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Abstract
We describe a method referred to as sequence counting to
improve on the levels of compaction achievable by vector omis-
sion based static compaction procedures. Such procedures are
used to reduce the lengths of test sequences for synchronous
sequential circuits without reducing the fault coverage. The
unique feature of the proposed approach is that test vectors omit-
ted from the test sequence can be reintroduced at a later time.
Reintroducing of vectors helps reduce the compacted test
sequence length beyond the length that can be achieved if vec-
tors are omitted permanently. Experimental results are presented
to demonstrate the levels of compaction achieved by the
sequence counting approach.

1. Introduction
Static test compaction is used for reducing the length of a test
sequence without reducing its fault coverage. Reduced test
lengths result in reduced tester memory and test application time
requirements. The study of compacted test sequences can also
help in understanding the reasons for inefficiencies in test gener-
ators that produced the original (longer) test sequences. In this
paper, we propose a method to improve the compaction levels
achieved by vector omission based static compaction procedures.

Static test compaction based on vector omission was first
proposed in [1]. Static compaction based on vector omission
removes (or omits) test vectors from the test sequence as long as
this can be done without reducing the fault coverage. A variation
of vector omission, called vector restoration, was proposed in
[2]. Under a vector restoration procedure, all (or most) of the test
vectors are first omitted from the test sequence. Vectors are then
restored into the sequence as necessary to restore the fault cover-
age. Many efficient implementations of vector omission and
restoration exist [3]-[8]. These procedures attempt to achieve the
same levels of compaction as the procedures of [1] and [2], how-
ever, at faster run times.

In this work, we introduce a method calledsequence
counting to improve on the levels of compaction that can be
achieved by static compaction procedures based on vector omis-
sion. We introduce this method using a specific implementation
similar in efficiency to the procedures in [1] and [2]. We expect
efficient implementations to be devised later, implementing the
same concept at significantly reduced run times.

Similar to the vector omission and vector restoration
approaches of [1] and [2], the sequence counting approach main-
tains the original order of the test vectors. Thus, given a test
sequenceT = (t1, t2, . . . , t L), the compacted sequence obtained
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by either one of the three approaches has the form
Tc = (ti1, ti2, . . . , ti M

), where i1 < i2 < . . . < i M . The sequence
counting approach is different from the vector omission and vec-
tor restoration approaches in the following way. Once an itera-
tion of the vector omission or vector restoration approaches ter-
minates, the vectors they omitted (or the vectors that were not
restored in the case of the vector restoration procedure) are omit-
ted from the test sequence permanently, and they are not reintro-
duced at a later time. Under the sequence counting approach, it is
possible to reintroduce an omitted vector. For example, if a
compacted sequenceTc = (t1, t2, t4, t5, . . .) is obtained under the
sequence counting approach, the vectort3 is not permanently
excluded fromTc. It may be possible at a later time to obtain the
compacted sequenceTc = (t1, t3, t4, t5, . . .) (or other variations
that includet3), and potentially omit additional vectors that can-
not be omitted ift3 is excluded. Consequently, the sequence
counting approach is less greedy, and performs a more global
search for the shortest possible compacted sequence. As a result,
it has the potential of producing shorter test sequences.

The paper is organized as follows. In Section 2 we
describe the basic idea behind the sequence counting approach.
In Section 3 we describe the basic step of the sequence counting
approach. In Section 4 we describe a specific compaction proce-
dure based on the sequence counting approach. Experimental
results of this procedure are given in Section 5. Section 6 con-
cludes the paper.

2. The basic idea
The basic idea behind the sequence counting approach is illus-
trated in Figure 1. The first row of Figure 1 depicts a sequence
T = (t1, t2, . . . , t10) of length 10. The order of the vectors in the
sequence is marked by the edges in Figure 1. The vectort0 is a
dummy vector indicating the beginning of the sequence. Under
a vectorti in the first row of Figure 1, we show vectors that may
be included in a compacted version ofT at time uniti , instead of
ti , if ti or vectors preceding it are omitted. For example, instead
of t1, a compacted sequence may includet2, t3, . . . or t10 at time
unit 1. In general, at time uniti , the sequence may includeti+1,
ti+2, . . ., t10 instead ofti , depending on the omitted vectors that
precedeti (including ti itself).

