A Framework for Testing Core-Based Systems-on-a-Chip

Srivaths Ravi, Ganesh Lakshminarayanand Niraj K. Jh&

TDepartment of Electrical Engineering
Princeton University, Princeton, NJ 08544

*C&C Research Labs
NEC USA, Inc., Princeton, NJ 08536

Abstract ner than has been done in previous work. To provide such a func-
Available techniques for testing core-based systems-on-a-chip (SOCs) tional test access, it allows complex core transparency modes,
do not provide a systematic means for synthesising low-overhead test where core transparency can be loosely defined as the ability of
architectures and compact test solutions. In this paper, we provide a the core to propagate test data from its inputs to its outputs (more
comprehensive framework that generates low-overhead compact test ~ formal definition is given later). Consider, for example, a situa-
solutions for SOCs. First, we develop a common ground for address- tion where we need to transfer data from an 8-bit input of a core
ing issues such as core test requirements, core access and test hard- 1o its 16-bit output. Our technique can make use of the fact that
ware additions. For this purpose, we introduce finite-state automata the core might provide a mechanism to compose the output vec-
for modeling tests, transparency modes and test hardware behavior. tor from two time-separated input vectors, whereas other tech-
In many cases, the tests repeat a basic set of test actions for differ- niques [6, 7] would consider the core incapable of executing the
ent test data which can again be modeled using finite-state automata. required data transfer and solve the problem by adding design-
While earlier work can derive a single symbolic test for a module in for-test (DFT) hardware such as test multiplexers.
a register-transfer level (RTL) circuit as a finite-state automaton, this @ It provides controllability and observability to cores on an as-
work extends the methodology to the system level, anditiadellly needed basis: past work [6, 7] requires all the inputs (outputs) of
contributes a satisfiability-based solution to the problem of applying a core to be simultaneously, though indirectly, controllable (ob-
a sequence of tests phased in time. This problem is known to be a servable). This can lead to significant area overheads, especially
bottleneck in testability analysis not only at the system level, but also if the test scheme for the core does not require all its inputs (out-
at the RTL. Experimental results show that the system-level average puts) to be simultaneously controllable (observable).
area overhead for making SOCs testable with our method is offig,4 ¢ It explicitly accounts for sequential test sequence requirements
while achieving an average test application time reduction d5%8 of cores: core test strategies apply a single symbolic test (a set
over recent approaches. At the same time, it provides 100% test cover- of test actions) to a core multiple times with different test data at
age of the precomputed test sets/sequences of the embedded cores. pre-defined time-instants. As opposed to the existing expensive
practice of meeting these test requirements with extra test hard-
1 Introduction ware, our technique tries to overlap multiple tests in time to real-
Embedded cores are being increasingly used to provide SOC solu- ize a low-cost solution, whenever possible. It requires SOC-level
tions to complex integrated circuit design problems. Synthesis of low- test insertion only as a last resort. It also effectively models di-
overhead test architectures and compact test sets for these SOCs is of ~ verse core test strategies like scan and BIST.
critical importance [1, 2]. The paper is organized as follows. Section 2 introduces trans-

Traditional approaches for testing SOCs rely on variants of bound- parency and test models through examples. Section 3 presents the SOC
ary scan or test bus to provide test access to the embedded cores [2, 3testing algorithm. Section 4 gives the experimental results and Section
4]. However, the area and delay overheads of such methods are usuallyd the conclusions.

high, as is the test application time for boundary scan based methods. 2 Transparency and Test Models
Another approach is to use existing functionality for testess of em- In this section, we present our models for different aspects of core-
bedded cores [5, 6, 7]. Even though such functional access approachegased testing. First, we introduce a novel way of modelingrtires-
reduce overheads, they are usually not flexible enough to handle em-parencyof a core using finite-state automata. Next, we model diverse
bedded cores made testable using diverse test methodologies such agst requirements for a core under test. Lastlyjliustrate a compact
scan, built-in self-test (BIST), sequential test generatta, and efficient test architecture derived for an SOC with the help of a test
In this paper, we present a comprehensive technique for testing strategy (Section 3) employing these models.
core-based SOCs. Our solution focuses on effectively reducirtgshe 21 Transparency of a core
application time in addition to reducing the test overheads, while pro-
viding complete test coverage of the test sets/sequences of the embedfoll
ded cores. The key strengths of our work are as follows.
¢ ltis able to use individual cores to transfer test data to and from
the core under test in a much maggressivandeffectiveman-

We first formalize the notion of transparency used in our work as

ows.

