
Cycle Time and Slack Optimization for VLSI–Chips

C. Albrecht B. Korte J. Schietke J. Vygen

Research Institute for Discrete Mathematics, University of Bonn

Lennéstr. 2, 53113 Bonn, Germany

Abstract

We consider the problem of finding an optimal clock schedule,
i.e. optimal arrival times for clock signals at latches of a VLSI
chip. We describe a general model which includes all previously
considered models. Then we show how to optimize the cycle time
and optimally balance slacks on data paths and on clocktree paths.

The problem of finding a clock schedule with the optimum cy-
cle time was solved before, either by linear programming or by
binary search, using a test for negative circuits in a digraph as a
subroutine. We show for the first time that a direct combinatorial
algorithm solves this problem optimally. Incidentally, this yields a
new efficient method for timing analysis with transparent latches.

Moreover, we extend this algorithm to the slack balancing prob-
lem: To make the chip less sensitive to routing detours, process
variations and manufacturing skew it is desirable to have as few
critical paths as possible. We show how to find the clock schedule
with minimum number of critical paths (optimum slack distribu-
tion) in a well–defined sense.

Rather than fixed clock arrival times we show how to obtain as
large as possible intervals for the clock arrival times. This can be
considered as slack on clocktree paths. Indeed, we can find the
global optimum of simultaneous optimization of slacks on all data
paths and clocktree paths.

All the above is done by very efficient network optimization
algorithms, based on parametric shortest paths. Our computational
results with recent IBM processor chips show that the number of
critical paths decreases dramatically, in addition to a considerable
improvement of the cycle time. The running times are reasonable
even for the largest designs.

1 Introduction

Optimization of the cycle time is a main goal in VLSI chip design.
All computations on a chip are synchronized by storage elements
which receive a clock signal periodically. The period is called the
cycle time and is denoted byT in this paper. We solve the problem
of finding an optimal clocking schedule to minimizeT.

In Section 2 we develop a very general model and show how to
model various constraints. In Section 3 it is shown that the prob-

lem of computing the optimum cycle time reduces to a parametric
shortest path problem. This can be solved by the algorithm of
Young, Tarjan and Orlin [14], of which an outline is given. Previ-
ously the problem has been solved either by linear programming
[4, 8] or by a binary search approach [11, 10, 12, 2, 7]; both meth-
ods are less efficient.

In Section 4 and 5 we develop an algorithm which takes addi-
tional objectives into account. Among all solutions with the opti-
mum cycle time we find the one with optimally balanced slacks,
for data paths as well as for clocktree paths. This is the first al-
gorithm which computes the optimum cycle time and slacks and
runs fast enough even for the largest designs.

In Section 4 we first consider slacks on data paths. We obtain
a solution where as few as necessary data paths are critical. The
chip becomes less sensitive to routing detours, process variations
and manufacturing skew. Moreover, if one tries to optimize the
cycle time further only few data paths have to be considered.

In Section 5 it is shown how this algorithm can be modified to
increase the slacks on the clocktree paths. These slacks can be
used in the design of the clocktree: For most latches it is not nec-
essary to fix the arrival time of the clock signal, instead a maximal
interval of feasible arrival times is computed.

Computational results with recent IBM processor chips in Sec-
tion 6 demonstrate the power of our method. The cycle time of the
chips is improved by 2.5 up to 5.5 percent. Moreover, the num-
ber of critical data and clocktree paths (with zero or small positive
slack) decreases substantially. The running times are acceptable
even for the largest designs.

2 Problem formulation

Let S be the set of simple storage elements, each storing one bit.
The clock input ofs2 Shas value 1 from timeas to bs, then again
from as+T to bs+T, from as+ 2T to bs+ 2T and so on. In
the remaining time it has the value 0. When the clock input has
the value 1, the storage element is open, i.e. it stores the value
currently seen at the data input. When the clock input has value 0,
the stored bit remains unchanged. (Sometimes the roles of 0 and 1
are interchanged, but this does not matter.) At any time, the stored
bit is available at the data output for subsequent computations.

