A Graph Theoretic Optimal Algorithm for ScheduleCompression
in Time-Multiplexed FPGA Partitioning *

HuigunLiu andD. F. Wong
Departmenbf ComputerSciencesUniversity of Texasat Austin, TX 78712
Email: {hgliu, wong}@cs.ut&as.edu

Abstract

This paper presents an optimal algorithm to solve the schedule
compression problem, which is an open problem proposed by
Trimberger [1] for time-multiplexed FPGA partitioning. Time-
multiplexed FPGAs have the potential to dramatically improve
logic density by time-sharing logic. Schedule compression is
an important step in partitioning for time-multiplexed FPGAs
[1,4,9,10] and can greatly influence the quality of the partition-
ing solution. We exactly solve the schedule compression prob-
lem by converting it to a constrained min-max path problem.
We further extend our algorithm to minimize the communica-
tion cost during schedule compression. Experiments show that
our optimal algorithm outperforms the existing heuristics and
runs very efficiently.

1 Introduction

Time-multiplexed FPGAs have the potential to dramatically
improve logic density by time-sharing logic, and have become
an active research area in reconfigurable computing. Several
different architectures have been proposed for time-multiplexed
FPGAs [1, 2, 3, 4, 6, 7]. These time-multiplexed FPGAs allow
the dynamic reuse of the logic blocks and wire segments by
having more than one configuration controlling them. Thus the
logic blocks and interconnect can be reconfigured during run-
time by reading a different configuration which only takes time
in the order of nanoseconds.

For a time-multiplexed FPGA, a circuit is partitioned into
k sub-circuits (or stages), such that the logic in different stages
temporally share the same physical FPGA device by reconfigu-
ration and reuse of the logic blocks and the interconnect (Figure
1). Each stage is called a micro-cycleand the k micro-cycles form
one usercycle One user cycle should produce the same results
on the outputs as would be seen by a non-time-multiplexed de-
vice. Thus we can use a small physical device to emulate a
virtually large device.

Multi-way partitioning is a new and critical step in time-
multiplexed FPGA design. The partitioning solution must not
only satisfy the area and pin constraints for a physical device,
but also satisfy the precedence constraints among the nodes
and the timing constraint for each sub-circuit in order to guar-
antee the correct execution and performance. The partitioning

*This work was partially supportedby the Texas AdvancedResearctProgramunder
GrantNo. 003658288.

0-7803-5832-X /99/$10.00 ©1999 |IEEE.

Primary Primary
inputs outputs
Microcycle: 1 2 3 4

\ |
One user cycle

Figurel: Partitioning a large logic designinto multiple stagesto time-
shae thephysicaldevice

for time-multiplexed FPGAs can be formulated as a directed
acyclic graph (DAG) scheduling problem and the existing ap-
proaches include list-scheduling technique [1], enhanced force-
directed scheduling [4], and network flow based multi-way par-
titioning [9, 10].

The partitioning strategies [1, 4, 9, 10] for time-multiplexed
FPGASs have the following major steps. First, when the length
of the critical paths is larger than the number of stages, more
than one level of nodes should be put in one stage. The sched-
ule compression process determines the number of levels in each
stage, with the objective of minimizing the critical path width
(i.e. the maximum number of nodes on the critical paths as-
signed to any stage). Next, the rest of the nodes on the non-
critical paths are scheduled to a proper stage, with the objective
of minimizing the communication cost among the stages while
satisfying various design constraints. Different approaches [1,
4,9, 10] have been proposed for this step.

Schedule compression plays an important role in the par-
titioning for time-multiplexed FPGAs and greatly affects the
quality and feasibility of the partitioning process. When the
number of levels of nodes on the critical paths is greater than
the number of stages in which the design is to be implemented,
the schedule compression process merges multiple consecutive
levels of nodes on the critical paths into one stage, and decides
the depth of each partition.

