
Improved Interconnect Sharing by Identity Operation Insertion

Dirk Herrmann Rolf Ernst

Institut für Datenverarbeitungsanlagen
Technische Universit¨at Braunschweig, Germany

Abstract

This paper presents an approach to reduce interconnect cost by in-
sertion of identity operations in a CDFG. Other than previous ap-
proaches, it is based on systematic pattern analysis and automated
transformation selection. The cost function controlling transfor-
mation selection is derived with statistical experiments and is opti-
mized using practical benchmarks. The results show significantly
reduced interconnect cost for most register architectures and ap-
plication examples.

1 Introduction

In high-level synthesis,allocationdetermines the mapping of op-
erations to functional units (FUs) and values to registers and thus
defines the resulting interconnect structure. One objective of al-
location is to minimize cost of interconnect, i.e., of wires, (bus)
drivers and multiplexers. The potential of interconnect sharing de-
pends on the frequency of similar patterns of operations and data
transfers in the control and data flow graph (CDFG). Figure 1a
gives an example for matching computation patterns that can use
the same connections. Especially the cluster oriented allocation
approaches [5], [7], [2] try to exploit this observation. However,
none of the approaches mentioned above performs transforma-
tions on the CDFG to extend the set of similar patterns.

*

+

*

*

*

+

+

<<

<<

WR

WR

* *

+

<< <<

WR WR

a b

+0

Figure 1: Aligning Computation Patterns

As a first approach to pattern adaptation, [6] presents a CDFG
transformation technique, which extends the solution space for
the allocation problem. By inserting identity operations (deflec-
tion operations) into the CDFG, previously unrelated patterns of
operations and data transfers can be aligned, thus increasing the
number of similar patterns. The result of such a transformation
can be seen in figure 1b: The shaded zero-add operation has been
inserted, thus eliminating the need for a connection between the
multiplier and the shifter. Although based on a local search algo-

This work is supported by the Deutsche Forschungsgemeinschaft (DFG)

rithm that only considers one identity operation at a time and de-
pends on manual interaction, results in [6] show a large potential
for interconnect savings. Still, the criteria for selecting transfor-
mations which are most likely to reduce cost in allocation are only
roughly sketched. Further, this approach is specifically targeted
towards a special (thededicated) register file model.

Trading additional identity operations for speed or reduced in-
terconnect cost is a common technique in computer architecture
and compiler design. Load-store architectures, e. g., require the
compiler to insert explicit instructions for memory read and write
transfers. This simplifies instruction set, memory interface and re-
duces memory traffic at the cost of few additional instructions. To
eliminate the need for register-register connections and dedicated
register move instructions, data transfers between registers are of-
ten realized using addition of zeros (R1 = R2 + 0). For high-
level synthesis, algebraic transformations that generate redundant
operations are applied in [4] and [3] to reduce the critical path or
interconnect cost.

We present a generalized approach to the alignment of compu-
tation patterns by insertion of identity operations. It differs from
previous solutions in several aspects: Several transformations are
performed in a single step which allows to reduce the number of
transform/evaluate cycles. Further, the approach is independent of
the register file implementation. Finally, our cost function is based
on the observation that with increasing length of matching com-
putation patterns, interconnect sharing is likely to improve. There-
fore, our approach favors transformations that generate longer
matches. It will be discussed, how possible transformations are
detected and how the complexity of this step can be reduced. The
incorporation of several insertions into a conflict free transforma-
tion with high probability for reduced interconnect cost will be
described. The presented formal criteria for detection and selec-
tion of transformations are easily combined with other synthesis
steps to a fully automated synthesis.

The paper is organized as follows: First, we will introduce the
definitions and terminology used throughout the paper. The prob-
lem of determining a promising set of transformations is formu-
lated and analyzed. Then, an algorithm will be outlined, followed
by a set of experiments. Finally we summarize our results.

2 Definitions and Terminology

Definition 1: A computation pattern is a sequence
op1; e1;2; op2; : : : ; opn�1; en�1;n; opn of operations and edges
that form a directed non circular path in the CDFG.

Figure 2 gives an example of a CDFG and the corresponding set
of patterns. In the following we assume that the hardware module
selection for the operations of the CDFG is already performed.

0-7803-5832-X /99/$10.00 ©1999 IEEE.

*

<<

WR

+

<<

WR

*

WRWR

<<

+

<<<<

*

<<

+*

WR

*

Figure 2: Patterns in a CDFG

Thus, every edge corresponds to a connection between dedicated
ports of the FUs assigned to the source and target operation, while
a pattern corresponds to apathof connections. The fact that two
edges connect corresponding ports of FUs of the same type is an
indication for a potential interconnect sharing between these edges
and is the motivation for the next definition.