0-7803-5832-X /99/$10.00 ©1999 IEEE.

1 C2 C1 C2C

logic
combinational

Figure 1: Two master–slave latches with clock signalsC1 andC2

and a data path in between

All types of storage elements can be handled with this model.
For edge–triggered flip–flops we simply setas = bs. Master–slave
latches can be represented by two simple storage elementssands0

(cf. Figure 1).
Now we may shift the clock input for eachs2 Sby some value

ys, meaning that the clock input has the value 1 in the time intervals
[as+ys;bs+ys], [as+ys+T;bs+ys+T], [as+ys+2T;bs+ys+
2T] and so on. We assume that the length of the intervalbs�as

cannot be changed.
Since the shifting timesys have to be realized by a clocktree it

is reasonable to impose a lower boundls and an upper boundus on
ys for each storage elements:

ls � ys � us (s2 S):(1)

We introduce a second variablexs for the time when the data signal
is valid at the data input ofs. We must have

as+ys � xs � bs+ys (s2 S);(2)

and the data signal should remain valid within the whole interval
[xs;bs+ ys]. For primary inputs and outputsv we setyv = 0 and
av = bv = xv (this arrival time resp. required arrival time is part of
the specification of the chip).

A data signal might encounter more than one storage element
per cycle (for example in designs using transparent latches). So for
each data path fromv to w it has to be specified whether a signal
starting ats within the time interval[av;bv] must arrive beforebw

(i.e. in the same cycle) or beforebw+T (i.e. in the next cycle). In
the first case we setζvw := 0, in the second case we setζvw := 1.
Then the late mode constraints read as follows:

xv+ tmax
vw � xw+ζvwT ((v;w) 2 E(G));(3)

whereG is the digraph containing an edge for each pair of latches
connected by a data path. For the early mode constraints we have
to take the whole intervals into account where the storage elements
are open:

av+yv+ tmin
vw � bw+yw+(ζvw�1)T ((v;w) 2 E(G)):(4)

This describes a quite general model. In the next sections we
show how to solve the above–defined linear program efficiently.
We show how to minimize the cycle timeT and how to distribute
slacks on data and clock paths optimally.

Our model includes the previous models for cycle time opti-
mization [4, 8, 11, 10, 2, 7, 13]. It is quite flexible: additional tech-
nical constraints can easily be incorporated. For example one can
model dynamic circuits by constraints of the same type as above in
a straightforward way. Some other constraints (end–of–cycle test,

�tmax
12 �λ

a2�b3+tmin
12

a1�b2�λ

0

b1 �a1 b2 �a2

a3�b4�λ

0

b3 �a3 b4 �a4

u1

�l1
u2

�l2 u3

�l3 u4

�l4

Figure 2: The vertices and edges inG0 for two master–slave latches
and a data path in between. The bold edges are parameterized.

simultaneous clock signals for registers) will be mentioned in Sec-
tion 6. Another advantage of this model is that there is no need to
distinguish between master–slave latches, simple level–sensitive
latches and edge–triggering flip–flops.

3 Computing the optimal cycle time

Observe that each of the inequality constraints (1), (2), (3) and
(4) has one or twox– or y–variables and in addition possibly the
special variableT. If a constraint has twox– or y–variables, they
have opposite sign. To have exactly two variables per inequality
we introduce an artificial variablez0 which we assume to have
value zero. For technical reasons we substituteλ :=�T and obtain
a linear program of the following very special type:

max λ subject to

zi + ci j � zj for (i; j) 2 E1;(5)

zi + ci j �λ � zj for (i; j) 2 E2;(6)

whereλ andz0;z1;z2; :::;zn are variables, theci j are constants and
E1;E2 � f1; : : : ;ng�f1; : : : ;ng. Each constraint (1) corresponds
to two elements(i;0);(0; i) of E1, each constraint (2) corresponds
to one element ofE1, and each of the constraints (3) and (4) cor-
responds to an element ofE1 or E2, depending on theζ–constant.
Note that the assumption thatz0 = 0 causes no loss of generality
since adding a constant to all variableszi does not affect feasibility.

