
A New Heuristic for Rectilinear Steiner Trees

Ion I. Măndoiu�

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280
mandoiu@cc.gatech.edu

Vijay V. Vazirani�

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280
vazirani@cc.gatech.edu

Joseph L. Ganley
Simplex Solutions, Inc.
521 Almanor Avenue
Sunnyvale, CA 94086
joe@simplex.com

Abstract

The minimum rectilinear Steiner tree (RST) problem is one of the
fundamental problems in the field of electronic design automation.
The problem is NP-hard, and much work has been devoted to de-
signing good heuristics and approximation algorithms; to date, the
champion in solution quality among RST heuristics is the Batched
Iterated 1-Steiner (BI1S) heuristic of Kahng and Robins. In a
recent development, exact RST algorithms have witnessed spectac-
ular progress: The new release of the GeoSteiner code of Warme,
Winter, and Zachariasen has average running time comparable to
that of the fastest available BI1S implementation, due to Robins.
We are thus faced with the paradoxical situation that an exact al-
gorithm for an NP-hard problem is competitive in speed with a
state-of-the-art heuristic for the problem.

The main contribution of this paper is a new RST heuristic,
which has at its core a recent 3=2 approximation algorithm of
Rajagopalan and Vazirani for the metric Steiner tree problem on
quasi-bipartite graphs—these are graphs that do not contain edges
connecting pairs of Steiner vertices. The RV algorithm is built
around the linear programming relaxation of a sophisticated integer
program formulation, called the bidirected cut relaxation. Our
heuristic achieves a good running time by combining an efficient
implementation of the RV algorithm with simple, but powerful
geometric reductions.

Experiments conducted on both random and real VLSI instances
show that the new RST heuristic runs significantly faster than
Robins’ implementation of BI1S and than the GeoSteiner code.
Moreover, the new heuristic typically gives higher-quality solutions
than BI1S.

1 Introduction

The Steiner tree problem is that of finding a minimum-length in-
terconnection of a set of terminals, and has long been one of the
fundamental problems in the field of electronic design automation.
Although recent advances of integrated circuit technology into the
deep-submicron realm have introduced additional routing objective
functions, the Steiner tree problem retains its importance: For non-
critical nets, or in physically small instances, minimum length is
still frequently a good objective function, since a minimum-length
interconnection has minimum overall capacitance and occupies a

�Supported by NSF Grant CCR 9627308.

minimum amount of area. Furthermore, the development of good
algorithms for the Steiner tree problem often lays a foundation for
expanding these algorithms to accommodate objective functions
other than purely minimizing length.

The rectilinear Steiner tree (RST) problem—in which the ter-
minals are points in the plane and distances between them are
measured in the L1 metric—has been the most-examined variant
in electronic design automation, since IC fabrication technology
typically mandates the use of only horizontal and vertical inter-
connect. The RST problem is NP-hard [9], and much effort has
been devoted to designing heuristic and approximation algorithms
[1, 2, 3, 5, 10, 12, 13, 15, 16, 17, 25, 26, 27]. In an extensive survey
of RST heuristics up to 1992 [14], the Batched Iterated 1-Steiner
(BI1S) heuristic of Kahng and Robins [15] emerged as the clear
winner with an average improvement over the MST on terminals of
almost 11%. Subsequently, two other heuristics [3, 16] have been
reported to match the same performance.

After a steady, but relatively slow progress [4, 7, 21], exact RST
algorithms have recently witnessed spectacular progress [23] (see
also [6]). The new release [24] of the GeoSteiner code by Warme,
Winter, and Zachariasen has average running time comparable to the
fast BI1S implementation of Robins [19] on random instances. We
are thus faced with the paradoxical situation that an exact algorithm
for an NP-hard problem has the same average running time as a
state-of-the art heuristic for the problem.

We try to remedy this situation by proposing a new RST heuris-
tic. Our experiments show that the new heuristic has better aver-
age running time than both Robins’ implementation of BI1S and
the GeoSteiner code. Moreover, the new heuristic gives higher-
quality solutions than BI1S on the average; of course, it cannot beat
GeoSteiner in solution quality.