Trimberger [1] proposed the importance of the schedule com-
pression problem for improving the time-multiplexed FPGA
partitioning solutions. He used a heuristic approach and left
an open problem whether the schedule compression problem
can be optimally solved. [4] also has a similar problem in their
enhanced force-directed scheduling process.

In this paper, we present an optimal algorithm to exactly
solve the schedule compression problem. We first show that it
can be converted to a constrained min-max path problem in a
directed acyclic graph (DAG), and then present a polynomial
time optimal algorithm.

Besides, we further extend our algorithm to take into ac-
count the communication cost during schedule compression. It
has been observed that the communication cost is usually a bot-
tleneck for scheduling a design into a time-multiplexed FPGA,

and minimizing the communication cost is the key objective
of the partitioning process. Our optimal schedule compression
algorithm is extended with the objective of minimizing the max-
imum communication cost for any stage, and the total commu-
nication cost for all the stages.

2 Problem Formulation

Schedule compression is a necessary step in time-multiplexed
FPGA partitioning [1, 4, 9, 10]. If the length of the critical path
is larger than the number of stages that is allowed to implement
the design, the schedule compression process dynamically deter-
mines the number of levels in each stage so that the nodes on
the critical paths will be evenly distributed over the stages (Fig-
ure 2). The maximum number of LUTs on the critical paths
in any stage is called the critical pathwidth. It is important for
the schedule compression process to minimize the critical path
width. Otherwise, very tight scheduling constraints can exist if
nearly all the LUTs in an FPGA device are consumed by the
virtual LUTs on the critical paths. This can lead to designs
that can not be scheduled in the given number of stages, thus
leading to slower designs or infeasible placement and routing
solution. Notice that after the schedule compression process,
nodes on the critical paths are fixed to certain stages, further
partitioning process is required to partition nodes on the non-
critical paths.

Let m be the number of levels on the critical paths in a
circuit G and let the i-th level (1 < ¢ < m) of the critical
paths has n; nodes. Let k (1 < k < m) be the target number
of microcycles to implement the design and let s (1 < s <
m) be the maximum number of levels that can be put in one
microcycle. Here s is decided by the timing constraint of the
design.

The schedulecompessionproblem is to divide the m levels
into k stages, with each stage having at most s consecutive
levels. The objective is to minimize the critical path width, i.e.
minimizing maz{w; | 1 < ¢ < k}, where w; is the total number
of nodes assigned in the i-th stage of the schedule compression
solution.

The schedule compression problem is also formulated as fol-
lows in [4]. Given a sequence of m numbers ni, ..., Ny, divide
this sequence into k subsequences with each subsequence hav-
ing at most s numbers, such that the maximum sum over all
the subsequences is minimized. In its enhanced force-directed
scheduling approach, [4] uses the concept of distribution graph
and needs the schedule compression process to assign depths
to the partitions, so that the LUTSs are evenly spread over the
partitions.

O

Figure2: Thescedulecompessionprocessmeiges multiple levelsof
nodesinto onestage.

Figure 2 shows a schedule compression solution.’ The length
of the critical path is 7, and the number of LUTSs on each level
of the critical pathsis 3, 3, 2, 3, 2, 2, 3 respectively. With £k = 3
and s = 3, we divide the sequence of nodes into 3 subsequences:
{3,3}, {2, 3} and {2, 2, 3}, each with weight 6, 5, 7. The critical
path width equals to maz{6,5,7} = 7.

Schedule compression can greatly improve the quality of the
partitioning result [1, 4, 9, 10]. It remains an open problem
whether there is an optimal solution for the schedule compres-
sion problem. [1] used a heuristic which greedily merges two
adjacent levels at a time to minimize the critical path width
until the number of stages reaches the pre-determined number.
[4] used an iterative decision version which takes O(m?’k) time.
[9, 10] used a simple heuristic of fixing the number of levels in
each stage to be the average of the total number of levels.