Now we translate our linear optimization problem to a network
problem. Given the above linear program we construct a directed
graphG0 = (V;E) as follows: For each variablezi there is a vertex
vi . For a constraint of type (5) we have a directed edge from vertex
vi to vertexvj of costci j . For a constraint of type (6) we also have
an edge fromvi to vj , but the cost isci j �λ. Such an edge is called
parameterized: the cost of the edge depends on the parameterλ.

As an example, Figure 2 shows the vertices and edges ofG0 for
two master–slave latches with a data path in between (from left to
right; cf. Figure 1). Each master–slave latch consists of two simple
latches, and for each simple latch we have anx–variable (on top)
and ay–variable. So there are four variables (vertices) for each

master–slave latch; the artificial variablez0 is represented by the
vertex at the bottom. There are eight edges for constraints of type
(1), eight for type (2), three edges for type (3) and three for type
(4). Three of the edges are parameterized.

We are looking for the maximum value forλ such that values
for the variableszi exist fulfilling all constraints. It is easy to see
[11, 10, 12, 2] that such values exist if and only if the digraph
G0 contains no directed circuit of negative cost (negative circuit,
for short). The problem might be infeasible in some cases. Our
algorithm detects infeasibility and returns the negative circuit(s)
causing the problem. Usually one can cope with this by omitting
some early mode constraints: these can be met by inserting buffers
(increasing the delay of the path). In fact it is usually not good to
take all early mode constraints into account because this might
increase the optimum value of the LP (hence the cycle time); one
usually prefers inserting a buffer. As we describe in Section 6 we
incorporate early mode constraints only after having determined
the best possible cycle time. In the following we assume that the
LP is feasible.

Previous authors solved this LP either by linear programming
[4, 8] or by binary search with a subroutine testing for a negative
circuit [11, 10, 12, 2, 7]. However, the problem can be solved more
efficiently by a direct combinatorial algorithm of Young, Tarjan
and Orlin [14]. We briefly describe their algorithm since we shall
extend it in Section 4 and 5. For a detailed description and an
efficient implementation see also [1].

The algorithm computes a sequence�∞ = λ0 � λ1 � ::: � λk

of values for the parameterλ and a sequenceT1; :::;Tk of shortest
paths trees inG0 from a specified vertexr, the root (in our case we
can take the vertex corresponding to the artificial variablez0: all
vertices are reachable from this vertex), such thatTi is a shortest
paths tree for all parametersλ with λi�1 � λ � λi (i = 1; :::;k).
The last valueλk will be the solution of the linear program.

We start by computing a shortest paths tree forλ =
�∑e2E jc(e)j. This value ofλ is small enough such that no nega-
tive circuit exists. The resulting tree isT1.

Assuming thatTi is already computed we show how to compute
λi andTi+1. Let Prv be the path fromr to v in Ti . We check for
each edgee= (u;v) whether the pathPru + e contains more pa-
rameterized edges thanPrv. If so, Pru +e is a potential pivot path
ande is a potential pivot edge. For some valueλe the pathPru +e
will be shorter thanPrv.

λi is the minimum valueλe for all potential pivot edgese. One
edgee=(u;v) with the minimum valueλe becomes the pivot edge.
We perform a pivot step by deleting the edge with headv from Ti

and inserting edgee. The resulting tree isTi+1.
If adding the pivot edgee results in a directed circuit, the algo-

rithm stops. The cost of this directed circuit is zero forλe, and
λe = λk is the maximum value ofλ such thatG0 contains no nega-
tive circuit.

The last treeTk also provides a solution for the variableszi : one
can setzi to the cost of the pathPrvi in Tk for λ = λk. This solution
is also called a shortest paths potential.

The worst–case running time of this algorithm (with an efficient
implementation) isO(nm+n2 logn) wheren = jV(G0)j andm=
jE(G0)j. However, it is much faster in practice as the experimental
results will demonstrate.

