A New Heuristic for Rectilinear Steiner Trees

Ion I. Măndoiu*
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
mandoiu@cc.gatech.edu

Vijay V. Vazirani*
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
vazirani@cc.gatech.edu

Joseph L. Ganley
Simplex Solutions, Inc.
521 Almanor Avenue
Sunnyvale, CA 94086
joe@simplex.com

Abstract

The minimum rectilinear Steiner tree (RST) problem is one of the fundamental problems in the field of electronic design automation. The problem is NP-hard, and much work has been devoted to designing good heuristics and approximation algorithms; to date, the champion in solution quality among RST heuristics is the Batched Iterated 1-Steiner (BI1S) heuristic of Kahng and Robins. In a recent development, exact RST algorithms have witnessed spectacular progress: The new release of the GeoSteiner code of Warme, Winter, and Zachariasen has average running time comparable to that of the fastest available BI1S implementation, due to Robins. We are thus faced with the paradoxical situation that an exact algorithm for an NP-hard problem is competitive in speed with a state-of-the-art heuristic for the problem.

The main contribution of this paper is a new RST heuristic, which has at its core a recent 3/2 approximation algorithm of Rajagopalan and Vazirani for the metric Steiner tree problem on quasi-bipartite graphs—these are graphs that do not contain edges connecting pairs of Steiner vertices. The RV algorithm is built around the linear programming relaxation of a sophisticated integer program formulation, called the bidirected cut relaxation. Our heuristic achieves a good running time by combining an efficient implementation of the RV algorithm with simple, but powerful geometric reductions.

Experiments conducted on both random and real VLSI instances show that the new RST heuristic runs significantly faster than Robins’ implementation of BI1S and than the GeoSteiner code. Moreover, the new heuristic typically gives higher-quality solutions than BI1S.

1 Introduction

The Steiner tree problem is that of finding a minimum-length interconnection of a set of terminals, and has long been one of the fundamental problems in the field of electronic design automation. Although recent advances of integrated circuit technology into the deep-submicron realm have introduced additional routing objective functions, the Steiner tree problem retains its importance: For non-critical nets, or in physically small instances, minimum length is still frequently a good objective function, since a minimum-length interconnection has minimum overall capacitance and occupies a minimum amount of area. Furthermore, the development of good algorithms for the Steiner tree problem often lays a foundation for expanding these algorithms to accommodate objective functions other than purely minimizing length.

The rectilinear Steiner tree (RST) problem—in which the terminals are points in the plane and distances between them are measured in the L_1 metric—has been the most-examined variant in electronic design automation, since IC fabrication technology typically mandates the use of only horizontal and vertical interconnect. The RST problem is NP-hard [9], and much effort has been devoted to designing heuristic and approximation algorithms [1, 2, 3, 5, 10, 12, 13, 15, 16, 17, 25, 26, 27]. In an extensive survey of RST heuristics up to 1992 [14], the Batched Iterated 1-Steiner (BI1S) heuristic of Kahng and Robins [15] emerged as the clear winner with an average improvement over the MST on terminals of almost 11%. Subsequently, two other heuristics [3, 16] have been reported to match the same performance.

After a steady, but relatively slow progress [4, 7, 21], exact RST algorithms have recently witnessed spectacular progress [23] (see also [6]). The new release [24] of the GeoSteiner code by Warme, Winter, and Zachariasen has average running time comparable to the fast BI1S implementation of Robins [19] on random instances. We are thus faced with the paradoxical situation that an exact algorithm for an NP-hard problem has the same average running time as a state-of-the-art heuristic for the problem.

We try to remedy this situation by proposing a new RST heuristic. Our experiments show that the new heuristic has better average running time than both Robins’ implementation of BI1S and the GeoSteiner code. Moreover, the new heuristic gives higher-quality solutions than BI1S on the average; of course, it cannot beat GeoSteiner in solution quality.

Our results are obtained by exploiting a number of recent algorithmic and implementation ideas. On the algorithmic side, we build on the recent 3/2 approximation algorithm of Rajagopalan and Vazirani [18] for the metric Steiner tree problem on quasi-bipartite graphs; these are graphs that do not contain edges connecting pairs of Steiner vertices. This algorithm is based on the linear programming relaxation of a sophisticated integer formulation of the metric Steiner tree problem, called the bidirected cut formulation.

