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Abstract lem of computing the optimum cycle time reduces to a parametric
shortest path problem. This can be solved by the algorithm of
Young, Tarjan and Orlin [14], of which an outline is given. Previ-

We consider the problem of finding an optimal clock schedule uslv the problem has been solved either by linear brogrammin
i.e. optimal arrival times for clock signals at latches of a VLSF Y P y prog 9

chip. We describe a general model which includes all previous ¢ 8 or by a binary search approach [11, 10, 12, 2, 7]; both meth-

. S 104 are less efficient.

considered models. Then we show how to optimize the cycle time . . . .
and optimally balance slacks on data paths and on clocktree pathé.n Sec_t|on_ 4 ar_1d 5 we develop an algonthm_ Wh'Ch. takes ad(_j|-
The problem of finding a clock schedule with the optimum nyonal object!ves Into _account. Amqng all _solut|ons with the opti-
cle time was solved before, either by linear programming or ppum cycle time we find the one with optimally balanced slacks,

binary search, using a test for negative circuits in a digraph as%e{ data paths as well as for clocktree paths. This is the first al-

subroutine. We show for the first time that a direct combinatori Or:grf';nsxr:gh Cr? :]%lﬁgrt?hi?;:'rggtrgg.dﬁs“me and slacks and
algorithm solves this problem optimally. Incidentally, this yields g ) ug \f/ i gl K Igd ' h btai
new efficient method for timing analysis with transparent latches, N S€ction 4 we first consider slacks on data paths. We obtain

Moreover, we extend this algorithm to the slack balancing prot?— solution where as few as necessary data paths are critical. The

lem: To make the chip less sensitive to routing detours, proce%@ip becomes less sensitive to routing detours, process variations
d manufacturing skew. Moreover, if one tries to optimize the

variations and manufacturing skew it is desirable to have as e le time furth v few d hs h b idered
critical paths as possible. We show how to find the clock scheduff¥c'e time further only few data paths have to be considered.

with minimum number of critical paths (optimum slack distribu- " Section 5 itis shown how this algorithm can be modified to
tion) in a well—defined sense. increase the slqcks on the clocktree paths. These s_Ia_lcks can be

Rather than fixed clock arrival times we show how to obtain alésed in the design of the clocktree: For most latches it is not nec-
large as possible intervals for the clock arrival times. This can fgeSary to fix the arrival time of the clock signal, instead a maximal
considered as slack on clocktree paths. Indeed, we can find {RETval Of feasible arrival times is computed.

global optimum of simultaneous optimization of slacks on all data COmMputational results with recent IBM processor chips in Sec-
paths and clocktree paths. tion 6 demonstrate the power of our method. The cycle time of the

chips is improved by 2.5 up to 5.5 percent. Moreover, the num-

All the above is done by very efficient network optimization o i -
algorithms, based on parametric shortest paths. Our computatioR&f O critical data and clocktree paths (with zero or small positive

results with recent IBM processor chips show that the number 8{ACK) decreases substantially. The running times are acceptable
critical paths decreases dramatically, in addition to a consideraliéen for the largest designs.
improvement of the cycle time. The running times are reasonable

even for the largest designs. 2 Problem formulation

1 Introduction Let Sbe the set of simple storage elements, each storing one bit.

The clock input ofs € Shas value 1 from timeg to bs, then again

Optimization of the cycle time is a main goal in VLSI chip designfrom as+ T to bs+ T, from as+ 2T to bs+ 2T and so on. In
All computations on a chip are synchronized by storage elemernkbs remaining time it has the value 0. When the clock input has
which receive a clock signal periodically. The period is called théhe value 1, the storage element is open, i.e. it stores the value
cycle time and is denoted Byin this paper. We solve the problem currently seen at the data input. When the clock input has value 0,
of finding an optimal clocking schedule to minimiZe the stored bit remains unchanged. (Sometimes the roles of 0 and 1

In Section 2 we develop a very general model and show how &re interchanged, but this does not matter.) At any time, the stored
model various constraints. In Section 3 it is shown that the probit is available at the data output for subsequent computations.
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Figure 1: Two master—slave latches with clock sigi@landC,
and a data path in between

All types of storage elements can be handled with this model.
For edge—triggered flip—flops we simply set= bs. Master—slave
latches can be represented by two simple storage elesants’

(cf. Figure 1).