Definition 2: Two patterns P1 and P2 of the same lengthmatch
if the following two conditions hold: First, corresponding opera-
tions use the same type of FUs and, second, corresponding edges
will connect to the same ports of those FUs.

Since the detection of matching patterns is a central operation
in our approach it has to be performed very fast. Thus we define
patterns to be sequences of connections rather than subgraphs, be-
cause the matching problem between subgraphs is closely related
to the subgraph isomorphism problem, which is NP-complete [1].

Whether or not an operation has a corresponding identity oper-
ation depends in some cases on the type of FU which is assigned
to that operation. An increment operation may be executed on an
ALU as well as on a dedicated incrementer. Only when assigned
to an ALU, the increment operation has a corresponding iden-
tity operation. On some FUs different identity operations have to
be distinguished, e. g. on a multiplier:idMUL;1(a) = a � 1 and
idMUL;2(a) = 1 � a.

This defines a set of identity functionsidf;if (a) = a, where
f 2 FU and id identity function off . Sequences as store/load
or increment/decrement are not considered as identity functions,
here.

++

+0

*1

<<

++

<<

+

*

a

++

<<

*

++

*1

<<

+0 +
++ ++

+0+0

<< <<

b c

Figure 3: Different Types of Insertions

The basic transformation step is replacing an edge of the CDFG
by one or more identity operations. The objective of such a trans-
formation is that the resulting computation pattern matches some
other pattern of the CDFG (figure 3a).

Definition 3: An insertion is a paire; S, wheree is an edge
of the original CDFG andS is a sequenceid1; id2; : : : ; idn of
identity operations. A setI of insertions iscompatibleif for every
edgee of the CDFG there is at most one insertion fore in I .

Figure 3b shows, that some matches can not be achieved by
single insertions: Both, the multiplication by one as well as the ad-
dition of zero have to be inserted in order to achieve an additional
pattern match. Thus, in the general case, sets of insertions have

to be applied in combination. On the other hand, situations like
in figure 3c are to be avoided, since identity operations at corre-
sponding positions of a match don’t improve interconnect sharing
but may increase hardware requirements.

Definition 4: A compatible setI of insertions is called an
alignmentif there is at least one setP of at least two patterns in
the original CDFG which do not match, but for which after appli-
cation ofI the resulting patternsP 0 match. A set of alignments is
compatibleif the corresponding union set of insertions is compat-
ible. An alignment is calledminimal if it does not insert identity
operations which only match against other identity operations as
in figure 3c.

3 Problem Formulation

The general objective of our approach is to determine a set of in-
sertionsI , such that the number of connections in the resulting
circuit is minimized. The set of possible insertions is infinite since
for each edge a sequence of identity operations of arbitrary length
can be inserted. Thus we restrict the search space to compatible
sets of minimal alignments, which is finite but still huge. Now, the
problem addressed in this paper can be stated as follows:

Determine a compatible set of minimal alignmentsA, such that

� the resulting set of pattern matches maximizes the potential
for interconnect sharing while

� no other synthesis constraints are violated.

The effect on performance and interconnect area when inserting
additional operations into a CDFG can not be accurately predicted
without performing a full synthesis. Consequently, a heuristic ap-
proach to determine a promising set of insertions is required that,
firstly, limits the set of insertions that have to be considered and,
secondly, estimates effects of insertions without need for a full
synthesis.

4 Problem Analysis

nodes edges patt. align.
binary search 18 26 143 56
median filter 21 44 129 18
bubble sort 27 34 131 32
FIR filter 42 48 260 186

blue screen 44 72 317 718

Table 1: Pattern and Insertion Counts

Table 1 gives an impression of the number of patterns and
alignments for a set of benchmarks when using the three FU types
ALU, multiplier and shifter. We only counted alignments which
only contain a single insertion, i. e. an insertion which aligns two
patterns without depending on other insertions to be performed as
well. Constellations as in figure 3b were not considered. Due to
this fact and since most sets of alignments can form an alignment
themselves the actual number of alignments is orders of magni-
tude larger.

Due to the theoretical and practical complexity it is infeasible
to consider all possible sets of alignments. Heuristics like critical
path length or variable lifetimes can be used to exclude edges from

the set of possible insertions as has been proposed in [6]. Although
this solution offers good results in common cases it does not limit
the theoretical complexity of the problem. In contrast, by limit-
ing the length of patterns that are to be considered, the number of
patterns as well as the number of insertions and alignments can
be reduced. This way, since not all possible alignments are con-
sidered, optimization potential can be traded for execution time of
the optimization process.