A compacted sequence can be represented by a sequence
of edges such as the one shown by solid lines in Figure 2. The
compacted sequence shown by solid lines in Figure 2 is
Tc = (t2, t3, t4, t7, t8, t10). In general, the edges defining a com-
pacted sequence can go fromti to ti+1 by taking one step to the
right, or fromti to a vectort j such thatj > i by taking one step
to the right and any number of steps downward. For example, in
the sequence shown by solid lines in Figure 2, we go fromt2 to
t3 by taking one step to the right; and we go fromt4 to t7 by tak-
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ing one step to the right and two steps downward. A step down-
ward that skips overl vectors shortens the test sequence by the
same number of vectors. In Figure 2, we skip over a total of four
vectors (one fromt0 to t2, two from t4 to t7, and one fromt8 to
t10). Consequently, the length of the compacted sequence is
shorter than the original sequence length by four vectors.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t2 t3 t4 t5 t6 t7 t8 t9 t10

t3 t4 t5 t6 t7 t8 t9 t10

t4 t5 t6 t7 t8 t9 t10

t5 t6 t7 t8 t9 t10

t6 t7 t8 t9 t10

t7 t8 t9 t10

t8 t9 t10

t9 t10

t10

Figure 1: The given test sequenceT

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t2 t3 t4 t5 t6 t7 t8 t9 t10

t3 t4 t5 t6 t7 t8 t9 t10

t4 t5 t6 t7 t8 t9 t10

t5 t6 t7 t8 t9 t10

t6 t7 t8 t9 t10

t7 t8 t9 t10

t8 t9 t10

t9 t10

t10

Figure 2: Compacted sequences based onT
To further improve the length of the compacted sequence

shown in Figure 2, we can replace a vectorti that appears at time
unit k of the test sequence by a vectort j , where j > i . In Figure
2, this implies lengthening the downward step leading into the
vector at time unitk. For example, let us replacet3 at time unit 2
by t5. This is shown by the dashed edge fromt2 to t5 that
replaces the solid edge fromt2 to t3. To complete the sequence,
we skip overt4 (since we already havet5 at time unit 2, and our
goal is to maintain the original order of the vectors). We continue

with the first vector that followst5 and is included in the
sequence shown by solid lines in Figure 2. This vector ist7. The
dashed edge fromt5 to t7 indicates thatt7 follows t5 in the new
compacted sequence. Fromt7, we copy the sequence shown by
solid lines in Figure 2. The resulting sequence is shown by the
dashed edges in Figure 2. The new compacted sequence is
Tc = (t2, t5, t7, t8, t10), and it is shorter by one vector than the pre-
vious sequence we obtained. Note that we reintroduced into the
compacted sequence the vectort5 that does not appear in the
sequence shown by solid lines in Figure 2.

In the previous example, the step fromt2 to t5 shortened
the compacted sequence. It is also possible to make steps that
leave the sequence at the same length. For example, starting
from the sequence shown by solid lines in Figure 2, we may
replacet4 by t5 to obtain the sequenceTc = (t2, t3, t5, t7, t8, t10)
which is also of length six. Such steps are useful in modifying
the sequence such that the modified sequence can be compacted
further than the unmodified one.

Based on the previous discussion, the steps of the
sequence counting approach consist of making downward steps
in Figure 1 or 2, or lengthening existing downward steps. This is
equivalent to replacing a vectorti at time unitk by a vectort j ,
where j > i . The rest of the sequence is then adjusted accord-
ingly. The lower the sequence of edges in Figure 1 or 2, the
shorter it is (thus, the dashed sequence of Figure 2 is shorter than
the solid sequence of Figure 2, which is shorter than the
sequence of Figure 1). After each step that changes the sequence,
we resimulate the sequence to ensure that the fault coverage is
maintained. Steps that reduce the fault coverage are reversed.