Definition 1: Transparencyof a core is a collection C of non-

deterministic finite-state automata [8P'Ithat allows test data to prop-

agate from a set of its inputs | to a set of its outputs J
Backnowledgments: This work was supported by NSF under Grant No. The advantages of using a finite-state automaton (FSA) to de-

MIP-9729441. scribe tranparency are manifold. First, we can compactly describe

0-7803-5832-X /99/$10.00 ©1999 |IEEE.

-
s ~Tany
s 8 7~ operation

LoadR1

data

(@) (b)
—
. . ta

Figure 1:(a) An RTL element, and (b) transparency F‘ﬁﬁﬁf - :1 Controller gggtarg/ m
temporally-separated circuit events. For example, if we examine the l1 I
transparency of a regist®l, we can deduce that the element (at some T |r Lr REGT
time instant) can propagate data at its input updwoadRL operation. |
Subsequently, the data is available at its output for as many cycles as : 116 ggg‘f,da,y
allowed by theHoldRL operation. Subgraphl in Figure 1(b) com- - - -——-——"-"-—---—-——-—————————"b——————
pactly captures this behavior (note tt&it would need to be changed Generate
to an accept state for this purpose). .)

We can also use an FSA to capture spatial aggregation of test data. Figure 2:RTL block diagram of cor®G1

Consider, for example, the two 8-bit registers shown in Figure 1(a),
whose outputs aggregate to form a 16-bit dasa The transparency
behavior for theinl/data pair is given by the FSATigf‘a, shown in
Figure 1(b). Start states are depicted by an incoming arrow and accept
states by a doubldlpse. Observe that thenaotation along the states
and edges gives us the information necessary to compose our objective
in time and space. Suppose that we require a vahtelatato be jus-

tified frominl in the shortest time possible, assuming no other external
constraints on the control signals. The shortest-path solutions directly
available from Figure 1(b) are (&) to S3 via Sl, and (b)0 to S3 via

@ I* Cc = load,
ml, Lr*f
R T

Imi, Lt/

mi, Lr, Lm
Op= (Out<-In2)*/

2. Both solutions take two time-steps. In (a), setting of the higher "7 a

(lower) 8 bits ofdatais achieved in the first (second) time-step, while Figure 3:Transparency behavior f@G1

in (b), it is the reverse (indicated by the annotation to st8tesndS2,

respectively). with the operations performed in that cycle. For example, the transi-

In this way, we can represent the transparency behavior of an RTL tion from stateS2 to S3 is labeled withR, T, which indicates that an
element in a compact manner using an FSA. Since a core can beinput of R=0,T = 0 when applied tdDG1 in stateS2 transferdDG1
viewed as an interconnection of RTL elements, we can clearly extend to stateS3. In stateS3, CTRloads its input (as given by the anno-
the transparency behavior concept to the core-level. For this purpose,tation Cc = load to stateS3). Observe that the FSA is only partially
we first pre-compute the transparency behavior for the different RTL specified, thereby giving only the necessary information required for
elements. We next perform RTL symbolic justification and propaga- transparency analysis.
tion analysis to compose a transparency behavior for the core outputs Consider the problem of propagating a test data sequente? >
in terms of the core inputs. Exptmg the equivalence of regular ex- from Datato Generate From Figure 3, we can see that the p&th
pressions and FSA, we tailored an existing regular expression basedto S5 (via S1, 2, S3 and$4) in the FSA has two accept stat&d,and
justification and propagation framework [9] for this purpose. Model- 5. If we examine the patB0’ to $4, we need/1 atData at timet = 2
ing of core-level transparency behavior using an FSA is analyzed in for providingvl at Generateat timet = 4. Likewise, patn8)’ to S5
the following example. propagates?2 atData at timet = 3 to Generateat timet = 5. From

Example 1: Consider the cor®G1 shown in Figure 2. It is a part of the annotations to the edges, we can see that the data transfers are ac-

an SOC used as a data address generator. The core consists of a 16-bfvated from the start state by the following input sequend& @t 00,
inputData, a reset inpuR, a testinpufl and a 16-bit outpuBenerate followed by 00, 00, 00 and 00. In this way, we can use an FSA to effec-

The core has an arithmetic logic umi-U, and a counte€ TR which tively propagate a test data sequence anc_:l also determine the additional
facilitate both logical and arithmetic modifications to theut data. constraints¢.g, R’ T here.) that facilitate this transfer. .