Our results are obtained by exploiting a number of recent al-
gorithmic and implementation ideas. On the algorithmic side, we
build on the recent 3=2 approximation algorithm of Rajagopalan and
Vazirani [18] for the metric Steiner tree problem on quasi-bipartite
graphs; these are graphs that do not contain edges connecting pairs
of Steiner vertices. This algorithm is based on the linear program-
ming relaxation of a sophisticated integer formulation of the metric
Steiner tree problem, called the bidirected cut formulation.

It is well known that the RST problem can be reduced to the
metric Steiner tree problem on graphs [11]; however, the graphs
obtained from the reduction are not quasi-bipartite. We give an
RV-based heuristic for finding Steiner trees in arbitrary (non quasi-
bipartite) metric graphs. The heuristic, called Iterated RV (IRV),

1

0-7803-5832-X /99/$10.00 ©1999 IEEE.

computes a Steiner tree of a quasi-bipartite subgraph of the original
graph using the RV algorithm, in order to select a set of candidate
Steiner vertices. The process is repeated with the selected Steiner
vertices treated as terminals—thereby allowing the algorithm to
pick larger quasi-bipartite subgraphs, and seek additional Steiner
vertices for inclusion in the tree—until no further improvement is
possible.

The speed of our heuristic depends critically on the size of the
quasi-bipartite subgraphs considered in each iteration. We reduce
the size of the graphs that correspond to RST instances by applying
reductions, which are deletions of edges and vertices that do not
affect the quality of the result. Our key edge reduction is based
on Robins and Salowe’s result that bounds the maximum degree
of a rectilinear MST [20], and allows us to retain in the graph at
most 4 edges incident to each Steiner vertex. Notably, the same
reduction is the basis of a significant speed-up in the running time
of BI1S, and is currently incorporated in the implementation [19].
Our vertex reduction is based on a simple empty rectangle test that
has its roots in the work of Berman and Ramaiyer [2] (see also
[5, 26]).

We ran experiments to compare our implementation of IRV
against Robins’ implementation of BI1S [19] and against the
GeoSteiner code of Warme, Winter, and Zachariasen [24]. The re-
sults reported in Section 4 show that, on both random and real VLSI
instances, our new heuristic produces on the average higher-quality
solutions than BI1S. The quality improvement is not spectacular,
around 0.03% from the cost of the MST on the average, but we
should note that solutions produced by BI1S are themselves less
than 0.5% away from optimum on the average; this leaves little
space for improvement.

More importantly, IRV’s improvement in solution quality is
achieved with an excellent running time. Our IRV code runs 4–
8 times faster than GeoSteiner, and 2–8 times faster than Robins’
implementation of BI1S on random instances with up to 200
terminals—the speed-up increases with the number of terminals.
On random instances, GeoSteiner has about the same average
running time as Robins’ BI1S code, with a factor 2 advantage for
BI1S on small instances.

After noticing that BI1S can also benefit from vertex reductions,
we also incorporated the empty rectangle test into Robins’ BI1S
code. The enhanced BI1S code becomes 60% faster than our IRV
code on random instances. However, this does not necessarily
mean that BI1S is the best heuristic in practice: results on real
VLSI instances indicate a different hierarchy. On these instances
IRV is faster than the enhanced BI1S, and GeoSteiner is also
substantially faster than Robins’ BI1S. It is often claimed [15]
that random RST instances are statistically indistinguishable from
real VLSI instances. Our results show that this claim is only partly
true: While the relative solution quality does not change between
experiments ran on random instances as compared to those ran on
VLSI instances, the relative running time may change.

It is interesting to note that, due to poor performance and pro-
hibitive running times, none of the previous algorithms with proven
guarantees for the Steiner tree problem in graphs [1, 2, 10, 17, 27]
was found suitable as the core algorithmic idea around which heuris-
tics can be built for use in the industry. Our adaptation of the RV
algorithm fills this void for the first time, and points to the impor-

tance of drawing on the powerful new ideas developed recently in
the emerging area of approximation algorithms for NP-hard opti-
mization problems [22].