It is well known that the RST problem can be reduced to the metric Steiner tree problem on graphs [11]; however, the graphs obtained from the reduction are not quasi-bipartite. We give an RV-based heuristic for finding Steiner trees in arbitrary (non-quasi-bipartite) metric graphs. The heuristic, called Iterated RV (IRV),

* Supported by NSF Grant CCR 9627308.
computes a Steiner tree of a quasi-bipartite subgraph of the original graph using the RV algorithm, in order to select a set of candidate Steiner vertices. The process is repeated with the selected Steiner vertices treated as terminals—thereby allowing the algorithm to pick larger quasi-bipartite subgraphs, and seek additional Steiner vertices for inclusion in the tree—until no further improvement is possible.

The speed of our heuristic depends critically on the size of the quasi-bipartite subgraphs considered in each iteration. We reduce the size of the graphs that correspond to RST instances by applying reductions, which are deletions of edges and vertices that do not affect the quality of the result. Our key edge reduction is based on Robins and Salowe's result that bounds the maximum degree of a rectilinear MST [20], and allows us to retain in the graph at most 4 edges incident to each Steiner vertex. Notably, the same reduction is the basis of a significant speed-up in the running time of BI1S, and it is currently incorporated in the implementation [19].

Our vertex reduction is based on a simple empty rectangle test that has its roots in the work of Berman and Ramaiyer [2] (see also [5, 26]).

We ran experiments to compare our implementation of IRV against Robins' implementation of BI1S [19] and against the GeoSteiner code of Warme, Winter, and Zachariasen [24]. The results reported in Section 4 show that, on both random and real VLSI instances, our new heuristic produces on the average higher-quality solutions than BI1S. The quality improvement is not spectacular, around 0.03% from the cost of the MST on the average, but we should note that solutions produced by BI1S are themselves less than 0.5% away from optimum on the average; this leaves little space for improvement.

More importantly, IRV's improvement in solution quality is achieved with an excellent running time. Our IRV code runs 4–8 times faster than GeoSteiner, and 2–8 times faster than Robins' implementation of BI1S on random instances with up to 200 terminals—the speed-up increases with the number of terminals. On random instances, GeoSteiner has about the same average running time as Robins' BI1S code, with a factor 2 advantage for BI1S on small instances.

After noticing that BI1S can also benefit from vertex reductions, we also incorporated the empty rectangle test into Robins' BI1S code. The enhanced BI1S code becomes 60% faster than our IRV code on random instances. However, this does not necessarily mean that BI1S is the best heuristic in practice: results on real VLSI instances indicate a different hierarchy. On these instances IRV is faster than the enhanced BI1S, and GeoSteiner is also substantially faster than Robins' BI1S. It is often claimed [15] that random RST instances are statistically indistinguishable from real VLSI instances. Our results show that this claim is only partly true: While the relative solution quality does not change between experiments ran on random instances as compared to those ran on VLSI instances, the relative running time may change.

It is interesting to note that, due to poor performance and prohibitive running times, none of the previous algorithms with proven guarantees for the Steiner tree problem in graphs [1, 2, 10, 17, 27] was found suitable as the core algorithmic idea around which heuristics can be built for use in the industry. Our adaptation of the RV algorithm fills this void for the first time, and points to the importance of drawing on the powerful new ideas developed recently in the emerging area of approximation algorithms for NP-hard optimization problems [22].

The remainder of this paper is structured as follows. Section 2 describes the RV algorithm and its heuristic extension to non-quasi-bipartite graphs. Section 3 describes how this extension, IRV, is used to solve RST instances, and Section 4 presents experimental results comparing IRV with BI1S and GeoSteiner on test cases both randomly generated and extracted from real circuit designs.

2 Steiner trees in graphs

The metric Steiner tree in graphs (GST) problem is: Given a graph \(G = (V, E) \) whose vertices are partitioned in two sets, \(T \) and \(S \), the terminal and Steiner vertices respectively, and non-negative edge costs satisfying the triangle inequality, find a minimum cost tree spanning all terminals and any subset of the Steiner vertices. Recently, Raja gopalan and Vazirani [18] presented a 3/2 approximation algorithm (henceforth called the RV algorithm) for the GST problem when restricted to quasi-bipartite graphs, i.e., graphs that have no edge connecting a pair of Steiner vertices. In this section we review the RV algorithm, discuss its implementation, and present an RV-based heuristic for the GST problem on arbitrary graphs.