In the next section, we show that the schedule compression
problem can be optimally solved.

3 Optimal Algorithm for Schedule Compression

Now we present an optimal polynomial time algorithm to solve
the schedule compression problem. In Section 3.1, we show how
to reduce the schedule compression problem to a constrained
min-max path problem in a directed acyclic graph. In Section
3.2 we present a polynomial-time algorithm to optimally solve
the constrained min-max path problem.

3.1 Construction of a Directed Acyclic Graph

Given a circuit G, let m be the length of the critical paths, and
the 4-th level (1 < i < m) of the critical paths has n; nodes.
Let k£ be the number of stages and s be the maximum number
of levels allowed in each stage. We construct a directed acyclic
graph G' = (V', E') from G as follows.

1. V' ={vo,v1,..., um }, where v; (1 <4 < m) corresponds to
the i-th level in G and vo is a dummy node. Each node v;
(1 <4 <'m) has weight n;, and vo has weight 0.

2. For any two nodes v; and vj, if 1 < (j —1) < s, then add
an edge v; — v; in E' with weight w(s, j) = Ei:i+1 ng.

In G', the weight w(i,j) = Y ;_,,, nx for edge vi — v;
equals to the total weight of the consecutive levels from ¢ + 1
to j. Because a node v; can only have an edge to v; when
1< (j —1) < s, the out-degree of each node is no larger than s.
So the number of nodes in G’ is m + 1 and the number of edges
is O(s-m).

Definition 1: The weightw(p) of a path p: vi;, — ... = v,
is the maximum weight of any edge on this path, i.e. w(p) =
maz{w(i,j) | edge vi — v; is on path p}.

Definition 2: The constainedmin-maxpathproblemin G’ is to
find a path of length & from vg to vy, with the minimum weight,
i.e. with minimum maz{w(i,5) | edge v — v; is on the path }.

Figure 3(b) shows an example of the construction of the di-
rected acyclic graph G' from a circuit G in Figure 3(a). There
are seven levels on the critical paths in G, with each level hav-
ing weight 3,3, 2, 3,2, 3,3 respectively. A directed acyclic graph
G' is constructed with 8 nodes (Figure 3(b)) where v1 to vz
correspond to levels 1 to 7 in G. The weight of each v; is the
total number of nodes in the i-th level of the critical paths in G.
For example, v; has weight 3 because there are 3 nodes in level
1 on the critical paths. Node vy is a dummy node with weight

1Sincethe scheduleompressiomnly memgesthe nodeson critical pathsinto stagesin
thefollowing examplesin the paper only thenodeson thecritical pathsin G areshavn.

(@ G

Figure3: Building a directedacyclicgraph G, nodew; correspondso
thei-th levelin G.

0. The weight of each edge v; — v; is the sum of weight of the
consecutive nodes from v;11 to v;. For example, the weight on
edge vg — vs is the sum of weight of vi,v2 and wvs, which is
3+3+2=28.

Given a path p of length k in G', we can find a schedule
compresssion solution in G by the following: if edge v; — v; is
in p, then merge nodes from levels ¢ + 1 to j as one stage in the
schedule compression solution. Figure 4 shows an example. The
path vo — v2 — v5 — v7 corresponds to a schedule compression
solution with each stage having levels {1, 2}, {3,4,5} and {6, 7}.
We have the following properties of G'.

Figure4: A pathfromu, to v7 with length3 canform a feasiblesched-
ule compession.Eac edge on this path correspondgo a stege in the
schedulecompession.

Lemma1: A pathoflengthk fromvg to v, in G' correspondgo
a feasibleschedulecompessionsolutionin G.

Lemma 2: A path of lengthk fromvo to v, with the minimum
weightin G' correspondso an optimalscdhedulecompessionsolution
inG.

By Lemmas 1 and 2, we have the following theorem.