The remainder of this paper is structured as follows. Section 2
describes the RV algorithm and its heuristic extension to non quasi-
bipartite graphs. Section 3 describes how this extension, IRV, is
used to solve RST instances, and Section 4 presents experimental
results comparing IRV with BI1S and GeoSteiner on test cases
both randomly generated and extracted from real circuit designs.

2 Steiner trees in graphs

The metric Steiner tree in graphs (GST) problem is: Given a graph
G = (V;E) whose vertices are partitioned in two sets, T and S,
the terminal and Steiner vertices respectively, and non-negative
edge costs satisfying the triangle inequality, find a minimum cost
tree spanning all terminals and any subset of the Steiner vertices.
Recently, Rajagopalan and Vazirani [18] presented a 3/2 approxi-
mation algorithm (henceforth called the RV algorithm) for the GST
problem when restricted to quasi-bipartite graphs, i.e., graphs that
have no edge connecting a pair of Steiner vertices. In this section we
review the RV algorithm, discuss its implementation, and present
an RV-based heuristic for the GST problem on arbitrary graphs.

2.1 The bidirected cut relaxation

The RV algorithm is based on a sophisticated integer programming
(IP) formulation of the GST problem. A related, but simpler formu-
lation is given by the following observation: A set of edges E0 � E
connects terminals in T if and only if every cut of G separating two
terminals crosses at least one edge ofE0. The IP formulation result-
ing from this observation is called the undirected cut formulation.
The IP formulation on which the RV algorithm is based, called the
bidirected cut formulation, is obtained by considering a directed
version of the above cut condition.

Let ~E be the set of arcs obtained by replacing each undirected
edge (u; v) 2 E by two directed arcs u ! v and v ! u. For a
set C of vertices, let �(C) be the set of arcs u ! v with u 2 C
and v 2 V n C. Finally, if to is a fixed terminal, let C contain all
sets C � V that contain at least one terminal but do not contain
to. The bidirected cut formulation attempts to pick a minimum cost
collection of arcs from ~E in such a way that each set in C has at
least one outgoing arc:

minimize
X

e2~E

cost(e)xe(1)

subject to
X

e: e2�(C)

xe � 1; C 2 C

xe 2 f0; 1g; e 2 ~E

By allowing xe’s to assume non-negative fractional values we ob-
tain a linear program (LP) called the bidirected cut relaxation of
GST:

2

minimize
X

e2~E

cost(e)xe(2)

subject to
X

e: e2�(C)

xe � 1; C 2 C

xe � 0; e 2 E

The dual of the covering LP (2) is the packing LP:

maximize
X

C2C

yC(3)

subject to
X

C: e2�(C)

yC � cost(e); e 2 ~E

yC � 0; C 2 C

>From LP-duality theory, the cost of a feasible solution to (3) is
always less than or equal to the cost of any feasible solution to (2),
and hence, less than or equal to the cost of any feasible solution
to (1). The RV algorithm uses this observation to guarantee the
quality of the solution produced: the algorithm constructs feasible
solutions to both IP (1) and LP (3), in such a way that the costs of
the two solutions differ by at most a factor of 3/2.

2.2 The RV algorithm

The RV algorithm works on quasi-bipartite graphs G. At a coarse
level, the RV algorithm is similar to the Batched Iterated 1-Steiner
algorithm of Kahng and Robins [15]: both algorithms work in
phases, and in each phase some Steiner vertices are iteratively
added to the set of terminals. While BI1S adds Steiner vertices to
T greedily—based on the decrease in the cost of the MST—the RV
algorithm uses the bidirected cut relaxation to guide the addition.

In each phase, the RV algorithm constructs feasible solutions
to both IP (1) and LP (3). The bidirected cut formulation and its
relaxation are inherently asymmetric, since they require a terminal
to to be singled out. However, the RV-Phase algorithm works in
a symmetric manner: the information it computes can be used to
derive feasible solutions for any choice of to.