We showed how to determine the clocking schedule with the
optimum cycle time. However, the solution obtained so far has
a serious drawback. Many inequalities of the linear program (in
particular all whose corresponding edges belong to the treeTk) are
satisfied with equality. If such a tight inequality corresponds to a
data path, then this data path will be critical, i.e. the slack is zero.
In the next section we show how the slack can be increased for
many critical data paths. In Section 5 we show how to increase
slack on clocktree paths optimally.

We should note that the above method can also be used to do
static timing analysis with transparent latches, without changing
clock arrival times. In fact, even for this task (for which it was not
built) the algorithm seems to be superior to traditional methods
which use naive iterated propagation.

4 Balancing slacks on data paths

Having computed the optimal cycle timeT subject to the con-
straints described in Section 2 we now increase the slacks on data
paths. Ifεmax

vw andεmin
vw are the slacks on the data path fromv to w

for late mode and early mode respectively, the constraints (3) and
(4) become

(30) xv+ tmax
vw + εmax

vw � xw+ζvwT;

(40) av+yv+ tmin
vw � εmin

vw � bw+yw+(ζvw�1)T:

The task is to maximize the slack variablesεmax
vw , εmin

vw for as many
data paths as possible, maintaining feasibility. More precisely:

Definition 4.1 Theslack balancing problemconsists of finding
a solution of(1), (2), (30) and(40) such that the vector of all slack
variables in nondecreasing order is lexicographically minimal.

It will be shown that there is a unique optimum solution for the
slack balancing problem. We now describe an algorithm which
finds this solution. It proceeds as follows: The slacks of all data
paths are increased simultaneously until they cannot be increased
anymore, i.e. some constraints which form a directed circuit, are
already tight. Then we take the subset of all data paths on which
the slack can still be increased and continue with this subset.

The same digraphG0 = (V;E) as in Section 3 is constructed, but
the costs are different. The optimal cycle timeT is already com-
puted and should not change, it becomes part of the cost of the
respective edges. The parameterized edges are now those which
correspond to constraints withεmax

vw or εmin
vw (i.e. (30) and(40)), all

other edges are not parameterized. The parameterλ now repre-
sents the slack of all data paths.

We first compute again the maximum valueλ such thatG0 con-
tains no negative circuit, using the parametric shortest path algo-
rithm described in Section 3. This value is zero (ifT was the
optimal cycle time), and so is the slack of all data paths for which
the corresponding edges belong to the zero cost directed circuitC
found by the algorithm. Increasing the parameterλ of any of the
parameterized edges onC is impossible, because it would result in
a negative circuit. All edges onC lose their parameter, only the
parameter of all other edges is increased.

C is contracted, and the costs of the edges leaving and entering
C are adjusted: Letz be the vertex to whichC is contracted, and
let w be the vertex ofC nearest to the rootr in the last treeTk

computed. For a vertexv of C denote byc(Pwv) the cost of the
path fromw to v in Tk for parameterλk.

For an edgee= (v;u) leavingC, i.e. v belongs toC but u does
not, the corresponding new edgee0 = (z;u) after the contraction
gets the costc(e0) = c(e)+c(Pwv). For an edgee= (u;v) entering
C, the corresponding new edge gets the costc(e0) = c(e)�c(Pwv).

The algorithm continues to increase the parameterλ and to
change the tree such that it remains a shortest paths tree until the
next directed circuit of zero cost is found. The value of the param-
eterλ at this state is again the slack of the data paths for which
the corresponding edges belong to the directed circuit. It is easy
to observe:

Theorem 4.2 The slack balancing problem has a unique optimum
solution and the algorithm described above finds this solution.

The algorithm presented here is a modification of an algorithm
for the minimum balance problem [14]. While for the minimum
balance problem all edges are parameterized, in our case only
those edges are parameterized which correspond to constraints of
data paths with variablesεmax

vw or εmin
vw . This is also the reason why

we speak of balancing the slacks: the slacks are increased and dis-
tributed “equally” on the data paths.