Now we may shift the clock input for eage Sby some value - > Th ) d edaeGH | latch
Ys, meaning that the clock input has the value 1 in the time intervalddure 2: The vertices and edgesinfor two master—slave laiches

[Bs+ Y5, Ds + Vs, [Bs+ Yo+ T,bs+ Vs + T, [as + Ys + 2T, bs + s + and a data path in between. The bold edges are parameterized.
2T] and so on. We assume that the length of the intdyal as

cannot be changed. simultaneous clock signals for registers) will be mentioned in Sec-

Since the shifting timegs have to be realized by a clocktree ittion 6. Another advantage of this model is that there is no need to
is reasonable to impose a lower bougénd an upper boundi on  distinguish between master—slave latches, simple level-sensitive
ys for each storage elemesit latches and edge-triggering flip—flops.

1) Is <ys < U (ses).

. _ _ _ Computing the optimal cycle time
We introduce a second variabigfor the time when the data signal

is valid at the data input of We must have ) ) )
Observe that each of the inequality constraints (1), (2), (3) and

(2) as+Ys < X < bs+Ys (s€9), (4) has one or two— or y—variables and in addition possibly the

dthe d ianal should . lid within the whole i %pecial variabld . If a constraint has twa— or y—variables, they
and the data signalshould remain vall within the whole intervgj, opposite sign. To have exactly two variables per inequality
[Xs,bs +Ys]. For primary inputs and outputswe sety, = 0 and

T hi val ti ired arrival ti . fwe introduce an artificial variabley which we assume to have
ay = by =X (t. IS arriva “”.“e resp. required arrival time Is part o value zero. For technical reasons we substitute — T and obtain
the specification of the chip).

. , a linear program of the following very special type:
A data signal might encounter more than one storage element prog gvery sp yp

per cycle (for example in designs using transparent latches). So for maxA subject to
each data path fromto w it has to be specified whether a signal(s) 2+ G
starting ats within the time intervala,,b,] must arrive befords, 'l
(i.e. in the same cycle) or befobg + T (i.e. in the next cycle). In (6) z+ Gj—A
the first case we séf,, := 0, in the second case we g}, := 1.
Then the late mode constraints read as follows:

>z for (i, ) € Eg,
> zj for (i, ) € E,
whereA andz, 71,2, ...,z are variables, thej are constants and
Ei,Ex C{1,...,n} x{1,...,n}. Each constraint (1) corresponds
3) X+t < Xw+lwT  ((v,w) € E(G)), to two elementsi,0), (0,i) of E;, each constraint (2) corresponds
) ) o ) to one element oE;, and each of the constraints (3) and (4) cor-
whereG is the digraph containing an edge for each pair of 'atCher%sponds to an element Bf or E,, depending on th&—constant.
connected by a dgta path.. For the early mode constraints we hay§ie that the assumption thag= 0 causes no loss of generality
to take the whole intervals into account where the storage elemegisce adding a constant to all variabtedoes not affect feasibility.
are open. Now we translate our linear optimization problem to a network
min _ problem. Given the above linear program we construct a directed

@ At Yutto’ 2 butut (=T ((Ww) € E(G)). graphG' = (V,E) as follows: For each variablgthere is a vertex

This describes a quite general model. In the next sections we For a constraint of type (5) we have a directed edge from vertex
show how to solve the above—defined linear program efficiently, to vertexv; of costc;j. For a constraint of type (6) we also have
We show how to minimize the cycle tinfeand how to distribute an edge fronv; tov;j, but the cost igj; —A. Such an edge is called
slacks on data and clock paths optimally. parameterized: the cost of the edge depends on the parameter

