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  Abstract

Krylov space methods initiated a new era for RLC circuit
model order reduction. Although theoretically well-founded,
these algorithms can fail to produce useful results for some
types of circuits. In particular, controlling accuracy and
ensuring passivity are required to fully utilize these algo-
rithms in practice. In this paper we propose a methodology
for passive reduction of RLC circuits based on extensions of
PRIMA, that is both broad and practical. This work is made
possible by uncovering the algebraic connections between
this passive model order reduction algorithm and other Kry-
lov space methods. In addition, a convergence criteria based
on an error measure for PRIMA is presented as a first step
towards intelligent order selection schemes. With these
extensions and error criterion, examples demonstrate that
accurate approximations are possible well into the RF fre-
quency range even with expansions about s=0.

1. Introduction
The objective of model order reduction is to replace the

original linear circuit with a reduced mathematical descrip-
tion that retains sufficient information about the original cir-
cuit. This is obtained by matching certain characteristics -
such as moments- of the original circuit to the reduced order
model.

The smooth transfer functions in RC circuits allowed direct
moment matching methods such as AWE [1] to be applied
successfully. However, these methods often fail to supply
enough accuracy for RLC circuits, particularly because of the
noise associated with matching moments directly. With the
use of Krylov subspace methods, it has been possible to ob-
tain very high order approximations [2, 3, 4, 5] since the mo-
ments are computed with less numerical noise and matched
implicitly.

PRIMA (Passive Reduced-order Interconnect Macromod-
eling Algorithm) [6] was introduced recently as a Krylov
space method which provides passive, stable macromodels
with accuracy comparable to the most accurate reduction
techniques. However, while the algorithms in [6] are theoret-
ically correct, an implementation based on this description is
not robust. In this paper, we have developed a robust frame-
work based on PRIMA by unveiling the connections between
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this passive reduction technique and other well-known Kry-
lov space based processes; even those that fail to satisfy pas-
sivity and/or stability requirements. Examples demonstrate
that the flexibility supplied by this methodology results in
better accuracy and robustness even with moment expansions
around s=0. The methodology and problems for the RC cir-
cuits are also discussed as a special case.

Obtaining better accuracy and smaller macromodel size is
the goal in the reduction process. Unfortunately, these objec-
tives are often contradictory. Given a maximum frequency of
interest, there exists a minimum order of approximation, qmin
that will satisfy this requirement. If the order is less than qmin,
it means that the macromodel is not accurate enough. On the
other hand, if it is more than qmin, the size of the macromodel
is larger than needed, which impacts the final simulation
time. 

Without a reliable order selection mechanism, human in-
teraction is required, making model-order reduction less
practical for certain applications. To determine the order of
approximation, reliable error measures are needed. A PRIMA
accuracy measure based on the residual error has been devel-
oped in [7]. The residual error concept is used in iterative sys-
tem solutions [8] but it may not reflect the frequency domain
behavior for the exact error. Recently PVL-WEB [9] showed
an error measure that is an approximation to the exact error
for the PVL [2] algorithm; however its region of validity was
limited. Following similar principles, we derive a robust error
criterion for PRIMA, that does not have a similar region of
validity problem. The use of this error measure as a conver-
gence criterion is successfully demonstrated.

2. Background
To obtain the admittance matrix of a multiport, voltage

sources are connected to the ports. The multiport, along with
these sources, constitutes the Modified Nodal Analysis
(MNA) equations:

(1)

The ip and up vectors denote the port currents and voltages re-
spectively and

C x· n G xn– B up+=

ip LT  xn=
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(2)

where v and i are the MNA variables corresponding to the
node voltages, inductor and voltage source currents respec-
tively.  and  represent the conductance
and susceptance matrices. ,  and  are the matrices con-
taining the stamps for resistors, capacitors and inductors re-
spectively.  consists of ones, minus ones and zeros, which
represent the current variables in KCL equations. Note that

 and  are symmetric and non-definite matrices.

The original PRIMA implementation [6] consisted of these
three separate stages:

1) Negated stamping of  to make  and  posi-
tive semi-definite for RLC circuits. Define a transformation
matrix,

 (3)

such that  and (4)

are positive semi-definite matrices.  is never constructed
explicitly, since it is rather easy to implement the same trans-
formation during stamping.

