
JMTP: An Architecture for Exploiting Concurrency in Embedded Java Applications
with Real-time Considerations

Rachid Helaihel and Kunle Olukotun
Computer Systems Laboratory

Stanford University, Stanford, CA 94305
{rashhel, kunle}@stanford.edu
and
eir

ses.
fra-
the
ent
c do-
ew
 ad-
and
r se-
e to
lysis
o-
u-

a is
ys-

trict
The
he
a-
b-
ol
ime
ery
of
ce

.

ng
tem
, the
me
 to
de.
nt.

tion
m

m,
n,
Abstract

Using Java in embedded systems is plagued by problems of
limited runtime performance and unpredictable runtime
behavior. The Java Multi-Threaded Processor (JMTP) pro-
vides solutions to these problems. The JMTP architecture is a
single chip containing an off-the-shelf general purpose pro-
cessor core coupled with an array of Java Thread Processors
(JTPs). Performance can be improved using this architecture
by exploiting coarse-grained parallelism in the application.
These performance improvements are achieved with relatively
small hardware costs. Runtime predictability is improved by
implementing a subset of the Java Virtual Machine (JVM)
specification in the JTP and trimming away complexity with-
out excessively restricting the Java code a JTP can handle.
Moreover, the JMTP architecture incorporates hardware to
adaptively manage shared JMTP resources in order to satisfy
JTP thread timing constraints or provide an early warning for
a timing violation. This is an important feature for applica-
tions with quality-of-service demands. In addition to the hard-
ware architecture, we describe a software framework that
analyzes a Java application for expressed and implicit
coarse-grained concurrent threads to execute on JTPs. This
framework identifies the optimal mapping of an application to
a JMTP with an arbitrary number of JTPs. We have tested this
framework on a variety of applications including IDEA
encryption with different JTP configurations and confirmed
that the algorithm was able to obtain desired results in each
case.

1 Introduction
With increased demand for more intelligent electronic

consumer products, a trend in the embedded system market is
emerging: the evolution of embedded systems from fixed
functionality environments to systems that can be upgraded
with new functionality. One example of such systems is a
smart card that changes its encryption algorithm as the need
arises. Another example is a personal communication device
such as a cellular phone that is able to provide new telecom-
munication services to the customer. These systems demand
functional flexibility that can only be furnished by a program-

mable architecture. Another feature of this trend is the dem
for these systems to communicate with other devices in th
vicinity or access remote servers and information databa
This demonstrates the need for a reliable, net-centric in
structure. This connectivity provides these systems with
ability to upgrade functionality in an automatic and transpar
manner. Java has gained great success in one net-centri
main, the web, and has potential to be a front-runner in the n
generation of embedded systems because of several key
vantages. Java is object-oriented, platform independent,
secure [5]. But more importantly, Java possesses cleane
mantics resulting in more robust code that requires less tim
debug. It also makes possible more aggressive static ana
of application code. This directly improves the ability of aut
matic tools to identify the optimal mapping between a partic
lar application and a specific target architecture. Also, Jav
a concurrent language which is important for embedded s
tem specification and design.

Despite its advantages, Java has two problems that res
the set of embedded applications in which it can be used.
first problem is that of limited runtime performance due to t
interpretation overhead from executing the Java Virtual M
chine (JVM) on top of a microprocessor [9]. The second pro
lem with Java is the inability to accurately predict or contr
execution behavior. Embedded systems often have real-t
constraints on certain tasks. But Java runtime behavior is v
difficult to predict due to the layers of interpretation on top
the real machine, dynamic linking of code, and the interferen
of such non-deterministic operations as garbage collection

The solution to these problems must have the followi
characteristics. First, it has to avoid a drastic increase in sys
cost. In embedded systems, die area is at a premium; thus
solution has to trade-off performance increase and runti
predictability with hardware cost. Second, the solution has
be JVM specification compliant to support arbitrary Java co
Third, it must have an easy to use programming environme
Such an environment is based on an automatic compila
process that can efficiently explore the optimal mapping fro
the application domain to the underlying architecture.