Theorem 1: Thesdedulecompessionproblemin G canbere-
ducedto the constainedmin-maxpath problemin G'.

By Theorem 1, the schedule compression problem in G can
be optimally solved if we can optimally find a constrained min-
max path in G’. In section 3.2, we present an optimal algorithm
for finding a constrained min-max path.

3.2 Finding a Constrained Min-Max Path

Now we present a polynomial time optimal algorithm CMP for
the constrained min-max path problem. The strategy is similar
to the algorithm of finding a shortest path of length k.

Algorithm CMP(G"):
Finding a constrained min-max path in G';
1. for i =1 to m do
d'(i) = w(0,1);
2. for n =2 to k do
for i =1 to m do
begin
d" (1) = oo;
forr=1—stoi—1do
if (maz(d" *(r), w(r,i)) < d"(i)) then
d" (i) = maz(d"~*(r), w(r,i));
ph(i) =r;
endif
end
3. return d*(m);

In algorithm CMP, array d"(i) (1 < ¢ < m) store the mini-
mum weight of a path from vy to node v; with length n, and ar-
ray p" (i) (1 < ¢ < m) is used to store the node r if edge v, — v;
is on the path. Let w(%, j) be the weight of edge v; — vj; if there
is no edge from v; to vj;, then w(s,j) = co. Initially, n =1 and
d* (i) = w(0,4) (1 < i < m), which is the minimum weight of a
path from vo to v; with length 1. In step 2, the algorithm runs
in a total of k¥ — 1 iterations. In the n-th iteration (2 < n < k),
d™(3) (1 < i < m) is recursively derived from d" (i) as follows:

d" (i) = min{maz(d"~*(r), w(r,q)) | (i—s) <r < (i—1)}

Since d"~(r) is the minimum weight of a path from v to
v, with length n — 1, by definition, maz(d"~*(r), w(r,1)) is the
weight of a path of length n from vy to v; via edge v, — v;
(Figure 5). We search through all v, to find a path with the
minimum weight (i.e. minimum {maz(d" *(r), w(r,4)) | (i —
s) <r < (i—1)}), and the node v, resulting in the minimum
weight is stored in p™(i). So d"(z) is the minimum weight of
a path from vo to v; with length n. Notice the range for r is
(f—s)<r<(i—-1).

w(r,i)

a path of length n-1 with Weighﬂn'1 (%)

Figure5: d™ (i) is theminimumof maz(d™ ! (r), w(r,4)) overall r.

After k — 1 iterations, d*(m) is the minimum weight of a
path from vg to vy, of length k, and the corresponding path can
be retrived from the array p. Therefore, d*(m) is the optimal
solution to the constrained min-max path problem.

Lemma 3: Algorithm CMP findsan optimal solutionto the con-
strainedmin-maxpath problem.

The time complexity for Algorithm CMP is O(k - s-m). By
Theorem 1 and Lemma 3, the schedule compression problem
can also be optimally solved. We have the following algorithm
SC for finding an optimal schedule compression solution. First
G’ is constructed and a constrained min-max path is found,
then the optimal schedule compression solution is obtained cor-
respondingly.

Algorithm SC: Optimal Schedule Compression
1. Construct DAG G';
2. Apply Algorithm CMP(G') to find a constrained
min-max path p in G';
3. For each edge v; — v; in path p,
group nodes in levels from 7 + 1 to j into one stage;

To find the length of the critical paths and which nodes
are on the critical paths, we can do the following. First, do a
AS-Soon-As-Possible (ASAP) and As-Late-As-Possible (ALAP)
scheduling in G, where each node v is assigned to the ear-
liest possible level e(v) and the latest possible level t(v). If
e(v) = t(v), then v is on the critical paths and on level e(v); oth-
erwise if e(v) < t(v), then v is on a non-critical path. The max-
imum e(v) (v € G) is the critical path length. After schedule
compression assigns nodes on the critical paths to stages, some
of the nodes on the non-critical paths are also fixed to certain
stages accordingly because of the precedence constraints among
the nodes. To take into account the nodes on the non-critical
paths, a variation of assigning edge weight in the construction
of G' can be the following: for each edge v; — vj, let weight
w(i,j) = {v]| i +1 < e(v) and ¢(v) < j, v € G}|. That is, the
weight of edge v; — v; is the total number of nodes in G which
can only be put within levels ¢ + 1 to j according to the ASAP
and ALAP scheduling.