The reason we refer to the approach described above as
sequence counting is as follows. Consider the three sequences
shown in Figures 1 and 2,T = (t1, t2, t3, t4, t5, t6, t7, t8, t9, t10),
Tc1

= (t2, t3, t4, t7, t8, t10), andTc2
= (t2, t5, t7, t8, t10). Let us

consider only the vector indices. FromT, we obtain the sequence
of vector indices I = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10); fromTc1

we
obtain I c1

= (2, 3, 4, 7, 8, 10); and fromTc2
we obtain

I c2
= (2, 5, 7, 8, 10). The sequences of indices are considered in

chronological order during the compaction procedure. Here, a
sequenceI1 is higher in the chronological order than a sequence
I2 if, scanning the sequences from left to right and looking for
the first position where the two sequences are different,I1 has a
higher number thanI2 in that position. Thus, if we count all pos-
sible sequences in chronological order starting from the given
uncompacted sequence, the later a sequence appears in the count
the shorter it is likely to be. Due to this similarity between
counting and compaction, we refer to the proposed approach as
sequence counting.

It is important to point out that in the compaction proce-
dure based on sequence counting, we skip over many of the
sequences that would have been obtained if all the sequences had
been counted in chronological order. In addition, we point out
that Figures 1 and 2 are only used to introduce the sequence
counting approach. In an implementation of a compaction proce-
dure based on sequence counting, there is no need to store each
vector multiple times as in the figures.

Finally, we point out that not every vector may be reintro-
duced after it is omitted. Let the compacted sequence
Tc = (ti1, ti2, . . . , tim) be obtained. Ifi1 > 1, thent1, . . . , ti1−1 can-
not be reintroduced into the sequence. To ensure that low-index
vectors are utilized by the sequence counting procedure as much
as possible, sequence counting steps that replace the first vector
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of the sequence should be small, and should be done only after
exhausting all the options with the current initial vector. Alterna-
tively, it is possible to perform steps where the vectorti1 is
replaced by a vectort j such thatj < i1. We do not explore these
options here.

3. The basic step of sequence counting
Procedure 1 given below describes the basic step of the sequence
counting procedure. The original, uncompacted sequence is
T = (t1, t2, . . . , t L). The test sequence on which the sequence
counting step is performed is an arbitrary (compacted) sequence
Tc = (ti1, ti2, . . . , ti M

). In Procedure 1, we randomly select a time
unit k, where 1≤ k ≤ M. We also select a number∆. We replace
ti k by ti k+∆, and then update the sequenceTc as follows.

If i k + ∆ > L, we terminateTc at time unit k − 1. For
example, suppose thatT = (t1, . . . , t10), Tc = (t1, t3, t5, t8, t9, t10),
k = 5 and∆ = 2. Note thatti1 = t1, ti2 = t3, ti3 = t5, and so on. In
this case,i k = i5 = 9, and we replacet9 by t9+2 = t11. Since t11
does not exist inT, we terminateTc at time unit 4 and obtain
Tc = (t1, t3, t5, t8).

If i k + ∆ < L, we find the first time unitk′ such that
i k′ > i k + ∆. We copy the part ofTc from time unitk′ to time unit
M such that it immediately follows time unitk. For example,
suppose thatT = (t1, . . . , t10), Tc = (t1, t3, t5, t8, t9, t10), k = 2 and
∆ = 4. In this case,i k = i2 = 3, and we replacet3 by t3+4 = t7. The
first time unitk′ wherei k′ > 7  is k′ = 4 with i k′ = 8. We copy the
subsequence (t8, t9, t10) starting at time unitk + 1 = 3. We obtain
the sequenceTc = (t1, t7, t8, t9, t10). As another example, con-
sider the same sequences withk = 5 and ∆ = 1. In this case,
i k = i5 = 9, and we replacet9 by t9+1 = t10. There is no time unit
k′ with i k′ > 10, therefore, we do not copy any part ofTc. The
resulting sequence isTc = (t1, t3, t5, t8, t10).