Let us analyze the transparency behaviobGfl as shown in Fig- 2.2 Core test requirements
ure 3. The FSA has one start st&@ and six accept stateS0, Diverse strategies adopted by different core vendors to test a core
$4,.-.,S8. States) and0 have the property that incoming transi- create a range of controllability/observability objectives for an SOC.
tions to these states preserve the previously held values in the differ- For example, high-level symbolic test generation techniques [9] for
ent register elements. Therefore, it follows from Figure 3 that values RTL circuits have controllability and observability requirements only
generated at an accept state (other tBanare always available for at some specific time-instants (don't cares otherwise). Test strategies
one extra time-step through a trétien to SO. This is useful when we such as scan, BIST, sequential test generagitm place similar cycle-
useDG1 to feed cores that require the same test data for an extra cy- by-cycle requirements. Consequently, an SOC test framework must be
cle. The edges in the FSA are annotated witbut labels that denote flexible enough to encapsulate different specifications of test sets and
the values required at the primary inputs, while states are annotated also provide a common ground for systematic analysis. In the follow-

/* output 1st 16-bits of

ing example, we illustrate how an FSA can provide a convenient and response j-1 at Out */
compact representation to the given core test requirements. // e it 16-bits of state vector
Example 2: Consider the cord LU in the SOCSysGenshown in / at Lo, output next 16-bits of
Figure 4 with a test inputestthat serves to enforce a scan test strategy / Tf;i‘insej_l aou
imposed by the core vendor drLU. Suppose the scan implementa- Fscan_in ("test) / Gg/* repeat above process */
tion of TLU has 16 parallel scan chains, each of lengthes, (having and capture / Testet
4 flip-flops on its path), running frorho to Out. WhenTest= 1, the response ! /)
. . . . / f : [* repeat above process */

core scans in (out) the input (output)lat (Out). Since the scan-chains v-1 ‘@ ’C:gf*u",g?ez‘;;eng:;t;'ng)
are of length 4, a sequence of four 16-bit state vectors must be scanned Sean_out response -1/ Tesrt _
in with Testas 1 before applying the required input test vector (with Y Veclor Lo oy i crstate
Test=0). Suppose the core vendor provided a s&f ekctors in the Prscan_out @ \\
combinational test set to test the scan implementatidnLaf. Testing response V" I"capture response j*/
this core in isolation, therefore, consunweS(4 + 1) + 3 clock cycles. (@) (b)

K S et Controller Figure 5:(a) An FSA depicting a general scan test schedule, and (b)

TES . injolto 15] partial decomposition to me&t_U’s scan test requirements

Data’

16
M ©
RT DG1 CLK @
Test_Start =1
4 .
2 ? /¥ input vector 1 at (Data, R, T)*/

CLK Generate c4
-ELJJHE /* input vector 2 at (Data, R, T)
input vector 2 at (Data, R, ,
1 | 16 El”out13 10 15] output response 1 at (Generate) */ /* output Test_Flag */

]
In[16 to 31] L 1y .
o1 Hi Lo 13 Out[0to 12]]
t:.%_.,> Tel—» Rdy1 . - '
CLK —| / t vector N-1 at (Data, R, T, " .
E La| Reset TLU Tc2——= Rdy2 od?p‘ill% rg;grgse N—aZ Eat ?Gaenerat)e) */ @ /* output Test_Flag */
c2 Test [—4— Out[16 to 31]
16 /¥ input vector N at (Data, R, T)
output response N-1 at (Generate) */ @ /* output Test_Flag */
Figure 4:SOCSysGenenhanced by our testing scheme
The above test requirements are modeled by the FSA shown in Fig- @ I output response N at (Generate)"/ @ *output Test_Flag*f
ures 5(a) and (b). Figure 5(a) models a general scan test schedule as (a) (b)

an FSA consisting of a start stattart, an accept statéinish and two .