2) The Arnoldi Algorithm to find the orthogonal Kry-
lov subspace spanning vectors, . The Krylov space is de-
fined as

(5)

where  and . (6)

3) The congruence transformations to obtain reduced
system,

(7)

(8)

It was shown that the system in (8) was a passive reduced-
order model, essentially because  and  were positive
semi-definite [6]. The contents of  did not affect the passiv-
ity proof, thus providing us the flexibility to choose any 
that is favorable for accuracy. Moreover, if  was selected as
the basis for the Krylov space (5), the reduced order model
would match at least the first k block moments, similar to the
Arnoldi process.

Although this simple implementation proved itself to be
useful in explaining the passivity and moment matching
properties of the algorithm, it was not perfect for practical
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purposes. First, any loss in the orthogonality of  led to rank
deficient  and , hence close to zero eigenvalues, result-
ing in very large negative or positive poles. Second, the ex-
plicit multiplications with  and the inversion of  injected
unnecessary noise into the process. 

3. Arnoldi and Lanczos Process Connections
In order to come up with a practical PRIMA algorithm, we

first derive some theoretical connections between other Kry-
lov space methods and PRIMA. Using the connections be-
tween Arnoldi, Lanczos and PRIMA system matrices, we
can establish a practical framework for practically passive
RLC circuit reduction.

3.1  Arnoldi and PRIMA System Matrices
Defining

, (9)

the reduced system computed using PRIMA can be formu-
lated as

(10)

where  and  are the port currents and voltages respec-
tively. Here we assumed that the macromodel had N ports
and the order of reduction was q, therefore the approxima-
tion matched at least  block moments at the ports.

From the standard Arnoldi process [3], we have the rela-
tion:

(11)

(12)

In (11),  is the reduced-order block upper Hessen-
berg matrix and  is the last block Krylov vectors
computed by the algorithm. Notice that only the last N col-
umns of  are nonzero.

Next, we can derive the relation between  and , hence
the algebraic connection between PRIMA and Arnoldi sys-
tem matrices. The usefulness of this relation will be apparent
in the following sections. Multiplying (11) with  and
using (6), we obtain

. (13)

Observing the relations in (4), (7) and multiplying each side
in (13) by  reveals the connection:

(14)

Only the last N columns of  is nonzero
because of the properties of . The interpretation of (14) is
that PRIMA system matrix is indeed the Arnoldi system ma-
trix with a perturbation on the last N columns (Fig.1a), when
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 is obtained from an Arnoldi process.

3.2  Lanczos and PRIMA System Matrices
The Krylov space used in the PRIMA can be obtained from

a Lanczos process too. The Lanczos governing equations [5]
are:

(15)

(16)

We can replace  with  from (15) and obtain a PRIMA
reduced order model from (7) [10]. Following a similar alge-
bra as in Section 3.1, we obtain this relation between Lanczos
and PRIMA system matrices:

(17)

Since  is a tridiagonal matrix,  is a tridiagonal ma-
trix with a modification for the last N columns (Fig.1b), when

is obtained using a Lanczos process.

3.3  Symmetric Case
When formulated in certain ways, RC circuit system matri-

ces show useful symmetry properties which can be exploited
by the underlying model order reduction technique. In a mod-
ified nodal analysis (MNA) based impedance formulation,

and  matrices are symmetric and positive definite. There-
fore, we can use the Cholesky decomposition . Let

 and we can obtain this symmetric formulation:

(18)

where the system matrix  is symmetric and positive
definite. Applying Arnoldi process to (18) produces a block
tridiagonal  and matches 2q block moments for a qth order
system [5], therefore resulting in a Padé approximation.
Hence, Lanczos process and Arnoldi process produce the
same reduced order matrices for the system in (18). Interest-
ingly for this case, the modification to  in (14) becomes
zero since  and  by construction of the Ar-
noldi algorithm. Therefore for (18), PRIMA, Arnoldi and
Lanczos processes yield the same reduced order matrices.
Similar symmetric formulations are also possible for LC and

= +

= +

(a) PRIMA and Arnoldi

(b) PRIMA and Lanczos

PRIMA Arnoldi

PRIMA Lanczos

Last
Cols

Last
Cols

FIGURE 1:   Relations of PRIMA and other Krylov space methods
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RL circuits [11].