A set C � V is called proper if both C and V n C con-
tain terminals; with respect to the original set of terminals only
sets in C and their complements are proper. During its execu-
tion, the RV-Phase algorithm tentatively converts some Steiner
vertices into terminals; note that the only proper sets created by
these conversions are the singleton sets containing the new ter-
minals. The algorithm maintains a variable yC , called dual, for
every proper set, including the newly created ones. The amount
of dual felt by arc e is

P
C : e2�(C) yC ; we say that e is tight whenP

C : e2�(C) yC = cost(e). A set C of vertices is unsatisfied if it is
proper and �(C) does not contain any tight arc.

The RV-Phase algorithm starts with yC set to 0 for every proper
setC, and an empty list ~L of tight arcs. It then proceeds in a primal-
dual manner, by alternatively raising dual variables as long as this
does not violate the packing constraints of (3), and picking tight
edges into ~L, thus satisfying more and more proper sets. When the
algorithm stops, all proper sets are satisfied by tight arcs in ~L:

The RV-Phase algorithm:

1. ~L ;; For each proper set C, yC 0.

2. While there exist unsatisfied sets do:

Uniformly rise the y values of minimally

unsatisfied sets until an arc u! v goes tight.

If u =2 T , then T T [fug; go to Step 1.

Else, ~L ~L [fu! vg.

Theorem 1 [18] (a) If arc u ! v, u =2 T , goes tight then
cost(MST(T [fug)) < cost(MST(T)).

(b) At the end of the RV-Phase algorithm, cost(MST(T [
fug)) � cost(MST(T)) for every u =2 T .

The RV algorithm (whose pseudocode we omit) repeats the
RV-Phase algorithm followed by removal of unnecessary Steiner
vertices, until no further improvement is made in the cost of
MST(T). At the end of the algorithm, the duals raised around
proper sets are converted into a solution to (1) by picking to and
discarding yS’s with S =2 C. The 3=2 approximation guarantee
follows by relating the cost of this solution to the cost of MST(T).

2.3 Efficient implementation of the RV-Phase al-
gorithm

Since our heuristic on general graphs uses RV-Phase as a subrou-
tine, we describe here an efficient implementation of it. Several
implementation ideas are derived from the following key property
maintained throughout the RV-Phase algorithm:

Lemma 2 [18] Let u and v be two terminals. If all arcs along
some path u! x1 ! � � � ! xk ! v are tight, then so are the arcs
on the reverse path, v ! xk ! � � � ! x1 ! u.

For implementation purposes we do not need to keep track of the
duals raised; all that matters is the order in which arcs get tight.
The tightening time of an arc can be determined by monitoring the
number of minimally unsatisfied sets (henceforth called active sets)
that are felt by that arc. It is easy to see that the set of vertices
reachable via tight arcs from a terminal u always form an active set;
Lemma 2 implies that no other active set can contain u. Thus, we
get:

Corollary 3 For any terminalu, there is exactly one active set con-
taining u at any time during the algorithm. Hence, the tightening
time of any arc u! v, u 2 T , is exactly cost(u; v).

Unlike terminals, Steiner vertices may be contained in multiple
active sets. Hence, arcs out of Steiner vertices will feel dual at
varying rates during the algorithm.

Lemma 4 Let u be a Steiner vertex. If arc u ! v is the first arc
out of u to go tight, then arc v ! u goes tight at the same time or
before u ! v does. Moreover, each arc u ! w for which w ! u
is already tight will go tight when u! v goes tight.

3

Proof: In order to get tight, u! v must feel some active set, i.e.,
there must exist a tight path from a terminal v0 6= v to u. After
u! v gets tight, there is a tight path from v0 to v, and by Lemma 2
the reverse path (hence the arc v ! u) must also be tight. The
second claim follows similarly. 2

Since several arcs out of a Steiner vertex get tight simultaneously,
we say that a Steiner vertex crystallizes. Note that crystallization
is precisely the moment when the vertex begins to be treated as
terminal. Lemma 4 implies that, in order to detect when a Steiner
vertex crystallizes, it suffices to monitor the amount of dual felt for
the shortest arc out of that Steiner vertex.