other statesestl andtes. Each state represents a high-level granu- Figure 6:FSA representing test schedules for (a) sequential test gen-
larity of test actions (as represented by the annotations to the states),eration forDG1, and (b) BIST of a memory module

and, in turn, can be decomposed into an FSA. For example, the steady-

state scan actions of applying the test vector after scanning in the statefoym a part of the low-overhead test architecture obtained by using the
vector and scanning out the previous response (represented by stateyigorithm proposed in Section BysGenmanipulates a 32-bit input
test in Figure 5(a)) can be decomposed into the FSA shown in Fig- |n using two main computational block®G1 andT LU, to generate

ure 5(b). This decomposition is shown in the context of the scan test 5 32-pjt outpuOut and two 1-bit outputRdyl andRdy2. A control

requirements of the cofBLU. Scanning one test pattern intd.U re- unit CU sequences the activity BG1 andT LU based on two system
quires four cycles of shifting from the input wifhest= 1 (indicated inputs,SetandMode Assuming that separate test sequences are pro-

by statesS0 to $4). Simultaneously, we also scan out the stored test yjiged for testingCU andDG1 (when they are standalone), and a com-
response. Thereafter, we can apply the input test vector inge pinational test set for the scan implementatioTaiU, we will eval-
Test=0 (4 — b transition). If there ar¥ test vectors, this FSAis yate the test architecture derived to provide testability to the different
executed/ — 1 times accounting for the self-loop at stégst. n blocks inSysGen The test controller on the chip is a simple finite-
The FSA to model sequential test sequences and BIST can be ob- state machine that loads a set of input vectors (whest= 1) through

tained in a similar fashion. For example, we can use a sequential test existing system inputsi[16 to 19]. The test controller feeds con-
generator such as HITEC [10]_ to generate a sequence of test vectors,, | inputscl, c2, c3 andc4 of the different test hardware shown.

for the gate-level implementation of co®G1. We can then model

this test schedule by the FSA shown in Figure 6(a). Similarly, we F——————————————
can model a BIST test scheme for a memory module that has a 1- | L

bit TestStart input and a 1-bifTestFlag output by the FSA shown e T . R I
- . X ; i

in Figure 6(b). In this way, FSA representations of basic test sched- 4 15 16 '+7: 9 13 1l 15 '+]1|6 irime
ules provide a common ground for creating a systematic framework | Steady-state data stream at Lo |

for their analysis (Section 3). This, in turn, leads to a compact and - _!

low-cost test architecture design discussed next.

2.3 System test architecture
In this section, we first introduce an example system test architec- Let us compute the test application time to t€&tJ under this ar-

ture generated for an SOC, and then quantitatively analyze it for pos- chitecture. Figure 7 shows the steady-state flow of test déta fadm

sible test application time savings in comparison with existing tech- In[0 to 15] using the transparency behaviof@1. Suppos®G1 al-

niques. lows variable-latency transparency. Specifically, assume that the first

Example 3: Consider the SOCSysGen shown in Figure 4 once vector can propagate throu@1 in four cycles, but subsequentvec-

again. The blocks shaded in grey indicate the additional hardware that tors take only one extra cycle to propagate through it because of a

Figure 7:Steady-state data streaniatfor testingT LU

pipeline in it. The scan action described by the FSA in Figure 5 is
realized by the window shown in Figure 7. Specifically, four 16-bit
vectors are scanned in lab throughDGL1 at cycles +9,i+13,i+14
andi+15. Since the state fLU must be preserved between cycles
i+9 andi + 13, the test controller setd = 1 within this period to gate

the clock of T LU (and thus preserve its state). The circuit response is
captured at cycle+ 16, and scan-out takes four cycles startingtdt7.
However, since scan-in of a new state vector and scan-out of the previ-
ous captured response can occur simultaneously in the window shown,
it takes eight cycles per test vector to t&$tJ.

