion is quite general, and is similar to assumptions made in several
typical system design methodologies/tools [13, 15].

The following example illustrates the importance of consider-
ing indirect effects of the bus architecture on the timing of the
various system components. In particular, we focus on the effects
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Figure 7: Indirect effect of bus architecture on synchroniza-
tion wait time
of bus wait time on the synchronization wait times of the various
components.

Example 1: Consider again the two component system shown
in Figure 4. Recall that componentsC1 andC2 access a global
memory though a shared bus and synchronize with each other.
The traces shown in Figure 7 represent the operation of the system
of Figure 4 under three different scenarios. The first set of wave-
forms (Case 1) represent the activity ofC1 andC2, as derived from
a simulation of the system where the data transfers between the
components and the memory are modeled in an abstract manner
(as events). Thus, the first set of waveforms do not account for ef-
fects of the bus architecture. The arcs between the waveforms in-
dicate the synchronization dependencies between the components.
The second set of waveforms (Case 2) are derived from a simula-
tion of the system with a model of the shared bus and bus arbiter,
whereC2 was assigned higher priority for bus access. Due to bus
access conflicts, componentC1 has to wait for accessing the bus
whenC2 (the higher priority component) also requests bus access.
Thus,bus waittimes are introduced in the waveform for compo-
nentC1 from time unit 0 to 4, 9 to 13, and so on. An indirect
effect of the bus wait times of componentC1 is to introducesyn-
chronization waittimes for componentC2 from time unit 5 to 9,
14 to 18,etc. Finally, the third set of waveforms (Case 3) were
derived by assigningC1 higher priority for bus access. Since the
bus parameters have changed, the bus wait times are now different
(time unit 0 to 1 for componentC2). However, in addition, note
that the inter-component synchronization wait time has also been
eliminated.

The above example indicates that merely considering the di-
rect effects of the bus architecture without considering the indi-
rect effects on the timing of the system could lead to erroneous
performance estimates.

IV. Implementation of the Analysis Technique

Our performance estimation algorithm is described be the pro-
cedure in Figure 8.Per f ormanceanalyzertakes two inputs:G,
the BSE graph, andPARAMS, a data structure containing the
bus parameters.G is a vertex-weighted directed acyclic graph
containing vertices of two types:BUSandCOMP, representing
bus accesses and computations respectively. During the execu-
tion of Per f ormanceanalyzernew vertices of two further types,
HANDSHAKEand SYNCH, are introduced. Each vertex inG
contains the following information: the type of vertex, its weight,

time-stamp (start-time), list of predecessors, list of successors, and
a flagdoneto denote whether or not the vertex has been executed.
PARAMScontains the following integer parameters:

� BUS WIDTH in bytes

� SYNCH OVERHEAD — elapsed cycles between emission
and consumption of a synchronization event

� PROTOCOLOVERHEAD — elapsed cycles between the
sending of a request to the arbiter and the receipt of a grant
in the absence of conflicts

� MAX DMA SIZE — the largest number of bus words that
a component is allowed to transfer per grant. It is assumed
(without loss of generality) that exactly one bus word can be
transferred per clock cycle.

� PRIORITIES — an array of integers specifying the static
priority of each component in the system.

Performance_Analyzer(G, PARAMS)
begin
Ready_vertex_list := Create_ready_vertex_list(G);
while (Ready_vertex_list is not empty) do
    v := Dequeue(Ready_vertex_list);
    if (v,u) is a synchronizing edge, create w of type SYNCH;
         w.weight := PARAMS.SYNCH_OVERHEAD;
         Insert_edge(v,w);Insert_edge(w,u);Delete_edge(v,u);
Case1: v is of type COMP or SYNCH
            mark v.done = TRUE; Modify_successors (v);
            Update_ready_vertex_list(v);
Case 2:v is of type BUS
            v.weight = v.weight / PARAMS.BUS_WIDTH;
            Delay_bus_access(v);
            Create  a new vertex w of type HANDSHAKE;
            w.weight := PARAMS.PROTOCOL_OVERHEAD;
            For all  u in v.predecessors, Insert (u,w), Delete (u,v);
            Insert (w,v);
            Case 1:v.weight<= PARAMS.MAX_DMA_SIZE
                        mark v.done := TRUE;
                        v.timestamp := w.timestamp+
                        PARAMS.PROTOCOL_OVERHEAD;
                        Modify_successors(v); last_bus_access := v;
                        Update_ready_vertex_list(v);
            Case 2: v.weight > PARAMS.MAX_DMA_SIZE
                        Create w, w.weight := v.weight – PARAMS.
 MAX_DMA_SIZE; v.weight:= PARAMS.MAX_DMA_SIZE;
                       For all u in  v.successors, insert (w,u), delete (v,u);
                       Insert(v,w);last_bus_access := v; Enqueue (w);
end while
end

Figure 8: Performance analysis algorithm
The procedurePer f ormanceanalyzerbehaves as follows. All

vertices are initially marked withdone= FALSE. This is done
during construction of the BSE graph. TheReadyvertexlist
is a list of vertices ordered on two keys — the primary key
is the time-stamp and the secondary key is the priority of the
component. It may be noted that the size of this list never ex-
ceeds the total number of components in the system because
each component can have only one ready vertex at any given
time. An initial Readyvertexlist is constructed by the function
Createready vertexlist(G) from vertices in the input graphG
that have no predecessors.