In the following we will discuss how restricting the search
space to shorter patterns influences the optimization potential. The
results will be used to derive a cost function to estimate the im-
provements on interconnect sharing potential for a given set of
potential alignments.

4.1 Pattern Length Limitation and Cost Function

++ ++ ++ ++

% % % % %%

ADD

MUL

MOD

ADD

MOD

INC

MUL

INC

ADD

MUL

MOD

ADD

MOD

INC

MUL

INC

+ +

* <<*

*

+ + +

* <<*

<<* *1<<0

++ ++

+

<<

a b

SHIFT

SHIFT
SHIFT

SHIFT

Figure 4: Length of Pattern Matches

Figure 4 shows a situation, where two different insertions can
be applied to eliminate a connection between a modulo unit and
an adder. Assume that two FUs of each type are provided (for sim-
plicity registers between FUs are not shown). Solution a) requires
one additional connection, since the middle pattern only partly
matches each of the others. Examining the patterns of the CDFG,
we see that for both solutions the number of matching patterns of
length 2 is equal. Solution a) has two matches of length 3, whereas
solution b) has three of them, plus two matches of length 4 and one
match of length 5.

The example suggests that effects on longer patterns should be
considered to rate transformations. A statistical experiment on a
large set of pseudorandom CDFGs [8] was conducted to investi-
gate, how much influence matches of patterns of different lengths
have on the resulting interconnect cost. The results showed that
with increasing pattern length the relative influence of the number
of matches decreases and that using a maximum pattern length of
four would be sufficiently accurate. Further we observed that for
this limited range of pattern lengths the average number of saved
connections has a close to linear dependency on the number of

matching patterns of the different lengths, which allows to use a
linear cost function

c =

4X

l=2

alf(cdfg; l)

where only patterns with lengths from 2 to 4 are considered andal
is the weighting factor for pattern lengthl. For a given CDFG, the
functionf computes a value which is an estimate for the required
number of connection paths of lengthl. For correctly adjusted co-
efficientsal, the resulting cost value should deliver an estimate
for the expected number of connections in the resulting circuit.
To computef(cdfg; l) an undirected graphGl is constructed. The
nodes ofGl are the patterns of lengthl. An edge inGl denotes a
match between the corresponding patterns. The number of cliques
of Gl gives an estimate for the number of required connection
paths of lengthl.

For the experiments described in section 6, we determined the
coefficientsal; l = 2; 3; 4 based on the results of synthesizing the
benchmarks of table 1 several times with different hardware re-
sources, each time computingf for each length. Afterwards an
allocation was performed to determine the effective connection
countr. Thus, each synthesis delivered an equation

a2f(cdfg; 2) + a3f(cdfg; 3) + a4f(cdfg; 4) = r

The set of equations was solved using the least-squares method.
The results suggested that a ratio of about 9:3:1 fora2 : a3 : a4
would be a reasonable choice for most cases.

5 Algorithm Outline

The algorithm consists of three phases that are performed itera-
tively until no further improvements can be achieved.

1. collect alignments: Collect all patterns of the CDFG up to
length 4 that can be subject to alignment. Heuristics like criti-
cal path length are used to reduce the number of patterns to be
considered for insertions. Based on these patterns a set of possi-
ble alignments is determined. To limit the complexity, only align-
ments containing up to two insertions are considered.

2. sort by cost: Sort the alignments according to their cost, us-
ing the cost function described in section 4.1. For efficiency rea-
sons, the clique partitioning during calculation of the cost function
is performed heuristically.

3. select: Starting with the best alignment, apply the insertions
of the current alignment and synthesize the resulting CDFG to de-
termine the interconnect cost. Synthesis is required to determine
whether the inserted operations have lead to the expected inter-
connect savings. If no improvement is achieved, try the next best
alignment. Otherwise, the current alignment is accepted and the
resulting CDFG is taken as the basis for the next iteration.

6 Experiments

Table 2 shows the interconnect savings achieved by our approach
for three different register models. For each register model, the
columnbeforeholds the numbers of connections that were used
without inserting any identity operations, the columnafter shows
the numbers of connections after applying our algorithm and the
column gain shows the difference in percent. The experiments

single registers single port register files multi port register files
before after gain before after gain before after gain

binary search 12 10 16,7% 19 16 15,8% 9 8 11,1%
median filter 9 8 11,1% 11 9 18,2% 7 7 —
bubble sort 3 2 33,3% 12 10 16,7% 5 5 —
FIR filter 12 11 8,3% 25 22 12,0% 11 9 18,2%

blue screen 9 7 22,2% 13 9 30,8% 4 4 —

Table 2: Results: Interconnect Cost Savings

were performed for different sets of hardware resources (1–3
ALUs and 1–2 multipliers). We used a force directed list scheduler
and simulated annealing for allocation.