We next compare our scheme with the ones presented in [6, 7]
which only allow constant-latency transparency. In other words, un-
der their schemeDGL1 can only feed the desired 16-bit vectord
every four clock cycles (the clock needs to be gated here as well to
preserve the state when necessary). Thus, in the steady state, it take
16 cycles to scan-in the desired state ifitdJ and four more to feed it
the desired test vector, for a total of 20 cycles (scan-out can take place
in parallel with scan-in as usual). This means that our scheme results
in a test application time speed-up of 2.5X for testinigu. [|

In the next example, we will illustrate how our rhetdology can
also help lower area and delay overheads.

In2

|
|
|
Il Asicz ASIC2 :
|
| Out Out \ |
| opaque :
|
| 16 :
transparent
: Inl In2 under our |
ASIC3 model |
: 16 AN |
| Out |
| transparent |
| 16 |
| |
| In |
|
| ASIC4 |
: Out cuTr |
| + system |
| ‘I;_ 16 boundary |
_________________________ -

Figure 8:An SOC with an unnecessary test enhancement

Example 4: Figure 8 depicts the main components of an SOC
called SysProd(ignore the shaded mux temporarily and assume that
ASICL.Out is connected directly t&\SIC3.In1). Consider the objec-
tive of testingASICG4 with a given test sequence at its inpuoitand ob-
serving the resulting test neanses at its outp@ut. The transparency
characteristics of the different cores, which are significant for the testa-
bility of ASIC4, are as followsASICL is opaque (empty transparency
set), while coreASIQ2 andASIC3 are transparent. The transparency
of ASIC2 is significantly different since it takes 4-bit inputs at time-
instants 1, 2, 4 and 5 to compose a 16-bit input at time-instant 6. This
is depicted by the FSA shown in Figure 9. The testability schemes pro-
posed in [6, 7] cannot model this transparency. Consequently, the only
option for those schemes is to provide test datASiHC3.In1 through
additional test hardware. This is done by adding the shaded test hard-
ware shown in Figure 8 for this purpose, causing area and delay over-
heads.

Subsequent testability analysis by our algorithm in Section 3 ex-
ploits the transparency &SIC2 and determine8SIC4 to be testable.

Output at
ASIC2.0ut

input ASIC2.In

input ASIC2.In /*Next 4 bits*/

/* Top 4 bits of Out*/

input ASIC2.In

> input ASIC2.In
[*Next 4 bits*/

/*Lowest 4 bits*/

Figure 9:Partial FSA representing transparency behavigk®IiC2

overheads. This case study clearly suggests that better test and trans-
parency models are crucial in the development of low-overhead SOC
test solutions. [

3 The SOC Testing Algorithm

In this section, we detail the algorithmic aspects of our methodol-
ogy. Our algorithm takes as its input a system of cores, their connectiv-
ity and test requirements, and outputs a low-overhead test architecture
and a test schedule that facilitate its testability. In the process, it fol-
lows the steps outlined below.

¢ The first step in the algorithm is to model the transparency and
test requirements of the individual cores (Section 2).

In many cases, the core tests involve a repetition of a basic set of
test actions (a single symbolic test) for different test data. There-
fore, we next perform system-level symbolic justification and
propagation to satisfy the requirements of this symbolic test. This
is very similar to symbolic RTL testability analysis for testing an
RTL element é.g, functional unit, register, multiplexeetc) in

a standalone core with a symbolic test vector. Hence, we adopted
theregular expressiobased symbolic testability analysis scheme
from [9] for this purpose. Note that the analysis scheme in [9]
was applied to individual cores, not SOCs. In general, any other
high-level testability analysis scheme can also be used to deter-
mine the system-level test actions for a single symbolic test. For
such cases, the solution capturing the cycle-by-cycle test actions
is simply equivalentto an FSA.

Unlike the analysis which terminates at this juncture for a stan-
dalone core, we need to compose a sequence of SOC tests at
time-instants dictated by the test models. If such a sequence is
not realizable with the existing transparency and connectivity, we
employ additional test hardware,g, clock gating or system-
level test multiplexers, to relax the core test requirements and
output a low-cost solution. Finally, we employ the framework
provided in [9] to minimize the test hardware added.

Composing a test sequence

We now propose a Boolean satisfiap based framework for com-
posing a test sequence from a single symbolic test. We first illustrate
our method with the help of some simple examples.