In order to address the performance limitation proble
the solution must exploit concurrency in the target applicatio
0-7803-5832-X /99/$10.00 ©1999 IEEE.

 in-
 the
our
e

d-
s a

n.
ges
read.
de-

ace

en-
and
Ps
rbi-
mory
by
 to

tic
e is
s to
imal

 the
rd-
ode
ich
ore-
e-
re;
is-

plex
ni-
at least the concurrency expressed by the designer. In Java,
concurrency is specified using the Thread class. These coarse-
grained threads can be exploited using a shared memory mul-
tiprocessor architecture and distributing the JVM across the
various processors. Although this solution addresses the per-
formance limitation problem, it does not address the runtime
predictability problem. However, it is clear that the communi-
cation model and cache coherency schemes used in such archi-
tectures can only compound the problem. An alternative
multiprocessor architecture that addresses this problem is to
keep one processor running the JVM while simpler, more pre-
dictable processing elements run Java threads.

This paper presents the Java Multi-Threaded Processor
(JMTP). The proposed architecture couples a general-purpose
processor core with a set of Java Thread Processors (JTPs) and
executes a multi-threaded implementation of the JVM. Aside
from exploiting thread-based coarse-grained concurrency, the
thread processors are designed to enhance performance in oth-
er directions. First, the thread processors implement the Java
bytecode instruction set architecture and, hence, require no in-
terpretation overhead. Second, the thread processors can ex-
ploit certain fine-grained concurrency in threads by adding on
specialized function units.

The JMTP architecture is designed to support soft real-
time threads executing on the JTPs by enabling the designer to
specify timing constraints through Java source code annota-
tions. This is achieved through design for predictability in
hardware and aggressive static analysis in software. Primarily,
the design guideline is to keep the JTP as simple and as stati-
cally predictable as possible by avoiding complex JVM con-
structs in JTP thread execution. However, dynamic thread
control flow affects the predictability of JTP shared resource
utilization and scheduling. To avoid sacrificing performance
for predictability in such situations, we have added hardware
support for adaptively attempting to satisfy timing constraints.
This hardware implements an adaptive technique that assigns
dynamic priorities to threads based on the dynamic probability
of the thread violating a timing constraint. Moreover, in the
case where a timing violation occurs, the corresponding JTP
would interrupt the JVM for appropriate handling. The com-
plementary software framework would leverage the predict-
ability of the hardware architecture to identify the satisfiability
of timing constraints and warn the designer at compile-time if
necessary. Notably, the software is able to conservatively
guarantee hard real-time constraints in certain cases with de-
terministic control flow by fixing the resource scheduling.

Our solution does not provide a real-time JVM implemen-
tation, but uses the proposed architecture’s predictability to
provide real-time thread support. The extent of the static anal-
ysis does not account for complex JVM operations such as gar-
bage collection or dynamic memory allocation. Thus, the
analysis is restricted to code that would execute on a JTP.
Hence, a JMTP compiler is unable to evaluate constraints that
cannot be completely mapped to a JTP. However, such short-
comings can be addressed by using real-time JVM solutions

such as PERC [11].

The rest of the paper is organized as follows. Section 2
troduces the JMTP architecture while Section 3 describes
associated software framework. In Section 4, we describe
experimental methodology and provide results. Finally, w
present our conclusions in Section 5.

2 JMTP Architecture

2.1 Overview

The JMTP architecture is a single-chip simple share
memory multiprocessor as shown in Figure 1. The JTP i

hardware implementation of the JVM thread specificatio
Thus, the JVM running on the CPU core views and mana
code forked to a JTP as a special case of a regular Java th
The abstraction used within the JTP and provided to the
signer is a subclass of the Thread class called HWThread.
HWThread encodes operations like loading the JTP state sp
by overloading Thread native methods. In conjunction, extra
functionality needs to be added to the JVM thread implem
tation to maintain status and manage overall thread control
synchronization. Communication between the JVM and JT
is handled via memory mapped control/status registers. A
tration over shared JTP resources such as the shared me
port and hardware synchronization primitives is handled
the Thread Controller (JTC). Priorities assigned by the JTC
individual JTPs can be either fixed for statically determinis
threads or adaptively assigned. Mapping to this architectur
handled by a compilation process that identifies Java task
run on a JTP and explores the design space to find an opt
mapping of tasks to JTPs.