A practical problem remains, however, for RC trees with
no resistive path to ground. For the impedance modeling of
such circuits, where current sources are connected to the
ports and voltages at the ports are measured,  is not invert-
ible. This practical problem is overlooked in the literature
because of the possibility of avoiding the direct inversion of

 by frequency shifting [12]. Shifting the frequency is
equivalent to transforming  into , which is invert-
ible for RC trees. Unfortunately, this shifting increases the
matrix factorization complexity, and destroys the potential
for path tracing.

4. PRIMA: A practical implementation
Similar to the original PRIMA implementation, the prac-

tical implementation consists of three stages as explained in
the following subsections.

4.1  Stage 1: Finding the Krylov subspace
The Krylov subspace is the moment subspace of the sys-

tem. Since moments of the circuit are invariant with respect
to the circuit formulation, we can use the non-definite, but
symmetric  matrix (rather than ) to obtain easier and
better inversion. A simple numerically robust scheme to
compute this subspace is via using the modified Gram-
Schmidt orthogonalization procedure [8]. In this algorithm,
after a moment vector is computed, the previous moment
components are subtracted, therefore eliminating the bias of
low order moments. To increase the orthogonality robust-
ness, we can use multiple passes of orthogonalization [8]. A
simple algorithm is presented in Fig.2. An example that

G
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FIGURE 2:   Simple Krylov space computation scheme
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shows the improvement from using double orthogonalization
(NumberOfPasses = 2) is given in Fig.3. The maximum order
that can be reached by single orthogonalization is 48 (after
which the Krylov vectors loose orthogonality), whereas it
reaches to 128 with the use of double orthogonalization. The
other example is taken from a four port PEEC circuit (Fig.4)
with a dense 900x900  matrix. The orthogonality of the
Krylov space for the same example had weakened after 50 it-
erations with the single orthogonalization pass thereby result-
ing in numerically unstable reduced order models. However,
it is demonstrated that the entire frequency range has been
captured with the use of double pass orthogonalization, even
with the expansion about s=0. 

Double orthogonalization should be used when a very high
order approximation is required. Such circuits are typically
large RLC systems that take substantial amount of extraction
time, therefore the extra cost with the use of multiple pass or-
thogonalization is relatively negligible.

We should emphasize that there are multiple ways of find-
ing the Krylov subspace. It is indeed important to use a circuit
type specific implementation. For example, a J-symmetric
MPVL was used to generate the subspace and  matrix in
[10]. 

In some applications, multipoint expansions can be tried.
There has been extensive work in this field [13, 14]. An ex-
pansion at the frequency  is simply finding the moments
from
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FIGURE 3:   Improvement from using double orthogonalization in 
obtaining the Krylov space.
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construction methods demonstrated on a multiport PEEC circuit

H

s0

. (19)

A simple extension of the basic Krylov space finding algo-
rithm lets us to incorporate moments from different expan-
sion points into . Difficulties arise when  is a complex
number, because of the involvement of complex algebra. It
is possible to get rid of complex numbers by including the
moments around  into  and exploiting the fact that the
moments around  will be conjugates of the moments
around . Finding optimal expansion points, we have to
mention, still remains an open problem. Moreover, 
easily becomes dense for PEEC circuits, prohibiting the fea-
sibility of the inversion in (19). We have observed that there
is rarely a need for multipoint expansions with the use of
double orthogonalization for Krylov vectors generated about
s=0.

4.2  Stage 2: Computing the PRIMA matrices
Having  and  ready from stage 1, we can easily find

the PRIMA matrices. Using (14) and  [6] gives
the reduced order system as in (10) where

(20)

4.3  Stage 3: Diagonalization
 in (20) is typically a block upper Hessenberg matrix.

This presents storage and simulation run-time problems. The
storage of a block upper Hessenberg matrix is

. By applying any eigendecompo-
sition routine on , we can obtain

(21)

where  is a diagonal matrix that has at most 2q real values.
Indeed, the fact that  is an upper Hessenberg matrix can be
exploited to use a better and more efficient eigendecomposi-
tion.