With an efficient implementation the worst–case running time
of the algorithm described above isO(nm+ n2 logn). But note
that it is not necessary to run the algorithm to the very end. The
algorithm can be stopped at any time, e.g. when a certain value of
the parameterλ is reached. Then the slack of the data paths are
only increased up to this value. Since slacks exceeding a certain
amount are usually not interesting this option is used in practice;
see Section 6.

5 Balancing slacks on clocktree paths

Prescribed arrival times for clock signals at latches cannot be re-
alized since process variations make it impossible to predict the
exact arrival times. This is usually taken into account by adding a
constant to the cycle time. If one has an interval[ys� εs;ys+ εs]
of valid clock shifts for each latchs (instead of a fixed numberys)
this problem diminishes (see also [7]).

Clocktrees with prescribed skews can be designed by basically
the same algorithm as zero–skew clocktrees. Although this can
be done quite efficiently, prescribed skews (zero or not) make de-
tours in the clocktree wiring necessary. If one has intervals for the
arrival times of the clock signals one can design clocktrees with
significantly smaller wirelength; see e.g. [5].

So for each latchs we introduce an additional variableεs: the
clock signal is 1 in the interval[as+y0s;bs+y0s] for somey0s2 [ys�
εs;ys+ εs]. All constraints must be met for all possible values of
y0s within this interval. εs can be considered as the slack on the
clocktree path ending at latchs. With these additional variablesεs

for all latches we can reformulate the linear inequalities:

(200) as+ys+ εs � xs � bs+ys� εs

(400) av+yv� εv+ tmin
vw � bw+yw+ εw+(ζvw�1)T:

The problem is solved similarly to the slack balancing problem for
data paths (Section 4). However, some modifications are needed
since inequality(400) contains the slack variablesεv andεw of two
different latchesv andw which are connected by a data path. This
can be modelled by introducing an additional variable and splitting
the inequality into two. A straightforward modification of the al-
gorithm takes care of the problem that several inequalities contain
the same slack variables.

Moreover, it is also possible to balance the slacks on data paths
and clocktree paths simultaneously. The constraint (4) is substi-
tuted by

(4000) av+yv� εv+ tmin
vw � εmin

vw � bw+yw+ εw+(ζvw�1)T:

We look for a solution of constraints(1), (200), (30) and(4000).
For each constraint(4000) we introduce two additional variables and
split the constraint into three. Then we apply basically the same
algorithm as above. It can be derived in the same way as above
that the optimum solution is unique and that the algorithm finds it.
We obtain:

Theorem 5.1 The slack balancing problem for data and clocktree
paths (constraints(1), (200), (30) and(4000)) has a unique optimum
solution which can be computed in time O(nm+n2logn) where n
is the number of primary inputs, primary outputs and latches and
m is the number of data paths.

The running time follows from bounding the number of pivot
steps byO(n2). The details will be given in the full version of this
paper (http://www.or.uni-bonn.de/˜vygen/cycleopt.ps).

6 Computational Results

We have implemented the algorithm in C, all runs are on an IBM
RISC System/6000 Model 595. Our algorithm has been applied,
among others, to the G3 series of IBM S/390 processor chips (L2
and PU) and the latest follow ups (MBA). For details of the design
system see [6]. Table 1 shows the different chips with target cycle
time, number of circuits, nets, pins and primary inputs and outputs
(some are bidirectional) and the number of data paths.

In addition to the constraints described so far further technical
restrictions had to be taken into account. For example, for some
master–slave latches it is required that the data signal arrives at the
latch before the rising time of the clock signal of the slave latch
(end–of–cycle test). In this case one has a constraint of the form

xv+ tmax
vw � aw+yw+ζvwT:

Moreover, for certain registers (which can be regarded as sets of
latches) simultaneous clock signals are required. In this case only
oney–variable for these latches is needed. For implementation
reasons we still have separatey–variables and constraints of type
yv+0� yw andyw+0� yv. This explains the differences in the
number of vertices and edges of the graphG0 in Table 2 to the
numbers which one would expect by Table 1.