2.2 Java Thread Processor Architecture

The Java Thread Processor implements a subset of
JVM specification conceived to strike a balance between ha
ware complexity and the ease of mapping arbitrary Java c
to a JTP. This trade-off is possible because functionality wh
cannot be mapped to a JTP can execute on to the CPU c
bound JVM. For example, complex JVM memory manag
ment and garbage collection is solely handled by the co
thus, all thread memory should be pre-allocated prior to d
patching the thread code to a JTP. An example where com
JVM functionality was ported to the JTP is thread synchro

...

Fig. 1. JMTP block diagram

M E M O R Y

CPU
CORE

JTP1 JTPNJTP2

JTC

 pri-
int
ure
ime
 re-
ess
ion.

n-

rst.
 the
ue
the
y

ble
 In
f
 its
vi-
ver,
ical-
ck

ut
or
 ex-
on
id-

im-
al
zation primitives, implemented through monitors. This was
important to avoid a performance bottleneck if every monitor
lock or unlock operation had to go through the core. Another
trade-off involved the JTP instruction set. By examining code
segments of several target applications we were able to identi-
fy a subset of the Java bytecode instructions to support in the
JTP instruction set. Additionally, extensions were added to the
latter subset to support non-JVM related implementation func-
tionality. These are necessary for setting and monitoring JTP
state information.

The JTP architecture as shown in Figure 2 is fundamental-
ly a 4-stage pipelined RISC-style processor. Although the Java
bytecode instruction set is a stack-based architecture so as to
reduce code size, a register-register instruction set architecture
is more efficient because it does not require the overhead of
stack manipulation instructions. However, the JTP emulates a
stack instruction set using an annotation to the register file
called the stack index register whose two source operands ref-
erence the top two entries in the stack and destination referenc-
es the top of the stack. Arithmetic and logic instructions may
target one of three currently supported execution units: an in-
teger ALU, floating-point adder/multiplier, and reconfigurable
interconnect of 2x2 8-bit integer ALUs suitable for multimedia
type applications. While the integer ALU is basic component
of each JTP on the chip, the other two execution unit types are
available to some JTPs and not others.

2.3 Real-time Considerations

A key consequence of the reduced complexity of the JTP
architecture is runtime predictability. However, access to
shared resources such as the memory bus/port or hardware
monitor registers is dependent on runtime arbitration deci-
sions. Fixed or static scheduling of these resources does pro-
vide a predictable mechanism to assess JTP thread runtime
behavior. However, such a solution is not suitable for two rea-
sons. First, it is inefficient as resource usage is generally nei-
ther uniform nor equal across the JTP threads. Second, it is
oblivious to real-time constraints on JTP threads. Thus, the so-

lution has to be a dynamic arbitration scheme that assigns
orities to colliding requests based on real-time constra
situations. Each JTP includes a real-time counter struct
which keeps track of designer-set constraints. These real-t
counters are also used to adaptively assign priorities for
source allocation. The underlying reasoning is to allow acc
to the JTP with the most severe real-time constraint condit
The resulting arbitration scheme is shown in Figure 3.