Example 5: Consider, for example, the FSA for a single symbolic
test shown in Figure 10(a). If the system operates according to the
sequence of actions specified by this FSA, we achieve the test objec-
tive when the system enters the accept sglte LettN denote the
time-instant associated with staN assuming the time-scale starts
with stateS0 att0. Now, suppose that the test requirements specify
that the test objective must be achieved every two cycles in the steady-
state. In other words, we require the system to enter accept3ftate

at time-instantgN, tN+2,tN +4, etc This, in turn, is possible if we

can pipeline the FSA as shown in Figure 10(b). From the time-chart
shown, it is evident that we can realize the sequence of tests if and only
if statesSN, SN- 2, etc, co-exist, and, state3N- 1, SN- 3, etc, also

Hence, no additional test hardware is necessary for test data access ato-exist. In other words, we merely need to check if the odd-numbered

ASICA.In from the system inputs, leading to savings in area and delay

group of states and the even-numbered group of stateoanpatible

w [/ SN-2 SN-4 . e o
® —
e - T T T ™~
tN+1 / SN-1 SN-3 ® e o
) \ 7/
@ IN+2 SN-2 ® ° e
.
.
@ tN+3 SN-1 [] [] []
states
O tN+4 | time [] [] L]
(@) (b)

Figure 10:(a) An FSA for a symbolic test, and (b) a time-chart show-
ing multiple tests phased in time

(a formal definition follows) for realizing the given test objective every
two cycles. [|

From the above example, we can infer that a sequence of test ob-
jectives can be met, provided that (a) individual test objectives are sat-
isfied, and (b) some states arempatiblewith other states, witltom-
patibility formally defined below.
Definition 2: Two states5 andsS; of an FSAA arecompatibleif and
only if there exists an input trait®n to § performing a set of opera-
tions that can concurrently overlap with the operations associated with
an input trangion to S.

In the next example, we will study the additional issues that must
be considered when the FSA for a single symbolic test is available. We
will also motivate why a satisfiability-based approach forms a natural
solution to the problem.

Example 6: Figure 11(a) shows an FSA representing a single sym-
bolic test that consists of a start st&@ and accept stateS3, 4

andSb, with the compatibility relationships among the different states
given as a compatibility graph in Figure 11(b). The compatibility

graph has an edge between two states if and only if the states are com-

patible.

Consider the problem of scheduling successive tests at time-instants
3, 4, 5,etc To accomplish this, let us instantiate the single-test FSA
multiple times (say 5), as shown in Figure 11(@n@re the dotted
encirclements for now). Clearly, we can realize the multi-test objec-
tive shown only if we can realize objectiv&@€ STL, TEST2, TEST3,
TEST, andT EST5. We can rewrite this statement in the conjunctive
form with Boolean variablesigifoélows.

TESTS: /\ TESTI L

SinceT ESTiis achieved if a path to the accept state from the start
state exists in its FSA instantiation, we can construct an existential
Boolean expression foF ESTias follows. Considef ESTL. TESTL
is 1 only if stateS0 exists at time-instant 1 (which can be represented
by a Boolean variabl&0?, where the subscript t80 denotes the test

FSAComposeTestSetarray<cFSA> Tests
array<Graph» CG, FSACoreTestint Win){
TimeChart= PhaseTest¢TestsCoreTestWin);
TEST S=ClauseGen(TimeChar{ CG);
Soln= SAT.SolvéTEST$;
Sch= Schedul€TestsCoreTestSoln);
return Sch}

abwN -

Figure 12:Pseudocode for composing a sequence of tests

For the Boolean expressidrE ST Sn Equation (1) to be complete,
we must also consider the constraints due to the compatibility graph
(see Figure 11(b)). Specifically, the incompatibility of st&fewith

stateS3 translates to the Boolean expressiigh; AS-1(S0, — S3) 0

(K[- SDij*z). The Boolean expressidNCOMPAT below captures
the incompatibility relationships as given by the compatibility graph.
AN - s8) DSt — 2 oesy

i=1j=1

- S OEET - S D™ - sy

INCOMPAT

o2 - S8 (2™ - B 0(s3)*2
— S 0(SY 2 — S (S — 247)
(3% — SA2) 0(S3™ — SB[LA™ —
1) (A2 — SB2) (A2 — Bi2)
[(SE*2 — $22) (52 — B[*2) (S5} 2