Our program consists of two main parts: first the constraints are
generated by simple forward propagation for late mode and early

cycle pri-
time mary lat- data

Chip (ns) circuits nets pins IOs ches paths
L2 6.5 87177 103590 339351 928 17032 1173132
PU 6.5 164056 171666 591410 744 17265 2670459

MBA 4.46 394257 402373 1441312 586 40639 1475535

Table 1: Characteristics of chips.

size ofG0 running time (s)
Chip nodes edges timing createG0

L2 52999 2103937 104.11 419.71
PU 68932 5433150 178.67 1377.62

MBA 268153 3637831 859.25 1006.31

Table 2: Size of the digraphG0 constructed for balancing slacks
on data paths. Total running time in seconds for evalutaing the
timing of the chip by simple propagation (timing) and creating all
constraints (createG0).

mode constraints. During the propagation we store at each cir-
cuit the set of primary inputs and latches from which this circuit
can be reached, along with the maximum propagation delay for
late mode, resp. the minimum propagation delay for early mode.
Table 2 (right–hand side) shows the running times for the gener-
ation of all constraints for the three different chips. A detailed
description of the timing analysis program can be found in [9].
The running times for simple propagation (computation of arrival
times and slacks only) are shown for comparison.

The second step consists of the main optimization algorithm.
Rather than increasing the slacks on late mode and early mode
constraints simultaneously, we first increase the slacks on late
mode constraints up to a certain valueλlate while ignoring all early
mode constraints. Then we add all early mode constraints and in-
crease the slack on these constraints up toλearly. For this the late
mode constraints are added with unparameterized edges, such that
the slack of late mode constraints with slack smaller thanλlate

does not decrease and the slack of all other late mode constraints
remains at leastλlate. The reason for treating late and early mode
constraints differently is that early mode problems can usually be
fixed quite efficiently by inserting a buffer. Finally, we balance the
slacks on clock tree paths up to a valueλclock as described in Sec-
tion 5. Again it is assured that the slacks of late and early mode
constraints do not decrease below the value to which they were
optimized.

Obviously, the result of the optimization depends on the length
of the interval given byls andus specifying by how much the clock
signal arrival time can be shifted from its nominal value. For the
L2 and PU the designers called forls =�0:4ns andus = 0:4ns for
most latches. However, there was a substantial number of latches
whose clock signal had to arrive at a prescribed time, i.e.ls = us=
0:0ns. On the MBA we hadls = �0:4ns andus = 0:5ns for most
latches.

Table 3 shows the worst slack of all late mode constraints be-
fore and after optimization with respect to the target cycle time
mentioned in Table 1. This means that the L2 could run with a cy-
cle time of 6:5ns+0:048ns= 6:548ns before the optimization and
with a cycle time of 6:5ns�0:313ns= 6:187ns after optimization:
the cycle time was improved by 5:5%. Similarly, the cycle time of

worst number data paths with late mode slack<

Chip slack �0:2 �0:1 0:0 0:1 0:2 0:3
(a) -0.048 0 0 594 731 740 5781L2
(b) 0.313 0 0 0 0 0 0
(a) -0.103 0 1 143 1384 11349 51578PU
(b) 0.060 0 0 0 44 1617 44285
(a) -0.224 5 44 400 2633 9901 21780MBA
(b) -0.051 0 0 28 89 2283 18768

Table 3: Improvement of the worst slack and the number of critical
data paths for the three different chips: (a) before optimization, (b)
after optimization.

cycle λlate λearly λclock λlate λearly λclock

Chip time = 0.1 = 0.1 = 0.05 = 0.2 = 0.2 = 0.1
L2 153.21 4.91 6.93 11.56 4.94 31.87 300.54
PU 19.45 22.35 123.33 569.68 113.68 326.17 13004.25