Since  is a real matrix, any complex eigenvalue or
eigenvector has its conjugate. Therefore, we can use real 
and  matrices by these simple transformations:

 and (22)

where (23)

and .  is the transformation matrix
that can be defined as 

if  is real, ,

if , .

Hence,  will contain 2x2 blocks on the diagonal for com-
plex eigenvalues, and 1x1 blocks for the real eigenvalues.

As a result, we have the reduced order system as:
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Ã H XTGprX( )
1–
X

T
GprXl+=

R̃ XTR= L̃ XTL=

Ã
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(24)

Equation (24) characterizes a macromodel that can be direct-
ly inserted into any SPICE MNA matrix for simulation with
nonlinear drivers. Equivalently, it can be used to synthesize a
reduced-order circuit.

5. Convergence Criterion
The underlying moment matching mechanism in model or-

der reduction techniques guarantees that the approximate
transfer function captures the exact transfer function accu-
rately in a radius fr around the expansion frequency, f0. As the
order of approximation (q) increases, fr increases as well;
nevertheless the relation between fr and q is not obvious. This
nondeterminism in choosing the order of approximation ren-
ders model order reduction techniques impractical at times. It
is desirable to find an error criterion for any approximation
methodology to control the amount of error. However, there
lies a fundamental problem: Knowing the error exactly or
fairly accurately, requires the computation of the original sys-
tem, which is not possible. Therefore any approximate error
measure that is affordable is not accurate enough to be used
as a direct measure for determining the order of approxima-
tion.

In this section, an approximate error measure is derived for
PRIMA. It is assumed that the moments are found from ex-
pansions around zero for simplicity of the derivations, how-
ever the same logic applies to multipoint expansions. This
error measure will be demonstrated as a good convergence
criterion.

Following the algebra similar to that in [9], exact error of
PRIMA transfer function is derived in Appendix A as

(25)

In [9],  is replaced by  since

 for . (26)

However, the condition in (26) dictates a very narrow region
for typical high frequency circuit applications. Instead, we
choose to replace  in (25) with . Al-
though this is not a bound, it is very useful in determining the
convergence behavior. Therefore the approximate error mea-
sure becomes

Observe that  and  as a property of the
Krylov space generation. In addition, the use of (23) gives the
approximate error measure for PRIMA:
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1–
XT

s XG̃
1–
X

T
GprXl Xl– 

  I sÃ–( )
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The computational expense in evaluating  at several
frequency points is very small because  is a diagonal
matrix. At a specific order of approximation, equation (27)
can be used to estimate the region of convergence. 

An example is the PEEC circuit that was used in Fig.4. In
Fig.5, the use of approximate error measure (27) to under-
stand the region of convergence, is shown. In Fig.5b, (27) is
plotted with respect to the frequency for approximations that
match 50 and 70 moments. As displayed, 50 moments
around s=0 reaches up to 5GHz (Fig.5a) and 70 moments
around s=0 converges up to 18 GHz (Fig.5c). In both cases,
our error prediction successfully predicts the region of con-
vergence.

6. Conclusion
In this paper, we have demonstrated a practically passive

PRIMA implementation with an error checking mechanism.
It is shown that it is possible to employ many Krylov space
techniques, such as multi-point expansions and Lanczos pro-
cess within the framework of PRIMA reduction to achieve
passive and yet accurate macromodels.
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FIGURE 5:   Demonstration of the convergence criteria based on the 
error measure. 
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Appendix A
In this appendix, we derive the exact error measure for the
matrix transfer function obtained using PRIMA.

Multiplying (20) by  and rearranging terms yields

(28)

Replacing  in (11) with (28) and premultiplying by , we
obtain

(29)

Subtracting each side in (29) from  gives

(30)

It follows that

(31)

(32)

Since  [6], and the matrix transfer functions are
defined as

, (33)

, (34)

exact error of PRIMA transfer function is given as

(35)
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