2.1 The bidirected cut relaxation

The RV algorithm is based on a sophisticated integer programming (IP) formulation of the GST problem. A related, but simpler formulation is given by the following observation: A set of edges \(E' \subseteq E \) connects terminals in \(T \) if and only if every cut of \(G \) separating two terminals crosses at least one edge of \(E' \). The IP formulation resulting from this observation is called the undirected cut formulation. The IP formulation on which the RV algorithm is based, called the bidirected cut formulation, is obtained by considering a directed version of the above cut condition.

Let \(\bar{E} \) be the set of arcs obtained by replacing each undirected edge \((u, v) \in E \) by two directed arcs \(u \rightarrow v \) and \(v \rightarrow u \). For a set \(C \) of vertices, let \(\delta(C) \) be the set of arcs \(u \rightarrow v \) with \(u \in C \) and \(v \in V \setminus C \). Finally, if \(t_c \) is a fixed terminal, let \(C \) contain all sets \(C \subseteq V \) that contain at least one terminal but do not contain \(t_c \). The bidirected cut formulation attempts to pick a minimum cost collection of arcs from \(\bar{E} \) in such a way that each set in \(C \) has at least one outgoing arc:

\[
\begin{align*}
\text{minimize} & \quad \sum_{e \in \bar{E}} \text{cost}(e) x_e \\
\text{subject to} & \quad \sum_{e \in \delta(C)} x_e \geq 1, \quad C \in \mathcal{C} \\
& \quad x_e \in \{0, 1\}, \quad e \in \bar{E}
\end{align*}
\]

By allowing \(x_e \)'s to assume non-negative fractional values we obtain a linear program (LP) called the bidirected cut relaxation of GST.
minimize \[\sum_{e \in E} \text{cost}(e) \cdot x_e \]
subject to \[\sum_{e \in \delta(C)} x_e \geq 1, \quad C \in C \]
\[x_e \geq 0, \quad e \in E \]

The dual of the covering LP (2) is the packing LP:

maximize \[\sum_{C \in C} y_C \]
subject to \[\sum_{C \in \delta(C)} y_C \leq \text{cost}(e), \quad e \in \bar{E} \]
\[y_C \geq 0, \quad C \in C \]

>From LP-duality theory, the cost of a feasible solution to (3) is always less than or equal to the cost of any feasible solution to (2), and hence, less than or equal to the cost of any feasible solution to (1). The RV algorithm uses this observation to guarantee the quality of the solution produced: the algorithm constructs feasible solutions to both IP (1) and LP (3), in such a way that the costs of the two solutions differ by at most a factor of 3/2.

2.2 The RV algorithm

The RV algorithm works on quasi-bipartite graphs \(G \). At a coarse level, the RV algorithm is similar to the Batched Iterated 1-Steiner algorithm of Kahng and Robins [15]: both algorithms work in phases, and in each phase some Steiner vertices are iteratively added to the set of terminals. While B1S adds Steiner vertices to \(T \) greedily—based on the decrease in the cost of the MST—the RV algorithm uses the bidirected cut relaxation to guide the addition.

In each phase, the RV algorithm constructs feasible solutions to both IP (1) and LP (3). The bidirected cut formulation and its relaxation are inherently asymmetric, since they require a terminal \(t_o \) to be singled out. However, the RV-Phase algorithm works in a symmetric manner: the information it computes can be used to derive feasible solutions for any choice of \(t_o \).

A set \(C \subseteq V \) is called proper if both \(C \) and \(V \setminus C \) contain terminals; with respect to the original set of terminals only sets in \(C \) and their complements are proper. During its execution, the RV-Phase algorithm tentatively converts some Steiner vertices into terminals; note that the only proper sets created by these conversions are the singleton sets containing the new terminals. The algorithm maintains a variable \(y_C \), called dual, for every proper set, including the newlycreated ones. The amount of dual felt by arc \(e \) is \[\sum_{C \in \delta(C)} y_C \]; we say that \(e \) is tight when \[\sum_{C \in \delta(C)} y_C = \text{cost}(e) \]. A set \(C \) of vertices is unsatisfied if it is proper and \(\delta(C) \) does not contain any tight arc.