The computation of the cost function for a single alignment
takes less than one second on our system. In contrast, a full syn-
thesis can take several minutes. The quality of the cost function
therefore is crucial to avoid unnecessary iterations. For our exam-
ples, in 50% of the cases, the alignment with minimum estimated
cost lead to a interconnect cost reduction. The average number of
alignments that had to be tried until an improvement was achieved
was 2.48.

Thesingle registersmodel does not group registers into files.
With this model, the number of connections is largest. However,
if no registers are connected to other registers, for a given number
of r registers the theoretical minimum for the number of connec-
tions is2r. Thus, table 2 shows only the numbers of connections
that were used in addition to this theoretical minimum. The other
two models use register files. The single port register files only
allow a single read and write operation per cycle, thus requiring
a larger number of register files than in case of the multi-ported
register files. Again, only the number of connections in addition
to the theoretical minima are shown. Since all three register file
models differ in the way connections between FUs and registers
are shared, the numbers of connections differ for all three models.
The multi port register files offer the highest degree for intercon-
nect sharing, which means that a single connection can correspond
to several edges in the CDFG. Consequently, to eliminate such a
connection, insertions for all of the corresponding edges have to
be performed. Since we only considered alignments with up to
two insertions, improvements are unlikely, as table 2 shows.

Highly regular algorithms like the FIR filter already offer high
degree of potential interconnect sharing. There are only few pat-
terns which don’t match any others, which means there is only
little potential for interconnect savings. But, since a single inser-
tion can suffice to make an isolated pattern match with others,
these few patterns are easily eliminated. Thus, even for multi port
register files two connections could be saved for the FIR filter al-
gorithm. In contrast, algorithms which perform irregular compu-
tations or expose a lot of control flow contain a larger variety of
patterns which might indicate a larger potential for interconnect
sharing. However, it showed to be relatively rare that a single in-
sertion eliminates the need for a connection. Thus, there are only
slight differences between the savings for the different algorithms.

In most cases the algorithm is able to reduce the number of con-
nections above the theoretical minimum between 10% and 30%.
For better results with irregular computations or with multi port
registers, the set of considered alignments would have to be ex-
tended for alignments with more than two insertions. To cope with
the additional complexity, this requires more elaborate heuristics
for a better pre-selection of promising alignments.

7 Conclusion

A high level CDFG transformation increasing the potential for
interconnect minimization was presented. By insertion of one or
more identity operations, computation patterns are aligned to po-
tentially share the same connections. Since the actual interconnect
savings depend on the following synthesis steps of scheduling and
allocation, a function selecting the suitable CDFG edges for iden-
tity operation insertion must be developed. Based on statistical ex-
periments, we defined a linear cost function for transformation se-
lection which was then applied to practical benchmarks on differ-
ent register architectures. The benchmarks showed the suitability
of the approach leading to typical interconnect overhead reduction
between 10% and 30%.

The approach is easily integrated into the common high-level
synthesis design flow, either as a separate optimization step or in
interaction with other synthesis phases. It is independent of the
hardware models like the register file structure.

References

[1] Michael R. Garey and David S. Johnson.Computers and in-
tractability: a guide to the theory of NP-completeness. A
series of books in the mathematical science. Freeman, New
York, 1979.

[2] W. Geurts, F. Catthoor, and H. DeMan. Quadratic zero-
one programming-based synthesis of application-specific data
paths.IEEE Trans. on CAD, 14(1):1–11, January 1995.

[3] B. Landwehr and P. Marwedel. A new optimization technique
for improving resource exploitation and critical path mini-
mization. InISSS, pages 65–72, 1997.

[4] D. Lobo and B. Pangrle. Redundant operator creation: A
scheduling optimization technique. InDAC, page 775, 1991.

[5] N. Park and F. J. Kurdahi. Module assignment and inter-
connect sharing in register-transfer synthesis of pipelined data
paths. InICCAD, pages 16–19, 1989.

[6] M. Potkonjak and S. Dey. Optimizing resource utilization and
testability using hot potato techniques. InDAC, pages 201–
206, 1994.

[7] W. Verhaegh, M. Peek, P. Lippens, E. Aarts, A. van der Werft,
and J. van Meerbergen. Area optimization of multi-functional
processing units. InICCAD, page 292, 1992.

[8] D. Ziegenbein. Analysis of an approach to reduce intercon-
nect structures by insertion of redundant operations in high-
level synthesis (in german). Master’s thesis, Technische Uni-
versität Braunschweig, 1997.

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