The real-time arbiter identifies priorities based on the co
tent of the RT counter as follows. First, it identifies the leading
one in the counter and feeds its position to the Priority Register
(PR). The PR with the lowest value gets acknowledged fi
Each time a JTP is serviced, its associated PR is shifted to
left by one bit. This implies a log2 relation between the val
in the RT counter and the resulting priority. The contents of
RT counter signify different quantities based on three priorit
modes in JMTP. The Cycle Mode loads the RT counter with
the a set number of cycles to complete the thread task. TheRT
counter is thus decremented each cycle. This mode is suita
for directly mapping time constraints on JTP-bound code.
the Slack Mode, the RT counter is loaded with a set number o
cycles that the particular task can waste before violating
timing constraint. This quantity is more useful than the pre
ous one because it factors out code related cycles. Howe
unless the code has well-behaved control flow such as stat
ly bounded loops, it is very difficult to precisely estimate sla
cycles. If adaptive priorities are not desired, Fixed Mode as-
signs static priorities to the JTPs.

3 Software Architecture
The JMTP compiler is responsible for analyzing the inp

Java application to identify the set of concurrent tasks
threads that may potentially be forked as JTP threads and
ploring the design space for optimally mapping the applicati
to a JMTP architecture. The latter exploration process is gu
ed by a cost function that weighs the satisfaction of design t
ing constraints and the overall execution time. A function
outline of the software framework is shown in Figure 5.

3.1 Front-end Analysis

The analysis starts with the static main method. For each

STATUS CONTROL

LD/ST
RT COUNTERS

Fig. 2. JTP architecture

EXECUTION
UNIT

OPERAND
STACK

REGFILE

LOCALS
REGFILE

IDX

+

INSTRUCTION
FETCH

DECODE

CONSTANT/
LINK

BUFFER

INSTR.
BUFFER

+

-1

20-BIT RT COUNTER

PRIORITY-ONE DECODER

PRIORITY REGISTER

...0000100...

LShift by 1

Reset

(TO JTC)
Cycle Mode & CLK

Slack Mode & STALL

Request
Serviced

Each JTP:
Cycle Mode:

decrement Realtime Counter
every cycle

Slack Mode:
decrement Realtime Counter
every stall cycle

Fixed Mode:
do not decrement

if (Reset)
Load Priority Register

if (Request Serviced)
Left shift Priority Register by 1 bit

JTC:
if all Priority Registers are equal

Service each requesting JTP
Send Reset signal

otherwise
Service JTP with lowest
Priority Register value

Fig. 3. Real-time arbiter

read
i-

 of
ncy
seg-

cy
 of
r-
res
 in

 or
ear
t of
ct-
pts
ch

 to
the

cu-
re
t-
ic

et
re.

cu-
cur-
w

s to

in-
and
ach
method processed, local analysis is performed to determine lo-
cal control and dataflow. Next, all methods invoked by the cur-
rent method are recursively analyzed. Finally, reference
points-to values are resolved in order to determine global data
dependence information. A more detailed discussion of our
front-end analysis technique is found in [7].

The CDFG representation shown in Figure 4 involves two
main structures. The first structure is a table of static and pre-
allocated class instances. Aside from object accounting infor-
mation, this table maintains a list of entries per object; each en-
try represents either a method or a non-primitive type data
field. The data field entry is necessary for global analysis be-
cause data fields have a global scope during the life of their in-
stances. Arrays are treated exactly as class instances. In fact,
arrays are modeled as classes with no methods. The method
entries point to portions of the second main structure in the
representation. The second structure is the control dataflow in-
formation. Its nodes are bytecode basic blocks. The edges rep-
resent local control flow between basic blocks within a method
as well as global control flow across method invocations and
returns.

This CDFG representation also maintains special con-
structs for identifying and modeling Java threads and bytecode
loops. The front-end analysis identifies designer-specified
threads by capturing the JVM specification for the Thread
class. Thread CDFG information is directly obtained by trac-

ing the flow of the particular thread’s run method. The repre-
sentation reserves special edges to denote Java inter-th
communication primitives. Loops are identified through trad
tional iterative dataflow analysis [1].

3.2 JTP Mapping

The JTP mapper is responsible for identifying segments
application code that capture the coarse-grained concurre
in the application. The mapper then transforms these code
ments to comply with the JTP specification, if possible.