The value of∆ by which we incrementi k is between 1
and max{ M/10, 1}. Thus, we may skip up toM/10 vectors,
which is a tenth of the length ofTc. Larger constants may be
used to reduce the length ofTc faster. Procedure 1 is given next.
Procedure 1:A basic sequence counting step
(1) Let T = (t1, t2, . . . , t L) be the original test sequence, and

let Tc = (ti1, ti2, . . . , ti M
).

(2) Randomly select a time unitk, where 1≤ k ≤ M.
(3) Randomly select a number ∆, where

1 ≤ ∆ ≤ max{ M/10, 1}.
(4) If i k + ∆ > L, terminateTc at time unitk − 1, and stop.
(5) Replaceti k by ti k+∆.
(6) Find the first time unitk′ such thati k′ > i k + ∆.
(7) Set m = 0. While k′ + m ≤ M, copy ti k′+m

to time unit
k + 1 + m of Tc and setm = m + 1.

(8) TerminateTc at time unitk + m.
The complexity of Procedure 1 isO(M), whereM is the

length of the compacted sequence. This is determined by Step 7
that copies at mostM test vectors.

4. The sequence counting procedure
Procedure 1 can be applied as part of a compaction procedure in
one of several ways. One of the parameters to consider in apply-
ing Procedure 1 is the number of calls to Procedure 1 performed
before checking that the fault coverage of the original sequence
is maintained. If more than one call to Procedure 1 is performed
before considering the fault coverage, then one or more changes
introduced by Procedure 1 may have to be undone if the fault

coverage is not maintained. The advantage of performing several
calls to Procedure 1 before performing fault simulation is that
the total time spent on fault simulation may be reduced. In this
work, we use an implementation where fault simulation is per-
formed after every call to Procedure 1. The procedure is given as
Procedure 2 below.

In Procedure 2, before the current compacted test
sequenceTc is modified by Procedure 1, it is stored in a
sequenceTc,prev. Fault simulation is carried out forTc after it is
modified. The previous sequenceTc,prev is restored if the fault
coverage ofTc, after it is modified by Procedure 1, is smaller
than the fault coverage of the original sequence. A variable
callednsamecounts the number of calls to Procedure 1 that do not
reduce the test length. This includes calls that reduce the fault
coverage and cause the previous compacted sequence to be
restored, and calls that keep the fault coverage and the test length
at their current levels. The variablensame is reset to zero initially,
and every time a call to Procedure 1 yields a step that reduces the
test length without reducing the fault coverage. Procedure 2 ter-
minates whennsame reaches a preselected constant denoted by
NSAME, i.e., afterNSAME calls to Procedure 1 that do not reduce
the test length.
Procedure 2:A sequence counting procedure
(1) Let T = (t1, t2, . . . , t L) be the original test sequence. Set

Tc = T. Setnsame= 0.
(2) SimulateT. Let the set of detected faults beFD.
(3) SetTc,prev = Tc.
(4) Call Procedure 1 withT andTc as input.
(5) Simulate Tc under the faults inFD. Let the set of

detected faults beFD,c.
(6) If FD,c ≠ FD, setTc = Tc,prev andnsame= nsame+ 1.

Else, if the length ofTc is smaller than the length of
Tc,prev, setnsame= 0.
Else, setnsame= nsame+ 1.

(7) If nsame< NSAME, go to Step 3.
When simulatingTc in Step 5 of Procedure 2, it is only

necessary to simulate the faults inFD until the first undetected
fault is encountered. An undetected fault causes the step made by
Procedure 1 to be rejected, and there is no need to complete the
simulation of all the faults inFD in this case. In addition, if the
step made by Procedure 1 changes the sequence at time unitsk
and on, there is no need to simulate faults detected byTc,prev

before time unitk. This is because the subsequence until time
unit k − 1 does not change.