Our model includes the previous models for cycle time opti- As an example, Figure 2 shows the vertices and edg€s fofr
mization [4, 8, 11, 10, 2, 7, 13]. Itis quite flexible: additional techtwo master—slave latches with a data path in between (from left to
nical constraints can easily be incorporated. For example one adght; cf. Figure 1). Each master—slave latch consists of two simple
model dynamic circuits by constraints of the same type as aboveaiches, and for each simple latch we havexavariable (on top)
a straightforward way. Some other constraints (end—of—cycle teaf)yd ay—variable. So there are four variables (vertices) for each



master—slave latch; the artificial varialdgis represented by the  We showed how to determine the clocking schedule with the
vertex at the bottom. There are eight edges for constraints of typptimum cycle time. However, the solution obtained so far has
(1), eight for type (2), three edges for type (3) and three for type serious drawback. Many inequalities of the linear program (in
(4). Three of the edges are parameterized. particular all whose corresponding edges belong to thelesre

We are looking for the maximum value farsuch that values satisfied with equality. If such a tight inequality corresponds to a
for the variableg; exist fulfilling all constraints. It is easy to see data path, then this data path will be critical, i.e. the slack is zero.
[11, 10, 12, 2] that such values exist if and only if the digraptn the next section we show how the slack can be increased for
G’ contains no directed circuit of negative cost (negative circuitnany critical data paths. In Section 5 we show how to increase
for short). The problem might be infeasible in some cases. Oalack on clocktree paths optimally.
algorithm detects infeasibility and returns the negative circuit(s) We should note that the above method can also be used to do
causing the problem. Usually one can cope with this by omittingtatic timing analysis with transparent latches, without changing
some early mode constraints: these can be met by inserting buffelack arrival times. In fact, even for this task (for which it was not
(increasing the delay of the path). In fact it is usually not good tbuilt) the algorithm seems to be superior to traditional methods
take all early mode constraints into account because this mighhich use naive iterated propagation.
increase the optimum value of the LP (hence the cycle time); one
usually prefers inserting a buffer. As we describe in Section 6 Wf
incorporate early mode constraints only after having determined
the best possible cycle time. In the following we assume that the
LP is feasible. Having computed the optimal cycle tinfe subject to the con-

Previous authors solved this LP either by linear programmirgraints described in Section 2 we now increase the slacks on data
[4, 8] or by binary search with a subroutine testing for a negatieaths. Ife[i™* andejy" are the slacks on the data path frero w
circuit[11, 10, 12, 2, 7]. However, the problem can be solved mofér late mode and early mode respectively, the constraints (3) and
efficiently by a direct combinatorial algorithm of Young, Tarjan(4) become
and Orlin [14]. We briefly describe their algorithm since we shal 3)
extend it in Section 4 and 5. For a detailed description and an
efficient implementation see also [1]. ,

The algorithm computes a sequene® = Ag < A1 < ... < Ak (4)

of values for the parametarand a sequench, ..., T of shortest The task is to maximize the slack variabt%X min for as many

. o :
paths trees IS’ from a specified yertex the ro_o't (,'n our Case We 515 paths as possible, maintaining feasibility. More precisely:
can take the vertex corresponding to the artificial variapleall

vertices are reachable from this vertex), such #as a shortest pefinition 4.1 Theslack balancing problemconsists of finding
paths tree for all parametekswith Ai_1 <A <A (i =1,...k). 3 solution of(1), (2), (3') and(4') such that the vector of all slack

The last value\c will be the solution of the linear program. variables in nondecreasing order is lexicographically minimal.
We start by computing a shortest paths tree for=