First, the JTP mapper captures application concurren
into an annotated graph, as shown in Figure 6, built on top
the CDFG. This graph models the control flow of designe
specified Java threads directly from the CDFG. It also captu
parallelizable loops by examining true data dependencies
the CDFG. We designate these concurrent structures as con-
current blocks. Second, the bytecode for each target thread
loop body is mapped to JTP bytecodes. This process is lin
if the original bytecode segment does not violate the subse
the JVM that the JTP implements. If such a violation is dete
ed, the mapper - based on the pattern of the violation - attem
a suite of code transformations to remove the violation. Su
transformations vary from simple bytecode replacement
code motion. If no transformation succeeds in eliminating
violation, the target block is restricted to run on the JVM.

3.3 JTP Code Estimation

The purpose of JTP code estimation is to provide exe
tion time guidance for the partitioning phase of the softwa
compilation framework. This is accomplished by a mix of sta
ic code analysis aided by dynamic profiling data. Dynam
profiling information is achieved by instrumenting the targ
Java runtime environment executing on the target RISC co
Specifically, two major quantities are measured. First, exe
tion timestamps are collected at the boundaries of the con
rent blocks identified by the mapper. Second, control flo
profiles of branches in the code are compiled to provide bia
different execution flows in the code.

The static estimation component consists of a partition-
dependent step performed once prior to partitioning phase
a partition composition step that has to be computed for e

.
.
.

PRE-ALLOCATED
OBJECTS

STATIC OBJECTS

METHOD
INVOCATION
GRAPH

BASIC BLOCK
CONTROL
FLOW

Fig. 4. Front-end analysis CDFG
representation

.
.
.

Java
Application

Front-end
Analysis

Threaded
CDFG

JTP
Mapper Transform

ModuleTransform
ModuleTransform

Module

Mapped
Threaded

CFDG

JMTP Code
Estimator

Profiled
Mapped

Threaded
CDFG

JMTP
Partitioner

JMTP
Schedule

Iterative improvement loop

Fig. 5. JMTP software framework

Estimator

THREADS

PARALLELIZABLE LOOPS

Fig. 6. Concurrent CDFG blocks graph

BASIC
BLOCKS

l-

re
ed
ent
P

 an
y,
ach
e al-
lock
ver-
t

-

 to
se.
The
ck-
partition instance examined. The reason is due to arbitration on
shared resources such as access to memory and monitors. This
is clearly dependent on the number of JTPs in operation and
the code each is executing.

Pre-partition estimation analysis involves direct JTP code
analysis to compute dynamic instruction count for the thread
code. The analysis also factors in the effects of JTP pipeline
hazards. An average execution time is computed based on dy-
namic control flow data. Arbiter references are identified and
modeled. The tool currently models these reference patterns
using a uniform random process. As a post-partition step, the
models from all JTPs in operation are composed to model the
overall arbiter reference load and, consequently, identify the
reference service latency. With that, the JTP code execution
time is obtained. It is important to note that this estimation pro-
cess has to trade-off accuracy and computation speed. The key
is that the pre-partition analysis can be as accurate as possible
because it is performed once per compilation. Moreover, the
model composition step has to execute as fast as possible be-
cause it is part of the partitioning loop. This directly affects the
choice of reference pattern model. We have examined a more
complex time-variant model, but the achieved accuracy did not
justify the added computational complexity.

An issue facing the estimation process is determining the
execution behavior of dynamically bounded loops and recur-
sive method calls. The baseline approach for dealing with this
problem is to rely on dynamic profiling data to approximately
bound the execution. Of course, such results are flagged to the
partitioner as to provide no guarantee for real-time analysis.
An alternative approach which is also used by the estimator is
to identify bytecodes that set execution bounds and trace the
dataflow of the associated variables across the CDFG. Such
variables may be identified as application/dataset parameters.
These parameters can be dealt with by either prompting the de-
signer for guidance or, more aggressively, by factoring them
into the partitioning process. However, in the latter case, the
compiler has to be aware of the added complexity of the parti-
tioning step. Currently, we implement complexity bounds on
the partitioner to restrict the number of parameters handled.