The RV-Phase algorithm starts with \(y_C \) set to 0 for every proper set \(C \), and an empty list \(\bar{L} \) of tight arcs. It then proceeds in a primal-dual manner, by alternatively raising dual variables as long as this does not violate the packing constraints of (3), and picking tight edges into \(\bar{L} \), thus satisfying more and more proper sets. When the algorithm stops, all proper sets are satisfied by tight arcs in \(\bar{L} \):

The RV-Phase algorithm:

1. \(\bar{L} \leftarrow \emptyset \); For each proper set \(C \), \(y_C \leftarrow 0 \).
2. While there exist unsatisfied sets do:
 - Uniformly rise the \(y \) values of minimally unsatisfied sets until an arc \(u \to v \) goes tight.
 - If \(u \not\in T \), then \(T \leftarrow T \cup \{u\} \); go to Step 1.
 - Else, \(\bar{L} \leftarrow \bar{L} \cup \{u \to v\} \).

Theorem 1 [18] (a) If arc \(u \to v, u \not\in T \), goes tight then \[\text{cost(MST}(T \cup \{u\})) < \text{cost(MST}(T)) \].
(b) At the end of the RV-Phase algorithm, \[\text{cost(MST}(T \cup \{u\})) \geq \text{cost(MST}(T)) \] for every \(u \not\in T \).

The RV algorithm (whose pseudocode we omit) repeats the RV-Phase algorithm followed by removal of unnecessary Steiner vertices, until no further improvement is made in the cost of MST(\(T \)). At the end of the algorithm, the duals raised around proper sets are converted into a solution to (1) by picking \(t_o \) and discarding \(y_S \)'s with \(S \not\in C \). The 3/2 approximation guarantee follows by relating the cost of this solution to the cost of MST(\(T \)).

2.3 Efficient implementation of the RV-Phase algorithm

Since our heuristic on general graphs uses RV-Phase as a subroutine, we describe here an efficient implementation of it. Several implementation ideas are derived from the following key property maintained throughout the RV-Phase algorithm:

Lemma 2 [18] Let \(u \) and \(v \) be two terminals. If all arcs along some path \(u \to x_1 \to \cdots \to x_k \to v \) are tight, then so are the arcs on the reverse path, \(v \to x_k \to \cdots \to x_1 \). For any terminal \(u \), there is exactly one active set containing \(u \) at any time during the algorithm. Hence, the tightening time of any arc \(u \to v, u \in T \), is exactly \(\text{cost}(u, v) \).

Unlike terminals, Steiner vertices may be contained in multiple active sets. Hence, arcs out of Steiner vertices will feel dual at varying rates during the algorithm.

Lemma 4 Let \(u \) be a Steiner vertex. If arc \(u \to v \) is the first arc out of \(u \) to go tight, then arc \(v \to u \) goes tight at the same time or before \(u \to v \) does. Moreover, each arc \(u \to w \) for which \(w \to u \) is already tight will go tight when \(u \to v \) goes tight.
Proof: In order to get tight, \(u \rightarrow v \) must feel some active set, i.e., there must exist a tight path from a terminal \(v' \neq v \) to \(u \). After \(u \rightarrow v \) gets tight, there is a tight path from \(v' \to v \), and by Lemma 2 the reverse path (hence the arc \(v \rightarrow u \)) must also be tight. The second claim follows similarly. \(\square \)

Since several arcs out of a Steiner vertex get tight simultaneously, we say that a Steiner vertex crystallizes. Note that crystallization is precisely the moment when the vertex begins to be treated as terminal. Lemma 4 implies that, in order to detect when a Steiner vertex crystallizes, it suffices to monitor the amount of dual felt for the shortest arc out of that Steiner vertex.

Our implementation maintains a list of active sets; initially containing a singleton set for each terminal. We also maintain the amount of dual felt by the shortest arc out of each Steiner vertex, initially 0. Arcs out of terminals are sorted in non-decreasing order, then marked as tightened one by one. As new arcs are tightened, we update the list of active sets and the amount of dual felt by the shortest arcs out of Steiner vertices, crystallizing Steiner vertices as needed. The maintenance of the list of active sets has a worst case running time of \(O(k \cdot |T| \cdot |S|) \), where \(k \) is the number of crystallized Steiner vertices—all other operations can be easily implemented in \(O(k \cdot |E| \cdot \log |V|) \).