(@ G

Optimal schedule compresion solution

Figure6: (a) Circuit G hassevenlevelsof nodeson the critical paths.
(b) G" is constructecand pathvg — v2 — v4 — w7 is a constained
min-maxpath. (c) Each edge on the constained min-maxpath corre-
sponddo a stage in theschedulecompession.(d) Anoptimalschedule
compessionsolution.

Figure 6 shows an example of the process of obtaining the
optimal schedule compression. In Figure 6(a), a circuit G has
7 levels on the critical paths, and the 7 levels have 3, 3, 2, 3,
2, 2, 3 number of nodes respectively. Figure 6(b) shows the
DAG G’ constructed from G, with k = 3 and s = 3. The path
vo — v2 — v4 — v7 is a constrained min-max path which has
weight maz{6,5,7} = 7. Figure 6(c) shows that an optimal
schedule compression can be derived from the constrained min-
max path. Since vg — vz is on the path, levels 1 and 2 are
grouped into one stage; v2 — v4 is on the path, so levels 3 and
4 are merged into one stage. Similarly v4 — v7 is on the path, so
levels 5, 6 and 7 are grouped into one stage. Therefore the three
stages will contain levels {1,2}, {3,4} and {5, 6, 7} respectively.
Figure 6(d) shows the optimal schedule compression solution.

4 Schedule Compression for Minimizing Communication Cost

The communication cost is usually a bottleneck in partition-
ing for time-multiplexed FPGAs. In addition to minimizing the
critical path width, it is also necessary and important to mini-
mize the number of interconnections among the stages. For ex-
ample, a schedule compression solution for minimizing the max-
imum number of nodes in each stage may cause a larger amount
of communication cost for one stage, which will influence both
the feasibility and quality of the partitioning, placement and
routing result. For circuit G, Figure 7(a) shows an optimal
schedule compression solution which minimizes the number of
nodes in each stage, but the total number of pins for stage 2
is 6. Figure 7(b) shows a schedule compression solution which
minimizes the communication cost and the total number of pins
for stage 2 is 4.

stage 1 2 3

Figure7: Sdedulecompessionwithout consideringcommunication
costcanleadto larger communicatiorcost. (a) A schedulecompes-

sion solutionwhich minimizesthe critical pathwidth. (b) A schedule
compessionsolutionwhich minimizeghe numberof interconnections.

In this section, we extend the formulation of the schedule
compression problem. It is desirable to find a schedule com-
pression which minimizes the maximum communication cost for
any stage and also minimizes the total communications cost for
all the stages.

Let m be the maximum number of levels in a netlist, and
the i-th level on the critical paths has n; nodes (1 < i < m).
Let k be the target number of stages to implement the design,
A be the area limit for each stage, s be the maximum number of
levels allowed in one stage. The problem of schedulecompession
with minimumcommunicatiorcostis to divide the m levels into
k stages, with each stage having at most s consecutive levels
(s < m) and with area no more than A. Let p; (1 < ¢ < k)
be the communication cost for the i-th stage in the schedule
compression solution. The objective is to minimize the max-
imum communication cost in any of the stages and minimize
the total communication cost for all the stages (i.e. minimize
maz{p; | 1 <1<k} and Ele Di)-

We show that this problem can also be solved in polynomial
time by converting to the shortestonstainedmin-maxpath prob-
lem, which is to find a constrained min-max path p such that
the total edge weight (i.e. the sum of weight of all the edges on
p) is minimized.