3.4 JMTP Partitioner

The partitioning algorithm assigns target concurrent
blocks identified by the mapper to execute either on the JVM
core or on a JTP so that soft real-time constraints are best met
and the overall execution time is minimized. This is achieved
in two phases: (1) partition generation and (2) iterative parti-
tion improvement. Before describing these phases in detail, the
cost function is defined.

The cost metric Q used is an arithmetic mean of timing
constraint satisfiability and overall execution time as shown in
Figure 7. The quantity τ effectively measures the average dif-
ference between a constrained block execution time and con-
straint values. The exponential relationship between τ and the
timing difference translates into a blowup in Q as the possibil-

ity of a timing violation increases. So, minimizing Q improves
timing constraint satisfiability. Note that estimated timing va
ues are increased by a factor of α to allow for estimation errors.
The quantity υ is the ratio of the overall execution times befo
and after partitioning. The overall execution time is comput
by a quick JMTP schedule estimator using the concurr
blocks graph in conjunction with JVM profiling data and JT
code estimator results.

The first phase of the partitioning algorithm generates
initial mapping of blocks to the JTPs and JVM core. Initiall
all blocks are assigned to execute on the JVM core. For e
block that the mapper has cleared to execute on a JTP, th
gorithm identifies the set of suitable JTPs and assigns the b
to the JTP whose schedule introduces minimal execution o
lap. The resulting value of Q is computed, and the assignmen
that provides the best Q value is adopted. The algorithm re
peats until no move improves Q.

The second phase of the partitioning algorithm attempts
iteratively improve on the partition generated in the first pha
Each block assigned to a JTP is moved to the JVM core.
partitioner resumes phase one analysis starting with the blo

Q Kτ τ⋅ Kυ υ⋅+=

where Kτ Kυ+ 1=

such that

τ 1
N
---- e

i Sc∈
∑⋅

K
tci

1 α+() testi
⋅–

tci

--⋅–

, and=

υ
ETp

ET0
---------.=

Sc Set of N time constrained blocks. =

testi
Estimated block execution time.=

tci
Block time constraint value.=

ETp Partitioned overall execution time.=

ET0 Unpartitioned overall execution time.=

Fig. 7. Cost function parameters

repeat {
best.move_block = 0
foreach B not assigned to a JTP {

if (B contains a JTP violation)
goto next iteration

move_to_JTP_id = identify JTP to move B to
B.Q = compute_Q(overall execution time and

time constrained blocks)
if (B.Q < best.Q) {

best.move_block = B
best.Q = B.Q

}
}
assign best.move_block to move_to_JTP_id

} until (best.move_block == 0)

Fig. 8. Partitioning algorithm pseudo-code

ev-
 than
s the

dth
r of
rts.
 for
s
 in-

me-

 on
gle,
a

k.
3

to-JTP assignments minus the moved block. The partitioning
that leads to an improved Q value is kept. The process is re-
peated until no single move can be found to improve Q.

4 Experimental Methodology and Results
To evaluate the proposed JMTP architecture, we devel-

oped a system simulator, JMTPsim, based on the LESS simu-
lation environment. LESS is a simple cycle-accurate single
chip multiprocessor simulator [6]. From LESS we leveraged
cycle accurate CPU and memory system models. The JTP in-
stances along with the JTC models were coded in C++ and in-
tegrated with the LESS environment. We selected kaffe, a
freely available implementation of the JVM with JIT compila-
tion support [12]. The kaffe code was annotated with modules
necessary to support runtime interaction with the JTPs.
JMTPsim was used to capture HWThread execution profiles.
However, JVM execution data was obtained by instrumenting
kaffe and running the target application on a 100 MHz Super-
SPARC processor because kaffe provides an interpreter with-
out just-in-time compilation [4] for the MIPS platform.