— $47) ®3)
Finally, we can rewrite the expression fDEST Sas follows:
i=1,,5
TESTS = (/\ TEST)OINCOMPAT 4)

where the expressions farE STiandINCOMPAT are given in Equa-
tions (2) and (3), respectively. Solving for satisfiabilityToE ST Sde-
termines if the sequence of test objectives can be realized. In this par-
ticular caseT EST Ss satisfiable (with variableS0}, S1%, $43, 03,

S23, 63, 03, S13, 43, 07, 23, 65, 03, S1€ andS4L being 1). This
solution is pictorially represented by the dotted encirclements shown
in Figure 11(c). Test schedu&chl shown in Figure 11(d) is a direct
translation of the time-chart and the satisfiability solution. A state in
the test schedule is a tuple of states existing at that time-instant for
some instantiation in the time-chart. However, this schedule is a so-
lution only for a finite number (five) of test objectives. We can extend
this schedule to the infinite case by comparing states for equivalence.

index and the superscript denotes the time-instant), and if one of statesye note that statest, 2, 0) repeats irSchL.. Using state equivalence,

Sl or X exists at time-instant 2 (giving rise to the Boolean expres-
sion 17 0S2?) 0(S13 — S29)), and so on. Additionally, only the
transitions specified in the time-chart must be considered. For exam-
ple, stateSl existing at time-instant 2 implies that ste8@ exists at
time-instant 1. This implication automatically translates to the Boolean
clause §12 — S0}). The conjunction of the clauses thus obtained
forms TESTL. Consequentlyl EST]j fori = 1,---,5, is obtained as

follows.
TESTI

() Ot o2 Ot - 2 0(se2 o
SO 2) (S - A (2 - F) O
(A2 - S (st -) O(s2i*t — S0y O
(S37% - S 0S4 — SI™) D(SH™ — 27)2)

we can obtain the compacted schedsi#®, as shown in Figure 11(d).
ScheduleSci? clearly satisfies an infinite number of test objectivas.

The pseudocode for SOC test sequence coitiposs given in
Figure 12. The functiorComposeTestSedakes as its input an ar-
ray of FSATestswhich must be phased according to the test require-
mentsCoreTest The compatibility graph foeach FSA inTestsis
precomputed using Definition 2, and is passed asrthatiarrayCG.
The functionPhaseTestgyenerates the time-charmeChartusing the
FSA Testsand the specific test requireme@sreTesistatementl).
ClauseGen(statemen®) usesTimeChartandCG to construct the set
of conjunctive clauseSESTSas described in Example GatSolve
(statemenB) next check§ ESTSor satisfiability and if satisfiable, the
function Scheduléstatemend) returns a valid test schedule.

/
——— F/ %,B\— 4] Sch1
/ —
“5o\ GO
i _ 7‘(? 4(. 224 o 7)7\/?70 \<\> [N K I Equlva/enl Sehz
R il s :

\ 4 7 "s0)
3 ossas4y sy st \eAl % |
- j\ | T 7(’7// N\ /
\ s1/ s2 SO
4 S3 s4 S8 | A 4f—>
,,,,,,,,,,,,,,, " R W B, N
Sl Ve -
so \ s1 s2 S0
S SSANSA) SY AL L,,7/,/ [
/J\ \\ \ | /
6 S3 s4 \ si ‘Sll s2 @
@

s

@'@e@

o % (A (S N IR | Sa\ 84y s
TEST1 TEST2 TEST3 TEST4 TE§F5 (d)
(b) ©)
Figure 11:(a) A single symbolic test, (b) its compatibility graph, (c) time-chart for multiple-test objectives, and (d) final test schedules
Table 1:Testability results vided for them.
Area Tapp 5 Conclusions

SOoC Orig Mod Ovhd [6] Our Red We provided a comprehensive framework for analyzing the testa-

(%) | (cyc) | (cyc) | (%) bility of core-based SOCs for generating low-overhead test architec-
SysGen| 666330 | 678807 | 1.87 4620 2460 | 46.75] tures and compact test schedules. Salient features of this work include
Grid 1225502| 1330840| 8.59 | 34312 | 7184 | 79.06|| the modeling of transparency, tests and test hardware using finite-state

Stard 730881 | 773175 | 5.79 | 68224 | 7184 | 89.47| automata, and providing a rigorous system-level testability analysis
Mesh 056044 | 967800 | 1.23 | 46629 | 8197 | 82.42 | framework. Experimental results show complete test coverage with

Starg 018312 | 957620 | 4.28 | 271696| 13968 | 94.86 low area overheads and test application times.