MBA 20.36 37.63 135.48 671.48 81.34 259.43 92490.36

λlate λearly λlate λearly λlate λearly

Chip = 0.3 = 0.3 = 0.4 = 0.4 = 0.5 = 0.5
L2 5.45 97.48 104.80 634.16 282.21 1608.97
PU 1140.04 1768.60

MBA 212.60 11011.82

Table 4: Total running time in seconds for the main optimization
routine: for computing the optimal cycle time and for balancing
slacks on late and early mode constraints and also clock tree paths
up to different values forλlate, λearly andλclock.

number of values: 1475535 minimum value: -0.223992

0.300 - 0.350 8635 ****************************
0.250 - 0.300 6754 **********************
0.200 - 0.250 5125 *****************
0.150 - 0.200 5239 *****************
0.100 - 0.150 2029 ******
0.050 - 0.100 1535 *****

-0.000 - 0.050 698 **
-0.050 - -0.000 255
-0.100 - -0.050 101
-0.150 - -0.100 37
-0.200 - -0.150 2
-0.250 - -0.200 5

Figure 3: Slacks of late mode constraints(εmax
vw) without optimiza-

tion for MBA.

the PU was improved by 2:5% and the cycle time of the MBA by
3:7%.

Table 3 also shows the number of data paths with late mode
slack smaller than�0:2ns,�0:1ns, ... This demonstrates how dra-
matically the number of critical paths decreases.

In Table 4 the running times for the algorithm for the three chips
for computing the optimal cycle time and for balancing slacks for
different scenarios withλlate, λearly andλclock are shown. Again,
all late mode slacks are taken with respect to the target cycle times.

Figure 3 shows a frequency distribution of the slacks of all
late mode constraints for the MBA for the case that no optimiza-
tion is possible (i.e.ls = us = 0:0ns for all latchess). The first
column shows the different intervals, the second column gives
the number of data paths whose slack is within the interval and
the third column gives a graphical representation of this num-
ber by a proportional number of stars. For example Figure 3
says that the MBA without optimization has 101 datapaths with
�0:100ns� εmax

vw <�0:050ns. Figure 4 shows the corresponding
frequency distributions of late mode constraints after optimization
for λ = 0:2ns.

Figures 5 and 6 show the same for the early mode constraints.

number of values: 1475535 minimum value: -0.050953

0.300 - 0.350 14539 **¿¿
0.250 - 0.300 11467 **************************************
0.200 - 0.250 5018 ****************
0.150 - 0.200 2121 *******
0.100 - 0.150 73
0.050 - 0.100 23

-0.000 - 0.050 38
-0.050 - -0.000 27
-0.100 - -0.050 1
-0.150 - -0.100 0
-0.200 - -0.150 0
-0.250 - -0.200 0

Figure 4: Optimized late mode slacks(εmax
vw) for the MBA.

number of values: 1475513 minimum value: -0.021301

0.250 - 0.300 51393 **¿¿
0.200 - 0.250 55248 **¿¿
0.150 - 0.200 23346 **¿¿
0.100 - 0.150 13643 ***
0.050 - 0.100 9235 ******************************

-0.000 - 0.050 5743 *******************
-0.050 - -0.000 140
-0.100 - -0.050 0
-0.150 - -0.100 0

Figure 5: Slacks of early mode constraints(εmin
vw) without opti-

mization for MBA.

number of values: 1475513 minimum value: -0.125193

0.250 - 0.300 45244 **¿¿
0.200 - 0.250 20418 **¿¿
0.150 - 0.200 622 **
0.100 - 0.150 260
0.050 - 0.100 344 *

-0.000 - 0.050 502 *
-0.050 - -0.000 244
-0.100 - -0.050 8
-0.150 - -0.100 1

Figure 6: Optimized early mode slacks(εmin
vw) for the MBA.

number of values: 65798 minimum value: 0.000000

0.100 - 0.110 16240 **¿¿
0.090 - 0.100 4577 ***************
0.080 - 0.090 4070 **************
0.070 - 0.080 4785 ****************
0.060 - 0.070 4595 ***************
0.050 - 0.060 4525 ***************
0.040 - 0.050 6187 *********************
0.030 - 0.040 7564 *************************
0.020 - 0.030 6544 **********************
0.010 - 0.020 3820 *************
0.000 - 0.010 2897 **********

Figure 7: Slack on clock tree(εs) paths for the MBA.