In addition to the hardware simulation environment, we
developed the JMTPc compiler by coding and integrating the
steps outlined in Figure 5 into the previously developed Java
front-end analysis framework. Experimental results using
JMTPc to target the JMTPsim environment are provided to
show the impact JMTP has on improving overall performance
and its real-time support capabilities.

4.1 Performance Results

The MPEG decode application was used to demonstrate
JMTP’s ability to exploit coarse-grained application parallel-
ism exhibited by video stream compression/decompression al-
gorithms [8]. The original Java code obtained from [2] was
modified to utilize HWThread instances to map to JTPs. Four
different JMTP configurations were attempted: (1) a 2-JTP
configuration, (2) a 2-JTP configuration with one reconfig-
urable ALU, (3) a 3-JTP configuration, and (4) a 3-JTP config-
uration with one reconfigurable ALU. In the 2-JTP
configuration cases, one JTP was assigned to do an inverse dis-
crete cosine transform (IDCT) while the other was variable
length decoding (VLD) input blocks. In the 3-JTP cases, the
third JTP performed a portion of the computation for motion
information. The extra reconfigurable ALU is used by the JTP
handling the IDCT to enhance the computation. All configura-
tions were tested on a small (450KB) sample MPEG stream
which was pre-loaded into JMTP memory prior to collecting
performance data. For this experiment, JMTPc was not al-
lowed to search for implicit concurrency in the code; this
forced the partitioner to map each thread to a JTP as desired.

The results shown in Table 1 indicate an approximate
0.25X speedup per mm2 of additional JTP processing element.
This number is expected to decrease with more JTP elements
due to contention on the memory bus. This contention can be
easily identified from the cycles-per-bytecode results which

increase by half a cycle going from two to three JTPs. How
er, The 2-JTP case has a smaller speedup per area profile
the 3-JTP case because the 3-JTP case better amortize
fixed cost of the JTC and bus area.

In order to assess the effects of limited memory bandwi
on JMTP architecture scalability, we increased the numbe
read ports on the memory module to two and three po
Table 2 reports the resulting occupancy of a memory read
the MPEG decoder application with 3-JTP configuration. A
expected the occupancy of load bytecodes decreases with
creased memory bandwidth.

Several applications were used to test the software fra
work and the partitioner in particular. First, we used raytracer,
a simple graphical application which renders two spheres
top of a plane with shadows and reflections due to a sin
specular light source. Another test application we used was
variant of BYTEMark’s [3] IDEATest application. IDEATest
performs IDEA encryption on a 4000-byte plaintext bloc
Third was a simple Huffman compression application. Table
outlines the analysis results from JMTPc prior to partitioning.

Configuration Speedup
(SU)

Average cycles
per bytecode

HW Cost
(mm2)

∆(SU)
per mm2

2-JTP 2.2 2.7 5.2 0.23

2-JTP with RU 2.2 2.7 5.4 0.22

3-JTP 2.9 3.2 7.1 0.27

3-JTP with RU 3.0 3.2 7.3 0.27

Table 1. MPEG decoder results (Area estimates are based on
a 0.25µ process)

Number of Read Ports Load Occupancy
(cycles) Av. cycles per bytecode

1 6.1 3.2

2 4.6 2.9

3 3.9 2.8

Table 2. Effects of memory bandwidth

Application HWThreads Parallelizable loops

Raytracer 2 8

IDEATest 3 5

Huffman 2 6

Table 3. Application characteristics

1 - JTP 2 - JTP 3 - JTP

1

2

3

S
pe

ed
up

Raytracer
Raytracer with FP unit

IDEATest
IDEATest with FP unit

Huffman

Fig. 9. Partitioning results

rk
cit
g it.
ap-
ini-
ty

er
4.
ful
id-

Figure 9 shows the results of the design exploration per-
formed by the compiler for different cost alternatives. Further
exhaustive analysis showed that the partitioner was able to lo-
cate the optimal or near optimal results in each case.