A directed acyclic graph G" = (V",E") is constructed as
follows.

1. V" = {vo,v1, ..., um }, where v; (1 < i < m) corresponds
to the i-th level in the circuit and v is a dummy node.
Each node v; (1 < i < m) has weight n;, vo have weight
0.

2. Add an edge v; — v; in E" if 1 < (j —4) < s and
Dkmipi ™ < A, with weight w(4,j) on edge vi — v;
equals to the communication cost assuming nodes from
levels i + 1 to j form one stage.

When 7 and j are set, the communication cost for all the
nodes in levels ¢ + 1 to j can be uniquely decided. The weight
w(z,) on the edge v; — v; measures the communication cost
if levels ¢ + 1 to j are merged in one stage. Notice the calcula-
tion of the communication cost depends on the time-multiplexed
FPGA architecture. Though different architectures [1, 4] have
different models for buffering signals, the communication cost
can be uniquely calculated based on a given architecture.

Similar to Lemma 1, by the construction of G”, a path of
length k from vo to v, corresponds to a feasible schedule com-
pression solution. The weight of the path corresponds to the
maximum communication cost for any stage, and the total edge
weight along the path is the total communication cost for all
the stages. Similar to Lemma 2, we have the following Lemma
4.

Lemma 4: A shortestconstained min-maxpath in G corre-
spondsto an optimal solutionto the schedulecompessionwith min-
imumcommunicatiorcostproblemin G.

We design the following Algorithm SCMP to find a shortest
constrained min-max path.

Algorithm SCMP(G™):
Finding a shortest constrained min-max path;
1. for i =1 to m do
begin
d* (i) = w(0,);
s'(4) = w(0,4);
end
2. forn=2to k do
for i =1 to m do
begin
d™ (1) = 00; §"(i) = o0
forr=i—stoi—1do
begin
if (maz(d™'(r), w(r,i)) < d"(i)) then
d" (i) = maz(d"~'(r), w(r,i));
s™(4) = s"1(r) + w(r,i);
p"(1) =r;
elseif (maz(d" *(r), w(r,i)) = d"(3)) then
if ((s"1(r) +w(r,i)) < s"(3)) then
5 () = 871 (r) + w(r, i)
p"(1) =r;
endif
endif
end
end
3. return d*(m);

In Algorithm SCMP, array d™ (i) and p™ (%) serves the same
purpose as in Algorlthm CMP. Array s™(4) is added to store the
total edge weight of the constrained min-max path with length
n from vy to vi. In the n-th (2 < n < k) iteration, the path
with the minimum weight from v to v; of length n is recorded
in d"(i); if there are multiple paths with different weight, then
the one with the minimum total edge weight is selected and the
total edge weight is saved in s™(z). After k — 1 iterations, a
constrained min-max path with the mlnlmum total edge welght
is found, with d* (m) being the weight and s*(m) being the total
edge welght of this path.

After the construction of G", Algorithm SCMP is applied
to find a shortest constrained min-max path. Then an optimal
schedule compression solution can be obtained by the following

mapping: if edge v; — v; is on this path, then the nodes in
levels i+ 1 to j will form one stage in the schedule compression.

The time complexity of building G” is O(n - s - m), with n
being the total number of nets in the circuit. This is because for
finding the weight of each edge v; — v;, the nodes in levels from
i+ 1 to j are grouped into one stage and the communication
cost is calculated, so in the worst case, every net in G need
to be checked whether it passes through the stage. There are
a total of O(s - m) edges in G"'. Thus, it takes O(n - s - m)
time to construct G'’. Algorithm SCMP for finding a shortest
constrained min-max path takes time O(k - s - m). Therefore
the time complexity for the optimal schedule compression with
minimum communication cost is O(n - s - m).