Increasing the slacks on late mode constraints makes the worst
slack of early mode constraints worse, but nevertheless the total
number of early mode constraints with negative slack decreases
considerably.

Finally, in Figure 7 the result of balancing the slacks on clock
tree paths is shown. Even though the slacks on late mode and early
mode constraints have already been increased up to 0:2ns, for most
of the latches the clock signal still does not have to arrive at exactly
the prescribed time. Due to a design contraint all interval centers
ys are between�0:4ns and 0:5ns; in fact more than 75 percent are
within �0:2ns.

7 Conclusion

We showed how to find the clock schedule with minimum cycle
time and optimum slack distribution by very efficient network al-
gorithms. Experimental results show that this not only reduces
the cycle time but also decreases the number of critical data and
clocktree paths considerably.

References

[1] Bünnagel, U.: Effiziente Implementierung von Netzwerk-
algorithmen. Diploma thesis, University of Bonn, 1998

[2] Deokar, R.B., Sapatnekar, S.: A Graph–theoretic Approach
to Clock Skew Optimization. Proceedings of the IEEE Inter-
national Symposium on Circuits and Systems (1994), 407-
410

[3] Doettling, G., Getzlaff, K.J., Leppla, B., Lipponer, W., Pflue-
ger, T., Schlipf, T., Schmunkamp, D., Wille, U.: S/390 Par-
allel Enterprise Server Generation3: A balanced system and
cache structure. IBM Journal of Research and Development
41 (1997), 405-428

[4] Fishburn, J.P.: Clock Skew Optimization. Transactions on
Computers C-39 (1990), 945-951

[5] Huang, J.H., Kahng, A.B., Tsao, C.-W.A.: On Bounded–
Skew Routing Tree Problem. Proceedings of the 32nd Design
Automation Conference (1995), 508-513

[6] Koehl, J., Baur, U., Ludwig, T., Kick, B., Pflueger, T.: A
Flat, Timing–Driven Design System for a High-Performance
CMOS Processor Chipset. Proceedings of the Conference
Design, Automation and Test Conference in Europe (1998),
312-320

[7] Neves, J.L., Friedman, E.G.: Optimal Clock Skew Schedul-
ing Tolerant to Process Variations. Proceedings of the 33rd
Design Automation Conference (1996), 623-628

[8] Sakallah, K.A., Mudge, T.N., Olukotun, O.A.:checkTc and
minTc: Timing Verification and Optimal Clocking of Syn-
chronous Digital Circuits. Proceedings of the IEEE Interna-
tional Conference on Computer–Aided Design (1990), 552-
555

[9] Schietke, J.: Timing–Optimierung beim physikalischen
Layout von nicht–hierarchischen Designs hochintegrierter
Logikchips. Ph.D. thesis, University of Bonn, 1999

[10] Shenoy, N., Brayton, R.K.: Graph Algorithms for Clock
Schedule Optimization. Proceedings of the IEEE Interna-
tional Conference on Computer–Aided Design (1992), 132-
136

[11] Szymanski, T.G.: Computing Optimal Clock Schedules. Pro-
ceedings of the 29th Design Automation Conference (1992),
399-404

[12] Szymanski, T.G., Shenoy, N.: Verifying Clock Sched-
ules. Proceedings of the IEEE International Conference on
Computer–Aided Design (1992), 124-131

[13] Vygen, J.: Plazierung im VLSI-Design und ein zweidi-
mensionales Zerlegungsproblem. Ph.D. thesis, University of
Bonn, 1996

[14] Young, N.E., Tarjan, R.E., Orlin, J.B.: Faster Parametric
Shortest Path and Minimum Balance Algorithms. Networks
21 (1991), 205-221

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