4.2 Real-time Analysis

To demonstrate JMTP’s real-time thread behavior, we de-
vised an application, RTTest, that uses two JTPs each of which
performing IDCT on a single 8x8 matrix. JTC arbitration was
set to fixed mode with equal priorities to the two JTPs. The
thread running on JTP1 was assigned a timing constraint Tc.
The value of Tc was gradually decremented until the JTP1 sig-
nalled a time constraint violation for Tc = Tcv. Then, arbitration
was switched to cycle mode whereupon JTP1 completed with-
out a violation for Tc = Tcv. Figure 10 plots the change in the
number of JTP1 accesses on the bus sampled across four equal
periods of time. While the fixed mode case exhibits a constant
access pattern, the cycle mode increasingly biases the priorities
in favor of JTP1 until its task completes. Note that in the final
period, cycle mode accesses drop below fixed mode accesses
because JTP1 completes during that period.

5 Conclusions
We have provided an overview of the Java Multi-Thread-

ed Processor which we position as a solution for a wide range
of embedded applications that are targeted to the Java platform
but require higher performance or runtime predictability and
real-time support. The JMTP architecture incorporates a full
JVM running on a general purpose processor with little modi-
fication to support the extended hardware architecture. From
the designer’s perspective, JMTP programming is transparent.
JMTP architecture enhances application performance by dis-
patching thread execution to JTPs. We have shown that JTPs
provide appreciable performance improvement given their
hardware cost for an MPEG decoder application.

The JMTP architecture includes a compilation framewo
that optimizes the use of the hardware by identifying impli
as well as expressed application concurrency and exploitin
This mainly involves a thread partitioner that generates a m
ping of the application to the JMTP structures so as to m
mize a cost metric combining timing constraint satisfiabili
and improvement in overall execution time.

Acknowledgments
This work was sponsored by DARPA under grant numb

DABT63-96-C-0037 and GTRC contract number 98-IT-67
The authors wish to thank the reviewers for their insight
comments. We also wish to thank Lance Hammond for prov
ing and helping with the LESS simulator.

References
[1] A. Aho, R. Sethi, and J. Ullman. Compilers Principles,

Techniques and Tools. Addison-Wesley, 1986.

[2] J. Anders. Java implementation of an MPEG decoder,
http://rnvs.informatik.tu-chemnitz.de/~ja/MPEG/
MPEG_Play.html.

[3] BYTE Benchmarks at
http://www.byte.com/bmark/bmark.htm

[4] T. Cramer, et al. “Compiling Java Just in Time,” in IEEE
Micro, pp. 36-43, Vol. 17, No. 2, May-June 1997.

[5] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[6] L Hammond, et al. “Data Speculation Support for a Chip
Multiprocessor,” ASPLOS VIII, October 1998.

[7] R. Helaihel and K. Olukotun. “Java as a Specification
Language for Hardware-Software Systems,” in the
Proceedings of the International Conference on Computer-
Aided Design (ICCAD), November 1997, San Jose.

[8] E. Iwata and K. Olukotun. “Exploiting Coarse-grained
Parallelism in the MPEG-2 Algorithm,” in the Proceedings of
the Fourth International Symposium on High-Performance
Computer Architecture (HPCA-4), February 1998, Las
Vegas.

[9] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 1996.

[10] H. McGhan and M. O’Connor. “PicoJava: A Direct
Execution Engine for Java Bytecode,” Computer, pp. 22-30,
Vol. 31, No. 10, October 1998.

[11] K. Nilsen. “Adding Real-time Capabilities to Java,” in
Communications of the ACM, June 1998, Volume 41,
Number 6, pp. 49 - 56.

[12] T. Wilkinson. Kaffe - A Virtual Machine to Run Java Code, at
http://www.kaffe.org.

0.00 Tcv 0.25 Tcv 0.50 Tcv 0.75 Tcv 1.00 Tcv

Time

5

10

15

20

25

A
ve

ra
ge

 a
cc

es
se

s

 p
er

 1
00

 c
yc

le
s

Cycle Mode

Fixed Mode

Fig. 10. RTTest priority variation

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