From here onPer f ormanceanalyzer keeps dequeuing ver-
tices from theReadyvertexlist till it there are no more ready
vertices. This will happen only when the entire graph has been
traversed exactly once. Each vertex that is dequeued is examined:



if it has a synchronizing edge emanating from it, aSYNCHvertex
is placed on the edge to represent the overhead of synchronization.
If the vertex is of typeCOMP, it is executed, the time-stamps of
its successors are modified usingModi f y successors, and finally
U pdateready vertexlist is called to add enabled vertices to the
list of ready vertices.

If the vertex is of typeBUS, the weight of the vertex (which
represents the size of the transfer in bus words) is scaled in in-
verse proportion to the bus width. AHANDSHAKEvertex is
generated of appropriate weight and if necessary (depending on
the size of the bus vertex) the originalBUSvertex is split it into
two BUSvertices: one of weightMAX DMA SIZEand the other
of weight equal to the fragment not served. The first vertex is ex-
ecuted while the second goes back into theReadyvertexlist. In
addition, forBUSvertices, we need to examinelast busaccess,
which records the last vertex that was granted access to the bus.
The time-stamp of aBUSvertex is determined from the finish time
of the last busaccessby the procedureDelay busaccesswhich
captures the implicit precedence that exists between competing
bus access vertices.

Delay busaccessand Modi f y successorsalso accumulate
statistical information regarding the critical vertices, wait time due
to synchronization and wait time due to bus conflicts.

For a specified set of parameters the following information can
be obtained using the data accumulated during the traversal of the
BSE graph:

� The performance of the system for the chosen set of pa-
rameters. The time-stamp on the last node to be inserted
into the augmented BSE graph gives us a performance mea-
sure. In addition we can examine time-stamp values at which
specific computations complete or specific events are gener-
ated. That is, we can regenerate an abstract system execution
trace.

� The system critical path is easily obtained. The func-
tionsModi f y successorsandDelay busaccessrecord crit-
ical predecessors for each vertex. After the algorithm com-
pletes, we back up and traverse the critical predecessor links
starting from the last executed vertex to get the system criti-
cal path.

� The percentage of the total execution time each component
spends waiting for:

– Synchronization with other components — This in-
formation is accumulated in an arraysynchwait.
synchwait[p;q] is updated in theModi f y successors
routine. Let the critical predecessor of an vertexv in
componentp be aSYNCHvertexw sent by compo-
nentq. The difference between the finish times ofw
andv’s second most critical predecessor gives the time
v spends waiting for the synchronizing eventw. This
is added to the timep has so far spent waiting forq by
incrementingsynchwait[p;q].

– Protocol overhead — This is obtained by counting
the number of handshake type vertices introduced
for each component and multiplying by the constant
PROTOCOLOVERHEAD.

– Bus access conflicts — When the critical predeces-
sor of a vertexv of a componentp is last busaccess,
p has waited on a bus conflict. The duration of
this wait is the difference between the finish times of
last busaccessand thev’s second most critical prede-
cessor. Such waits are accumulated for componentp
in buswait[p] by the functionDelay busaccess.

The running time ofPer f ormanceanalyzeris linear in the size
(no of vertices and edges) of the BSE graph. The arbitration and
housekeeping operations requireO(M) time for every vertex that
is scheduled, whereM is the maximum number of components.
However in reality the number of edges emanating from a ver-
tex will be far less thanM. We demonstrate both accuracy and
efficiency of our technique in the next section by comparing our
results with a fully specified system co-simulation.

V. Experimental Results

In this section we first demonstrate the accuracy and efficiency
of our technique by comparing it against detailed HW/SW co-
simulation for some example systems. We then show how our
technique can be used for fast design space exploration when
choosing bus parameters to maximize performance.