—Yece|c(e)|. This value ofA is small enough such that no nega- It will be shown that there is a unique optimum solution for the
tive circuit exists. The resulting treeTs. slack balancing problem. We now describe an algorithm which
Assuming thaf is already computed we show how to computdinds this solution. It proceeds as follows: The slacks of all data
Ai andTiy1. Let Py be the path fronr to vin Ti. We check for paths are increased simultaneously until they cannot be increased
each edge = (u,v) whether the patl?, + e contains more pa- anymore, i.e. some constraints which form a directed circuit, are
rameterized edges th&h,. If so, Py + eis a potential pivot path already tight. Then we take the subset of all data paths on which
andeis a potential pivot edge. For some valgthe pathPy +€  the slack can still be increased and continue with this subset.
will be shorter tharP. The same digrap8’ = (V,E) as in Section 3 is constructed, but
Ai is the minimum valué. for all potential pivot edges. One the costs are different. The optimal cycle tifigs already com-
edgee = (u,Vv) with the minimum valué\. becomes the pivot edge. puted and should not change, it becomes part of the cost of the
We perform a pivot step by deleting the edge with heddm T;  respective edges. The parameterized edges are now those which
and inserting edge. The resulting tree i3 1. correspond to constraints wifi2 or €7 (i.e. (3') and(4')), all
If adding the pivot edge results in a directed circuit, the algo- other edges are not parameterized. The parametew repre-
rithm stops. The cost of this directed circuit is zero Mar and  sents the slack of all data paths.
Ae = Ak is the maximum value of such thaG’ contains no nega-  We first compute again the maximum vahisuch thaG' con-
tive circuit. tains no negative circuit, using the parametric shortest path algo-
The last tred also provides a solution for the variablgsone rithm described in Section 3. This value is zero Tifwas the
can set; to the cost of the path., in T for A = Ax. This solution optimal cycle time), and so is the slack of all data paths for which

Balancing slacks on data paths

Xv e+ e < X+ T,

ay+yy+tmN— e > by 4+ yw+ (Qw—1)T.

is also called a shortest paths potential. the corresponding edges belong to the zero cost directed d¥cuit
The worst—case running time of this algorithm (with an efficientound by the algorithm. Increasing the parametaf any of the
implementation) i<O(nm+ n?logn) wheren = |V(G')] andm=  parameterized edges @is impossible, because it would result in

|[E(G')|. However, itis much faster in practice as the experimental negative circuit. All edges 0@ lose their parameter, only the
results will demonstrate. parameter of all other edges is increased.



C s contracted, and the costs of the edges leaving and enteriiag) av+Y— &+t > by +yw+ew+ Gw—1)T.
C are adjusted: Let be the vertex to whicl is contracted, and
let w be the vertex ofS nearest to the roat in the last treel, ~ The problemis solved similarly to the slack balancing problem for

computed. For a vertex of C denote byc(Pyy) the cost of the data paths (Section 4). However, some modifications are needed
path fromw to vin Ty for parametehy. since inequality({4”) contains the slack variableg ande,, of two

For an edge = (v,u) leavingC, i.e.v belongs tcC butu does different latches andw which are connected by a data path. This
not, the corresponding new edge= (z u) after the contraction canbe modelled by introducing an additional variable and splitting
gets the cost(€') = c(e) + c(Py). For an edge = (u,v) entering the inequality into two. A straightforward modification of the al-

C, the corresponding new edge gets the c¢&) = c(e) —c(Pyy).  gorithm takes care of the problem that several inequalities contain

The algorithm continues to increase the paramatand to the same slack variables.
change the tree such that it remains a shortest paths tree until th&loreover, it is also possible to balance the slacks on data paths
next directed circuit of zero cost is found. The value of the paran&nd clocktree paths simultaneously. The constraint (4) is substi-
eter) at this state is again the slack of the data paths for whidhted by
the corres;?onding edges belong to the directed circuit. It is ea@yu) av+Yv—8v+t\?\1/\i/n—8\Tvi,n > By + Yo+ 8w+ Quw— 1)T.
to observe:

We look for a solution of constrainid), (2"), (3') and (4").
Theorem 4.2 The slack balancing problem has a unique optimungor each constrairft”’) we introduce two additional variables and
solution and the algorithm described above finds this solution. split the constraint into three. Then we apply basically the same

algorithm as above. It can be derived in the same way as above

The algorithm presented here is a modification of an algorithifl 5 the optimum solution is unique and that the algorithm finds it.
for the minimum balance problem [14]. While for the mMiNIMUMy i optain:

balance problem all edges are parameterized, in our case only

those edges are parameterized which correspond to constraint¥iséorem 5.1 The slack balancing problem for data and clocktree

data paths with variablegi?* or 3. This is also the reason why paths (constraint$1), (2), (3') and(4"")) has a unique optimum

we speak of balancing the slacks: the slacks are increased and gigiution which can be computed in timér@n+ n?logn) where n

tributed “equally” on the data paths. is the number of primary inputs, primary outputs and latches and
With an efficient implementation the worst—case running timen is the number of data paths.

of the algorithm described above &nm+ n?logn). But note

that it is not necessary to run the algorithm to the very end. The The running time follows from bounding the number of pivot

algorithm can be stopped at any time, e.g. when a certain values@ps byO(n?). The details will be given in the full version of this

the parametek is reached. Then the slack of the data paths aiaper (http://www.or.uni-bonn.de/"vygen/cycleopt.ps).

only increased up to this value. Since slacks exceeding a certain

amount are usually not interesting this option is used in practicg; Computational Results

see Section 6.

) We have implemented the algorithm in C, all runs are on an IBM
5 Balancing slacks on clocktree paths RISC System/6000 Model 595. Our algorithm has been applied,
among others, to the G3 series of IBM S/390 processor chips (L2

Prescribed arrival times for clock signals at latches cannot be @1d PU) and the latest follow ups (MBA). For details of the design
alized since process variations make it impossible to predict t§¥Steém see [6]. Table 1 shows the different chips with target cycle
exact arrival times. This is usually taken into account by addingtine, number of circuits, nets, pins and primary inputs and outputs
constant to the cycle time. If one has an intefyah &, ys + €] (some are bidirectional) and_ the numt_)er of data paths. _
of valid clock shifts for each latch(instead of a fixed number) In _ad_dltlon to the constra|r_1ts described so far further technical
this problem diminishes (see also [7]). restrictions had to be_ta}ken |n_to account. For e>_<amp|e, _for some
Clocktrees with prescribed skews can be designed by basicaWSter‘5|ave Iatcht_as it is required that the.data signal arrives at the
the same algorithm as zero—skew clocktrees. Although this c4Hch before the rising time of the clock signal of the slave latch
be done quite efficiently, prescribed skews (zero or not) make dend—of—cycle test). In this case one has a constraint of the form
tours in the clocktree wiring necessary. If one has intervals for the Xv 4t < ay + Y + T
arrival times of the clock signals one can design clocktrees with
significantly smaller wirelength; see e.qg. [5].
So for each latcts we introduce an additional variabte: the

Moreover, for certain registers (which can be regarded as sets of
latches) simultaneous clock signals are required. In this case only

clock signal is 1 in the intervas + Y., bs + y.] for somey., € [y: oney-variable for these latches is needed. For implementation
S sy Ms S. S S . . .