Our implementation maintains a list of active sets; initially con-
taining a singleton set for each terminal. We also maintain the
amount of dual felt by the shortest arc out of each Steiner vertex,
initially0. Arcs out of terminals are sorted in non-decreasing order,
then marked as tightened one by one. As new arcs are tightened,
we update the list of active sets and the amount of dual felt by the
shortest arcs out of Steiner vertices, crystallizing Steiner vertices as
needed. The maintenance of the list of active sets has a worst case
running time ofO(k �jT j�jSj), where k is the number of crystallized
Steiner vertices—all other operations can be easily implemented in
O(k � jEj � log jV j).

2.4 The heuristic for general graphs

A simple way of dealing with non-quasi-bipartite graphs is to re-
move all Steiner-Steiner edges and then run the RV algorithm. To
allow Steiner-Steiner edges to come into play, we iterate this pro-
cess. If a Steiner vertex is added to T during some run of the RV
algorithm, for subsequent runs we extend the graph by adding all
edges incident to it, not just those leading to terminals.

Our experiments have shown that it is better—in both running
time and solution quality—to extend the graph after running just
one RV-Phase, not the full RV algorithm, on the quasi-bipartite
graph. This gives the following algorithm:

The IRV Algorithm:

1. T1 To T

2. Remove from G all edges (u; v) with u =2 T , v =2 T ,
and run the RV-Phase algorithm on the resulting
graph; this will add some Steiner vertices to T .

3. Construct an MST on T , then prune from T n To all
vertices with tree degree � 2.

4. If cost(MST(T)) < cost(MST(T1)), then T1 T ; go
to Step 2.

5. Return MST(T1).

3 Rectilinear Steiner trees

The rectilinear Steiner tree (RST) problem is defined as follows:
Given a set T of terminals in the Cartesian plane, find a shortest
interconnection of the terminals using only horizontal and vertical
lines. Lines are allowed to meet at points other than the terminals;

non-terminal meeting points are called Steiner points.
By a classical result of Hanan [11], there exists an optimal rec-

tilinear Steiner tree that uses only Steiner points located at inter-
sections of vertical and horizontal lines passing through terminals.
Thus, finding a minimum rectilinear Steiner tree on a set of termi-
nals reduces to finding a minimum Steiner tree in the graph induced
by the Hanan grid, with edge costs given by the L1 (or Manhattan)
metric, d(u; v) = jxu � xvj+ jyu � yvj.

The IRV algorithm yields good results when applied to a graph
for which the cost and structure of the minimum Steiner tree does
not change much after the removal of Steiner-Steiner edges. For
the RST problem, the best choice w.r.t. solution quality is to run
IRV on the complete graph induced by the Hanan grid. We obtain a
practical running time by applying a few simple, yet very effective
reductions to this graph.

3.1 Edge reductions

By a result of Robins and Salowe [20], for any set of points there
exists a rectilinear MST in which each point p has at most one
neighbor in each of the four diagonal quadrants�x � y < x,�y <
x � y, x < y � �x, and y � x < �y translated at p. Hence, the
optimum Steiner tree in the quasi-bipartite graph is not affected if we
remove all edges incident to a Steiner vertex except those connecting
it to the closest terminals from each quadrant. We can also discard
all edges connecting pairs of terminals except for the jT j� 1 edges
in MST(T)—this merely amounts to a particular choice of breaking
ties between edges during RV-Phase. Combined, these two edge
reductions leave a quasi-bipartite graph with O(jT j + jSj) edges,
as opposed to O(jT j � (jT j+ jSj)) without edge reductions.

3.2 Vertex reductions

As noted by Zachariasen [26], the Full Steiner Tree reductions,
which play a crucial role for exact algorithms such as [4, 23],
can also be used to remove from the Hanan grid a large number of
Steiner vertices without affecting the optimum Steiner tree. Simpler
versions of the tests suffice in our case, since we only want to leave
unaffected the optimum Steiner tree in the graph that results after
the removal of Steiner-Steiner edges.