_ o _ References
The solution scheme outlined in Example 6 phases a single sym- [1] P.Varma, “System chip test: Are we there yet? Piroc. Int. Test
bolic test infinite number of times. For this example, a small window Conf, p. 1144, Oct. 1998.

of tests is sufficient to determine a valid test schedule (existence of one
or otherwise). Since the actual bound on window size is theoretically AT
exponential in the number of states, our algorithm starts with an ini- based system chips,” ifiroc. Int. Test Conf.pp. 130-143, Oct.
tial window size value and explores the solution space until a user- 1998.

specified limit, Win, is reached. If a null test schedule is returned in [3] N. Toubaand B. Pouya, “Using partial isolation rings to test core-

[2] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core

the process, test hardware, such as clock gating or test multiplexer, is based designslEEE Design & Test of Computengol. 14, no. 4,
added to relax the core test requirements, and symbolic test generation pp. 52-59, 1997.

IS repeate(:i. [4] P.Varmaand S. Bhatia, “A structured test re-use methodology for
4 Experimental Results systems on silicon,” ifProc. IEEE Int. Wkshp. Testing Embedded

We next present experimental results obtained by applying our al- Core-Based Systenisov. 1997.
gorithm to some example SOCs. The SGgsGenwas seen in Sec-
tion 2. SOCsGrid, Star4, MeshandStar8 are systolic architectures “Macro Testability: The results of pduction device applica-
proposed to study the performance of digital signal processing appli- tions” in P | ty:r t Conf 2328241 NOV. 1992 PP
cations. They consist of processor cores connected in different config- ons, nFroc. Int. fest&ontpp. » NOV.)
urations to effect pipelined processing of input data. [6] I. Ghosh, N. K. Jha, and S. Dey, “A low overhead design for

The testability results are given in Table 1. Columns 2 and 3 give testability and test generation technique for core-based systems,”
the area of the SOCs before and after running our algorithm. The area in Proc. Int. Test Confpp. 50-59, Nov. 1997.
numbers are actual layout numbers generated after placement and rout- 7] 1. Ghosh, S. Dey, and N. K. Jha, “A fast and low cost testing tech-
ing with the Octtools package from University of California, Berkeley. nique for core-based system-on-chip,”Rnoc. Design Automa-
Column 4 reports the resultant area overheads for these SOCs, with an tion Conf, pp. 542547, June 1998.
average of only 4%. Columns 5 and 6 compare the test application
time for our approach with the one in [6], which drastically reduces
test application time compared to the traditional approaches. Column
7 gives the percentage reduction in the test application time, with an [9] S. Ravi, G. Lakshminarayana, and N. K. Jha, “TAO: Regular ex-
average of 78%. Since the scheme in [6] cannot handle some of the pression based high-level testability analysis and optimization,”
SOCs, we conservatively extended their approach to estimate the test in Proc. Int. Test Confpp. 331-340, Oct. 1998.
application time. Our testability approach achiet66% test coverage . “ . .)
of all embedded cores in all SOCs. For example, the test architecture [10] ;Qle\lIfirrrlaer(;::tcijal\](.:iiui:te ilis?rcl)—LITESrb,:et:rs]theesrilgrr]azﬁPo&10_k
derived for the SOGysGen(see Figure 4) provides complete access tion Conf, pp. 214-218 Féb 1991'
to apply the scan tests for the cdreU as well as the precomputed test T ' ' '
sequences for cor€dJ andDGL1. In this way, all embedded cores are
completely tested with the precomputed test sets (or sequences) pro-

[5] F. Bouwman, S. Oostdijk, R. Stans, B. Bennetts, and F. Beenker,

] M. Sipser,Introduction to the Theory of ComputatioRWS Pub-
lishing Company, Boston, 1997.

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