We used three example systems in our experiments — the
TCP/IP network interface card sub-system of Figure 1 and two
systems that are similar to the two component system of Figure 4.
The latter two systems differ from each other significantly in their
computation and bus access profiles. All systems were specified
using Esterel and C and graphical schematic capture was per-
formed in the POLIS/PTOLEMY framework. For each system an
arbitrary set of values were chosen for the parameters of the bus
architectures. For the TCP/IP system we simulated 100 packets,
each of size 512 bytes with the bus parameters chosen as follows:
MAX DMA SIZE= 16 bus words,PROTOCOLOVERHEAD=
1 cycle,BUSWIDTH = 8 bytes, andSYNCHOVERHEAD= 1
cycle. The priorities were set so thatCreatePackethas the highest
priority followed by IP Chk followed byChksum. In the second
system (MEM SY S1) componentsC1 andC2 each have a mean
bus access of size 10 and a mean computation of size 10. DMA
block size was set to 5, the priorities were arbitrarily assigned, and
the system was studied for an execution trace containing 2000 ac-
cesses from each component. The remaining parameters were set
to the same value as in the TCP/IP system. In the third system,
(MEM SYS2) C1 has an average bus access of width 100 while
the other has an average bus access width of 10. The system is
studied for 2000 iterations of theC1 running concurrently with
400 iterations ofC2.

Table 1: Accuracy of the proposed estimation technique
Example
System

Co-simulation
estimate
(cycles)

BSE graph
estimate
(cycles)

%
variation

TCP/IP 22877 22997 0.05
MEM_SYS1 68146 67827 0.47
MEM_SYS2 69858 71400 2.21

Table 2: Efficiency of the proposed estimation technique
Example
System

Co-simulation
Elapsed time (sec)

BSE graph
Elapsed time(sec)

TCP/IP 87 0.05
MEM_SYS1 922 0.22
MEM_SYS2 638 0.13

For each system we performed two experiments to evaluate the
system performance while incorporating the effects of the bus ar-
chitecture. In the first experiment, we used a complete system
co-simulation, with a behavioral model of the bus architecture [1].
These results appear in column 1 of Table 1 and Table 2. In the
second experiment, we used the proposed performance analysis
technique (Section III and Section IV) to estimate the total system
performance. Table 1 and Table 2 present the results of our ex-



periments. Table 1 reports the performance estimates obtained by
complete system co-simulation (second column), the performance
estimate obtained using our analysis technique (third column) and
the percentage difference between the two (fourth column). Ta-
ble 2 reports the efficiency (execution time) of a complete system
co- simulation (second column), as well as our performance anal-
ysis technique (third column).

The results of Table 1 indicate that our technique has a negli-
gible loss of accuracy compared to complete HW/SW co- simu-
lation. We note that the difference in the estimated performance
is no more than 2:21% for the cases studied. In the case of the
TCP/IP study, there is only a 0:05% difference in the performance
estimate of our tool versus that obtained from a complete system
simulation using the POLIS/PTOLEMY framework.

Table 2 shows that our performance analysis technique is two
to three orders of magnitude faster than complete HW/SW co-
simulation. It is not inconceivable that for more complex systems
than the ones we have studied, the speed-up will be even more
significant due to the greater advantage of abstraction.

Performance vs. Priority and DMA size for TCP/IP subsystem
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Figure 9: Efficient design space exploration for the TCP/IP
system using the proposed estimation technique

In order to demonstrate the utility of our performance analy-
sis technique in an iterative design space exploration framework
we performed the following experiment. We ran an exhaustive
search of all possible values of priority assignments and all mean-
ingful DMA block sizes for the TCP/IP example, invoking our
performance analysis technique for each configuration. Overall
there were 24 points in this design space. Figure 9 shows the per-
formance of the TCP/IP system when processing 10 packets of
size 512 bytes under all possible combinations of priority assign-
ments and DMA sizes. The best performance is obtained when the
DMA size is 128 and priorities are assigned so thatCreatePacket,
IP Chk and Chksumare in descending order of priority. The
curves in the X-Y plane are iso- performance contours. The sys-
tem performance is seen to vary between extremes of 2077 cycles
and 3570 cycles. On a Sun Ultra10 Workstation, the entire de-
sign space exploration took less than 1 second of CPU time. The
above experiment demonstrates that a) it is possible to perform
thorough and fast exploration of the bus architecture design space
using our technique and b) finding the ideal assignment of bus pa-
rameters that maximize performance of a given system is a very
complex problem. For example, it may not be apparent why one
priority assignment works better than another in the face of many
synchronization events passing between the components. Though
in the TCP/IP example increasing DMA size always benefits the
system performance, it need not necessarily be so for systems in
general, as we have seen in Section B.

VI. Conclusions and Future Work

Based on our investigation of the proposed performance anal-
ysis technique, we believe that its efficiency and accuracy would
make it a useful addition to an SOC design environment. We be-
lieve that the proposed analysis framework can be applied to other
bus architectures (e.g. hierarchical bus architectures and TDMA-
based bus architectures [12]), and enhanced to also support per-
formance analysis for other HW/SW communication mechanisms
(in addition to bus-based and dedicated communication channel
based). Further, we intend to integrate the developed performance
analysis tool into a design exploration/optimization tool for SOC
integration and communication architectures.
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