2.4 The heuristic for general graphs

A simple way of dealing with non-quasi-bipartite graphs is to remove all Steiner-Steiner edges and then run the RV algorithm. To allow Steiner-Steiner edges to come into play, we iterate this process. If a Steiner vertex is added to \(T \) during some run of the RV algorithm, for subsequent runs we extend the graph by adding all edges incident to it, not just those leading to terminals.

Our experiments have shown that it is better—in both running time and solution quality—to extend the graph after running just one RV-Phase, not the full RV algorithm, on the quasi-bipartite graph. This gives the following algorithm:

The IRV Algorithm:

1. \(T_1 \leftarrow T_0 \leftarrow T \).
2. Remove from \(G \) all edges \((u,v) \) with \(u \notin T, v \notin T \), and run the RV-Phase algorithm on the resulting graph; this will add some Steiner vertices to \(T \).
3. Construct an MST on \(T \), then prune from \(T \setminus T_0 \) all vertices with tree degree \(\leq 2 \).
4. If cost(MST(\(T_1 \))) < cost(MST(\(T_1 \))), then \(T_1 \leftarrow T_2 \); go to Step 2.
5. Return MST(\(T_1 \)).

3 Rectilinear Steiner trees

The rectilinear Steiner tree (RST) problem is defined as follows: Given a set \(T \) of terminals in the Cartesian plane, find a shortest interconnection of the terminals using only horizontal and vertical lines. Lines are allowed to meet at points other than the terminals; non-terminal meeting points are called Steiner points.

By a classical result of Hanan [11], there exists an optimal rectilinear Steiner tree that uses only Steiner points located at intersections of vertical and horizontal lines passing through terminals. Thus, finding a minimum rectilinear Steiner tree on a set of terminals reduces to finding a minimum Steiner tree in the graph induced by the Hanan grid, with edge costs given by the \(L_1 \) (or Manhattan) metric, \(d(u,v) = |x_u - x_v| + |y_u - y_v| \).

The IRV algorithm yields good results when applied to a graph for which the cost and structure of the minimum Steiner tree does not change much after the removal of Steiner-Steiner edges. For the RST problem, the best choice w.r.t. solution quality is to run IRV on the complete graph induced by the Hanan grid. We obtain a practical running time by applying a few simple, yet very effective reductions to this graph.

3.1 Edge reductions

By a result of Robins and Salowe [20], for any set of points there exists a rectilinear MST in which each point \(p \) has at most one neighbor in each of the four diagonal quadrants \(-x \leq y < x, -y < x \leq y, x < y \leq -x, \) and \(y \leq x < -y \) translated at \(p \). Hence, the optimum Steiner tree in the quasi-bipartite graph is not affected if we remove all edges incident to a Steiner vertex except those connecting it to the closest terminals from each quadrant. We can also discard all edges connecting pairs of terminals except for the \(|T| - 1 \) edges in MST(\(T \))—this merely amounts to a particular choice of breaking ties between edges during RV-Phase. Combined, these two edge reductions leave a quasi-bipartite graph with \(O(|T| + |S|) \) edges, as opposed to \(O(|T| \cdot (|T| + |S|)) \) without edge reductions.

3.2 Vertex reductions

As noted by Zachariasen [26], the Full Steiner Tree reductions, which play a crucial role for exact algorithms such as [4, 23], can also be used to remove from the Hanan grid a large number of Steiner vertices without affecting the optimum Steiner tree. Simpler versions of the tests suffice in our case, since we only want to leave unaffected the optimum Steiner tree in the graph that results after the removal of Steiner-Steiner edges.

We incorporated in our code a version of the empty rectangle test [26], originally due to Berman and Ramaiyer [2]. For the configuration in Figure 1, the test says that the grid point \((x_u, y_u)\) can be safely omitted unless the rectangle determined by terminals \(u \) and \(v \) is empty (i.e., contains no terminals in its interior) and the shaded quadrant contains at least one terminal. We used a simple \(O(|T|^3) \) implementation of this test; an \(O(|T| \log |T| + k) \) implementation, where \(k \) is the number of empty rectangles, is also possible [8].

In fact, the above test can be strengthened [5, 26] so that it removes all but a set of \(O(|T|) \) Steiner points, still with no increase in the cost of the optimum RST with no Steiner-Steiner edges. By using this stronger test, the overall running time of IRV as applied to RST can be reduced to \(O(k \cdot |T|^3) \), where \(k \) is the number of crystallized Steiner vertices (usually a small fraction of \(|T| \)).
4 Experimental results

We compared our algorithm against Robins’ implementation [19] of BI1S [15], and against the recent release [24] of the GeoSteiner algorithm of Warme, Winter, and Zachariasen [23].