&s,Ys+ €]. All constraints must be met for all possible values of ea58n<s we St('j" havg s<epar?_etr?/anablle_s an: cg_?rstralnts O.f tyﬁ €

y. within this interval. &s can be considered as the slack on th&" ber Wf' andyw + —dy"a IS ?XE ains t r? [retglenges mht e

clocktree path ending at lateh With these additional variableg number of vertices and edges of the graphin Table 2 to the

for all latches we can reformulate the linear inequalities: numbers which one \_NOUId expect _by Table 1 .
Our program consists of two main parts: first the constraints are

(2" As+Ys+& < X < bs+Yys—&s generated by simple forward propagation for late mode and early



cycle pri- worst | number data paths with late mode slack

fime mary|  lat- data Chip slack | 02| -01] 00| 01| 02| 03
Chip | (ns)| circuits nets pins| 10s| ches| paths L2 ég‘; 'ggfg 8 8 593 73& 748 57801
L2 6.5| 87177| 103590 339351| 928 17032| 1173132 sy @ 0103 0 11123 1384 | 11349| 51578
PU 6.5 | 164056| 171666| 591410| 744 | 17265| 2670459 (b) | 0.060 0 0 0 44| 1617 | 44285
MBA | 4.46| 394257 402373| 1441312| 586 | 40639| 1475535 mBa @] -0.224 5 441 400 | 2633]| 9901 21780
(b) | -0.051 0 0| 28 89 | 2283| 18768

Table 1: Characteristics of chips. .
Table 3: Improvement of the worst slack and the number of critical

size of e running tme (s) data paths for the three different chips: (a) before optimization, (b)
Chip | nodes| edges| timing | createG’ after optimization.
L2 52999| 2103937| 104.11| 419.71
PU 68932 | 5433150| 178.67| 1377.62 cycle | AN@&  peary  yclock Nate early HCIock
MBA | 268153| 3637831] 859.25| 1006.31 Chip | ftme| =01 =01 =00§ =02 =02 -01

. . , . L2 | 153.21| 4.91 6.93 115 494 31.87 300.54
Table 2: Size of the digrap@’ constructed for balancing slacks PU | 19.45| 22.35 123.33 56968 113.68 326.17 13004.2

on data paths. Total running time in seconds for evalutaing the| MBA | 20.36| 37.63 135.48 671.48 81.34 259.43 92490.3
timing of the chip by simple propagation (timing) and creating all

[92]

O

. ; )\Iate )\early )\Iate )\early )\Iate )\early
constraints (creaté’). Chip 203 ~03| 204 =04| =05 05
L2 5.45 97.48| 104.80 634.14 282.21 1608.97

, . . , PU | 1140.04 _ 1768.6(
mode constraints. During the propagation we store at each cir- [WBa [ 212.60 1101183

cuit the set of primary inputs and latches from which this circuit
can be reached, along with the maximum propagation delay féable 4: Total running time in seconds for the main optimization
late mode, resp. the minimum propagation delay for early modeautine: for computing the optimal cycle time and for balancing
Table 2 (right-hand side) shows the running times for the geneytacks on late and early mode constraints and also clock tree paths
ation of all constraints for the three different chips. A detailedip to different values fok'ate, Aeay gndjclock

description of the timing analysis program can be found in [9].

The running times for simple propagation (computation of arrivaf:meeerabes #7s mimmamyalie: 0223592
times and slacks only) are shown for comparison. 0250 0300) c754 |

The second step consists of the main optimization algorithmg50- 0200} 5239 | w
Rather than increasing the slacks on late mode and early modgse- 0100 153 | =

constraints simultaneously, we first increase the slacks on latg0-0000) 2%

--0.050( 101

mode constraints up to a certain vahi#€ while ignoring all early ~ 9150-0100 a7

mode constraints. Then we add all early mode constraints and irf250--020] s

crease the slack on these constraints up®8Y. For this the late Figure 3: Slacks of late mode constraifg&2) without optimiza-

mode constraints are added with unparameterized edges, such tioat for MBA.

the slack of late mode constraints with slack smaller th&ff

does not decrease and the slack of all other late mode constraints

remains at least'®®. The reason for treating late and early modéhe PU was improved by.2% and the cycle time of the MBA by

constraints differently is that early mode problems can usually &7 %.