@ G

At

Shortest constrained min-max path of weight max{5, 4, 5}=5 and total edge weight 5+4+5=14

~ ;
o

d G

O

2 3

Optimal schedule compression with minimum communication cost

Stage:

Figure8: (a) Circuit G has7 levels. (b) ThedirectedacyclicgraphG”,
(c) A shortestconstained min-maxpathvg — vs — vs — vy With
weight5, andtotal edge weight5 + 4 + 5 = 14. (d) Thecorresponding
optimal schedulecompessionwith minimumcommunicatiorcost.

For the circuit G in Figure 8(a), a directed acyclic graph
G" is constructed in Figure 8(b). The number of stages is 3
(k = 3), and the area limit for each stage is 10 (A = 10).
There are 8 nodes, vi to vy correspond to levels 1 to 7 re-
spectively. The weight on the edge is calculated based on the
Xilinx time-multiplexed FPGA model, where the signals to be
passed to a later stage is stored in micro-registers and the
number of micro-registers in each stage is a measure of the
communication cost. The weight on edge vo — w3 is 5 be-
cause if levels 1 to 3 are merged into one stage, the number of
micro-registers for it will be 5. Similarly the weight on edge
vs — v is 4 because if the nodes in levels 4 to 6 are merged
into one stage, the number of micro-registers for this stage will
be 4. Figure 8(c) shows a shortest constrained min-max path
of length 3, vo — vs — vs — vy. The weight of this path is
maz{5,4,5} = 5, and the total edge weight is 5 +4 + 5 = 14.
The corresponding schedule compression solution with mini-
mum communication cost is shown in Figure 8(d). The three
stages have levels {1,2,3}, {4,5} and {6, 7} respectively, the
maximum communication cost for any stage is 5 which equals
to the weight of the shortest constrained min-max path, the
total communication cost is 14 which equals to the total edge

Tablel: Comparinghe schedulecompressiomesultsin termsof critical pathwidth

k=4 k=6 k=38
Circuits | #Nodes | #Nets | Depth | Fix [Optimal | Impv.% | Fix | Optimal | Impv.% Fix | Optimal | Impv.%
c3540 1038 1016 38 14 13 7.1 10 9 10.0 9 7 22.2
chb315 1778 1655 30 16 12 25.0 12 7 41.7 10 5 50.0
c6288 2856 2824 145 213 172 19.2 147 126 14.3 119 92 22.7
c7552 2247 2140 25 14 10 28.6 10 7 30.0 8 6 25.0
$9234 6098 5846 59 200 112 44.0 160 104 35.0 112 66 41.1
513207 9445 8653 60 91 64 29.7 75 44 41.3 64 35 45.3
515850 11071 10385 83 190 156 17.9 120 80 33.3 108 69 36.1
535932 19880 17830 31 | 2848 2592 9.0 | 2304 1920 16.7 | 1728 1440 16.7
s38417 25589 | 23845 84 39 26 33.3 33 20 39.4 28 12 57.1
s38584 22451 20719 57 139 127 8.6 101 76 24.8 123 56 54.5
Average 22.2 28.6 37.07

weight along the path.

5 Experimental Results

‘We implemented the optimal schedule compression algorithm in
C++ and experimented on the MCNC Partitioning93 Bench-
mark circuits. Table 1 shows the characteristic of these circuits.
Columns 2, 3 and 4 show the number of nodes, the number of
nets and the length of the critical paths in each circuit.

Table 1 compares the optimal schedule compression Algo-
rithm SC with the heuristic (Fix) in [9] which fix the number
of levels in each stage to be the average number of levels i.e.
[Z]. In our experiments, each circuit is compressed into 4, 6
and 8 stages, with the objective of minimizing the critical path
width. Columns 6, 9 and 12 show the critical path width of
each circuit in our optimal schedule compression solution, and
Columns 5, 8 and 11 show the critical path width resulting from
the heuristic. Columns 7, 10 and 13 show the improvement of
the optimal schedule compression over the heuristic. Our op-
timal schedule compression algorithm gains more improvement
over the heuristic when the number of stages increases.