All tests were conducted on a SGI Power Challenge machine with 16 195 MHz IP27 processors (only one of which is used in our sequential implementation) and 4 G-Bytes of internal memory, running under IRIX Release 6.4 IP27. We coded our heuristics in C, and used Robins’ publicly available BI1S C code. We compiled both programs using the gcc compiler (version egcs-2.90.27, using -O4 optimization). The timing was performed using low level Unix interval timers, under similar load conditions for all experiments.

The test bed for our experiments consisted of two categories of instances:

Random instances: For each instance size between 10 and 200, in increments of 10, we generated uniformly at random 1000 instances consisting of points in general position\(^1\) drawn from a 10000 × 10000 grid.

Real VLSI instances: To further validate our results, we ran all heuristics on a set of 9 large instances extracted from two different VLSI designs.

Following the standard practice [14], we use the percent improvement over the MST on terminals,

\[
\frac{\text{cost(MST)} - \text{cost(Heuristic)}}{\text{cost(MST)}} \times 100,
\]

to compare the relative performance of the three algorithms.

Figure 2 shows the average improvement over MST for BI1S, IRV, and GeoSteiner on random instances. The average running times on random instances are plotted in Figure 3, we include in this comparison the version of BI1S enhanced by the inclusion of the empty rectangle test (BI1S+). Statistics on the 9 VLSI instances are presented in Table 1.

5 Conclusions

The experimental data presented in the previous section shows that IRV produces high-quality rectilinear Steiner trees, typically better than those produced by the Batched Iterated 1-Steiner heuristic. The same data shows that BI1S is significantly sped up by the addition of the empty rectangle test. With this enhancement, BI1S runs faster than IRV on random instances, but not on large real VLSI instances as those considered in our tests. It should be interesting to perform extensive tests on full VLSI designs to see how the running times of the two heuristics compare when applied to a mix of both small and large nets.

Our experimental data also confirms the excellent performance of the exact algorithm of Warme, Winter, and Zachariasen [23]. When exact algorithms achieve practical running times, one is immediately prompted to ask if any interest remains for sub-optimal heuristics. We think that this interest will not disappear, definitely not in those RST applications where speed is more important than solution accuracy, e.g., wirelength estimation during placement. Moreover, heuristics such as IRV and BI1S hold more promise than the GeoSteiner algorithm for giving efficient extensions to objective functions other than length minimization.

6 Acknowledgments

The authors wish to thank Sridhar Rajagopalan for his involvement with an earlier version of this work, and Alex Zelikovsky for many enlightening discussions.

\(^1\)A set of points is in general position if no two points share a common x- or y-coordinate.
Table 1: Gain over MST and running time for VLSI instances.

<table>
<thead>
<tr>
<th>Design.Net</th>
<th>No. term.</th>
<th>Average improvement</th>
<th>CPU seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BITS</td>
<td>IRV</td>
</tr>
<tr>
<td>16BSHREG.CLK</td>
<td>185</td>
<td>1.757</td>
<td>1.757</td>
</tr>
<tr>
<td>16BSHREG.RESET</td>
<td>406</td>
<td>3.656</td>
<td>3.656</td>
</tr>
<tr>
<td>16BSHREG.VDD</td>
<td>573</td>
<td>8.079</td>
<td>8.079</td>
</tr>
<tr>
<td>16BSHREG.VSS</td>
<td>556</td>
<td>7.854</td>
<td>8.131</td>
</tr>
<tr>
<td>MAR.BRANCH</td>
<td>188</td>
<td>9.007</td>
<td>9.158</td>
</tr>
<tr>
<td>MAR.CLK</td>
<td>264</td>
<td>7.637</td>
<td>7.748</td>
</tr>
<tr>
<td>MAR.GND</td>
<td>245</td>
<td>6.300</td>
<td>6.321</td>
</tr>
<tr>
<td>MAR.RESET</td>
<td>109</td>
<td>11.206</td>
<td>11.246</td>
</tr>
<tr>
<td>MAR.VDD</td>
<td>340</td>
<td>6.038</td>
<td>6.003</td>
</tr>
</tbody>
</table>

References