fixed quite efficiently by inserting a buffer. Finally, we balance the Table 3 also shows the number of data paths with late mode

slacks on clock tree paths up to a vahf®k as described in Sec- slack smaller thar-0.2ns,—0.1ns, ... This demonstrates how dra-

tion 5. Again it is assured that the slacks of late and early modmeatically the number of critical paths decreases.

constraints do not decrease below the value to which they wereln Table 4 the running times for the algorithm for the three chips

optimized. for computing the optimal cycle time and for balancing slacks for
Obviously, the result of the optimization depends on the lengtfifferent scenarios with'a€, A*3"Y andA¢% are shown. Again,

of the interval given bys andus specifying by how much the clock all late mode slacks are taken with respect to the target cycle times.

signal arrival time can be shifted from its nominal value. For the Figure 3 shows a frequency distribution of the slacks of all

L2 and PU the designers called fg= —0.4ns andus = 0.4ns for  late mode constraints for the MBA for the case that no optimiza-

most latches. However, there was a substantial number of latchiEs is possible (i.els = us = 0.0ns for all latches). The first

whose clock signal had to arrive at a prescribed timelde.us=  column shows the different intervals, the second column gives
0.0ns. On the MBA we hatl = —0.4ns andus = 0.5ns for most the number of data paths whose slack is within the interval and
latches. the third column gives a graphical representation of this num-

Table 3 shows the worst slack of all late mode constraints bber by a proportional number of stars. For example Figure 3
fore and after optimization with respect to the target cycle timgays that the MBA without optimization has 101 datapaths with
mentioned in Table 1. This means that the L2 could run with a cy=-0.100ns< 3 < —0.050ns. Figure 4 shows the corresponding
cle time of 65ns+ 0.048ns= 6.548ns before the optimization and frequency distributions of late mode constraints after optimization
with a cycle time of @ns— 0.313ns= 6.187ns after optimization: for A = 0.2ns.
the cycle time was improved by%%. Similarly, the cycle time of  Figures 5 and 6 show the same for the early mode constraints.



number of values: 1475535

0.300- 0.350| 14539 (22
0.250- 0.300| 11467
0.200- 0.250| 5018
0.150- 0.200| 2121
0.100 - 0.150 73
0.050 - 0.100 23
-0.000 - 0.050 38
-0.000 27
-0.050 1
-0.100
-0.150
-0.200

minimumvalue: ~ -0.050953

****************

*******

-0.050 -
-0.100 -
-0.150 -
-0.200 -
-0.250 -

Figure 4: Optimized late mode slacfefl®) for the MBA.

coo

number of values: 1475513

0.250- 0.300| 51393 (22
0.200- 0.250| 55248 (22
0.150- 0.200| 23346 (22
0.100- 0.150| 13643
0.050- 0.100| 9235
-0.000- 0.050| 5743
-0.050 - -0.000 140
-0.050 0
-0.100 0

minimum value: ~ -0.021301

-0.100 -
-0.150 -

Figure 5: Slacks of early mode constrairfg§i") without opti-
mization for MBA.

number of values: 1475513

0.250- 0.300| 45244 (24
0.200- 0.250| 20418 (24
0.150- 0.200 622 | **

0.100- 0.150 260

0.050 - 0.100 344 | *

-0.000 - 0.050 502 | *

-0.050 - -0.000 244

-0.100 - -0.050 8

-0.100 1

minimumvalue: ~ -0.125193

-0.150 -

Figure 6: Optimized early mode slackl") for the MBA.

number of values: 65798 minimum value:  0.000000

0.100-0.110| 16240 (22
0.090-0.100| 4577 | *** e

0.080 - 0.090
0.070 - 0.080
0.060 - 0.070
0.050 -
0.040 -
0.030 -
0.020 -
0.010 -
0.000 -

4070 | **
4785 | *x
4595
4525
6187
7564
6544
3820 | **
2897 | **

0.060
0.050
0.040
0.030
0.020
0.010

Figure 7: Slack on clock trefgs) paths for the MBA.

Increasing the slacks on late mode constraints makes the wi
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