The experiments show that the critical path width can be
greatly reduced when applying the optimal schedule compres-
sion algorithm, so that the partitioning result can be improved.
After the schedule compression process, the rest of the flexible
nodes on the non-critical paths will be partitioned. By mini-
mizing the critical path width in schedule compression, fewer
buffers and wires are consumed by nodes on the critical paths,
which leave more room to accommodate the other nodes on non-
critical paths and improve the final partitioning result. Our ex-
periments also show that the optimal schedule compression can
improve the partitioning solution for time-multiplexed FPGAs
by an average of 8%.

Since we do not have the implementation of the heuristic in
[1], the comparison is not conducted here. However, our algo-
rithm will produce better results than all the other heuristics
since it guarantees the optimal schedule compression.

Our algorithm runs very efficiently as expected, as the time
complexity of Algorithm SC is O(s-m) with m being the length
of the critical paths and s being the maximum number of levels
that is allowed in one stage (s < m). In our experiment, m
is no more than a few hundred for each circuit (as shown in
Column 4 of Table 1, m < 145 for the benchmark circuits). It
only takes a total of less than 1 second on Pentium Pro 200MHz
PC to compute the optimal schedule compression for all the ten
circuits.

6 Conclusion

We presented a polynomial time optimal algorithm for the sched-
ule compression problem proposed by Trimberger in [1]. By
constructing a directed acyclic graph, the schedule compression
problem is reduced to a constrained min-max path problem
and can be solved optimally in polynomial time. We further
extended our algorithm to solve the problem of schedule com-
pression with minimum communication cost. Experiments show
that our optimal algorithm outperforms the existing heuristics
and runs very efficiently.

References

L

_—

Steve Trimbeger, “SchedulingDesignsinto a Time-Multiplexed FPGA,
InternationalSymposiunon Field ProgrammablegateArrays Feb 1998.

2

—

N.B. Bhat, K. Chaudharyand E.S. Kuh, “Performance-orientedully
routabledynamic architecturefor a field programmabldogic device”,
MemorandunmNo. UCB/ERL M93/42, university of California, Berkeley,
1993.

13

—

JeremyBrown, Derrick Chen,et al. “DELTA: Prototypefor afirst- gen-
erationdynamicallyprogrammablegatearray”, TransitNote 112, MIT,
1995.

[4

o

DouglasChangand MalgorzataMarek-Sadwska, “Partitioning Sequen-
tial Circuitson dynamicallyReconfigurablé&PGAs”, International Sym-
posiumon Field ProgrammableGateArrays Feb, 1998.

5

—

DouglasChangandMalgorzataMarek-Sadwska, “Buffer Minimization
and Time-multiplexed 1/0 on Dynamically Reconfigurabld=PGAs”, In-
ternationalSymposiunon Field ProgrammableGateArrays Feh, 1997.

[6

—_

AndreDeHon,“DPGA-coupledmicroprocessorsZommoditylCsfor the
early21stcentury”,In IEEE Workshopon FPGAsfor CustomComputing
Machines 1994.

D. Jonesand D.M. Lewis, “A time-multiplexed FPGA architecturefor
logic emulation”,In IEEE Customintegrated Circuits Confeence 1995.

[7

—

8
[9

—_

Xilinx, TheProgrammabld_ogic Data Book 1996.

—

HuiqunLiu andD. F. Wong,“Network Flow BasedCircuit Partitioningfor
Time-multiplexed FPGAS”, InternationalConfeenceon ComputerAided
Design Nov. 1998.

[10] Huigun Liu and D. F. Wong, “Circuit Partitioning for Dynamically
Reconfigurable=PGAs”, ACM International Symposiunon Field Pro-
grammableGateArrays Feb 1999.

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