The complexity of Procedure 2 depends on the number of
iterations it performs. In each iteration, there is a call to Proce-
dure 1 that has complexityO(M), where M is the sequence
length, and there is a fault simulation step to determine whether
the fault coverage has changed. In the worst case, complete fault
simulation has to be performed in every iteration; however, in
practice, relatively small numbers of faults need to be simulated
based on the discussion above.

5. Experimental results
We applied Procedure 2 usingNSAME = 1000 to test sequences
produced by the test generation procedureHITEC [9], and to test
sequences produced by the test generation procedureSTRATE-
GATE [10]. We compare the results to the results produced by
the procedures from [1] and [2]. We consider circuits for which
the comparison is possible, and in addition, we considers35932
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under theSTRATEGATEsequence. Other procedures [3]-[8] are
based on the ideas in [1] and [2], and do not produce better lev-
els of compaction overall. The results are shown in Tables 1 and
2.

Table 1: Compaction ofHITEC sequences

circuit orig seq.count omit restore
s298 259 100 87 153
s344 108 54 53 56
s400 2069 280 405 278
s420 166 122 124 125
s641 211 81 96 119
s820 968 350 424 708
s1238 478 270 247 269
s1488 1192 416 607 646
s5378 900 185 363 458
total 6351 1858 2406 2812

Table 2: Compaction ofSTRATEGATEsequences

circuit orig seq.count omit restore
s298 194 76 109 117
s344 86 39 45 57
s382 1486 574 490 516
s400 2424 486 896 611
s444 1945 607 546 608
s526 2642 778 1305 1006
s641 166 70 78 101
s820 590 314 361 491
s1196 574 235 226 238
s1423 3943 577 651 1024
s1488 593 355 445 455
s5378 11481 458 806 646
total 26124 4569 5958 5870
s35932 257 127 - 150

In Table 1, after the circuit name, we show the original
sequence length produced byHITEC, followed by the sequence
length obtained after applying the proposed sequence counting
procedure. For comparison, we show the test length obtained
after applying the omission procedure from [1], and after apply-
ing the restoration procedure from [2] to the original sequences
produced byHITEC. In row total we show the sum of the test
lengths for all the circuits in the corresponding column.

In Table 2, after the circuit name, we show the original
sequence length produced bySTRATEGATE, followed by the
sequence length obtained after applying the proposed procedure.
For comparison, we show the test length obtained after applying
the omission procedure from [1], and after applying the restora-
tion procedure from [2]. In rowtotal we show the sum of the
test lengths for all the circuits in the corresponding column
excluding s35932 to which the omission based procedure was
not applied.

From Tables 1 and 2 it can be seen that the sequence
counting procedure results in lower test lengths for most of the
circuits considered. In addition, the total test length obtained by
the counting procedure for all the circuits considered is lower by
over 20% than the total test length obtained by the omission pro-
cedure, and lower than the total test length obtained by the
restoration procedure.

In its current implementation, Procedure 2 performs large
numbers of fault simulations to achieve the reported reductions
in test length. Methods to reduce the number of simulations

while retaining the compaction levels will be investigated. How-
ever, the current implementation was sufficient for demonstrating
the levels of compaction that can be achieved by allowing test
vectors to be reintroduced into the test sequence.

6. Concluding remarks
We presented an approach to improve the levels of compaction
achieved for synchronous sequential circuits by static test com-
paction procedures based on vector omission. Under the pro-
posed approach, referred to as sequence counting, test vectors
omitted from the test sequence can be reintroduced at a later
time. Reintroducing of vectors helps reduce the compacted test
sequence length beyond the length that can be achieved if vec-
tors are omitted permanently. The basic step of the proposed pro-
cedure consisted of replacing a vectorti at time unitk by a vec-
tor t j where j > i , and adjusting the rest of the sequence accord-
ingly. Experimental results comparing the proposed approach
with the previously proposed vector omission and vector restora-
tion approaches showed that higher levels of compaction can be
achieved by the proposed approach. This is to a large extent
related to the ability to reintroduce vectors that have already
been omitted.
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