We incorporated in our code a version of the empty rectangle
test [26], originally due to Berman and Ramaiyer [2]. For the
configuration in Figure 1, the test says that the grid point (xu; yv)
can be safely omitted unless the rectangle determined by terminals
u and v is empty (i.e., contains no terminals in its interior) and
the shaded quadrant contains at least one terminal. We used a
simple O(jT j2) implementation of this test; an O(jT j log jT j+ k)
implementation, where k is the number of empty rectangles, is also
possible [8].

In fact, the above test can be strengthened [5, 26] so that it
removes all but a set of O(jT j) Steiner points, still with no increase
in the cost of the optimum RST with no Steiner-Steiner edges. By
using this stronger test, the overall running time of IRV as applied
to RST can be reduced to O(k � jT j2), where k is the number of
crystallized Steiner vertices (usually a small fraction of jT j).

4

(x ,y)

v

u

u v

Figure 1: The empty rectangle test.

4 Experimental results

We compared our algorithm against Robins’ implementation [19]
of BI1S [15], and against the recent release [24] of the GeoSteiner
algorithm of Warme, Winter, and Zachariasen [23].

All tests were conducted on a SGI Power Challenge machine
with 16 195 MHz IP27 processors (only one of which is used in
our sequential implementation) and 4 G-Bytes of internal memory,
running under IRIX Release 6.4 IP27. We coded our heuristics in
C, and used Robins’ publicly available BI1S C code. We compiled
both programs using the gcc compiler (version egcs-2.90.27, using
-O4 optimization). The timing was performed using low level Unix
interval timers, under similar load conditions for all experiments.

The test bed for our experiments consisted of two categories of
instances:

Random instances: For each instance size between 10 and 200,
in increments of 10, we generated uniformly at random 1000
instances consisting of points in general position1 drawn from
a 10000� 10000 grid.

Real VLSI instances: To further validate our results, we ran all
heuristics on a set of 9 large instances extracted from two
different VLSI designs.

Following the standard practice [14], we use the percent improve-
ment over the MST on terminals,

cost(MST)� cost(Heuristic)
cost(MST)

� 100;

to compare the relative performance of the three algorithms.
Figure 2 shows the average improvement over MST for BI1S,

IRV, and GeoSteiner on random instances. The average running
times on random instances are plotted in Figure 3, we include in this
comparison the version of BI1S enhanced by the inclusion of the
empty rectangle test (BI1S+). Statistics on the 9 VLSI instances
are presented in Table 1.

5 Conclusions

The experimental data presented in the previous section shows that
IRV produces high-quality rectilinear Steiner trees, typically better

1A set of points is in general position if no two points share a common x- or
y-coordinate.

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

0 50 100 150 200

%
 g

ai
n

ov
er

 M
S

T

No. terminals

BI1S
IRV

OPT

Figure 2: Average improvement over MST.

0

2

4

6

8

10

12

0 50 100 150 200

A
vg

. C
P

U
 ti

m
e

(s
ec

.)

No. terminals

BI1S
IRV

OPT
BI1S+

Figure 3: Average CPU time.

than those produced by the Batched Iterated 1-Steiner heuristic.
The same data shows that BI1S is significantly sped up by the
addition of the empty rectangle test. With this enhancement, BI1S
runs faster than IRV on random instances, but not on large real VLSI
instances as those considered in our tests. It should be interesting to
perform extensive tests on full VLSI designs to see how the running
times of the two heuristics compare when applied to a mix of both
small and large nets.

Our experimental data also confirms the excellent performance
of the exact algorithm of Warme, Winter, and Zachariasen [23].
When exact algorithms achieve practical running times, one is im-
mediately prompted to ask if any interest remains for sub-optimal
heuristics. We think that this interest will not disapear, definitely
not in those RST applications where speed is more important than
solution accuracy, e.g., in wirelength estimation during placement.
Moreover, heuristics such as IRV and BI1S hold more promise
than the GeoSteiner algorithm for giving efficient extensions to
objective functions other than length minimization.

6 Acknowledgments

The authors wish to thank Sridhar Rajagopalan for his involvement
with an earlier version of this work, and Alex Zelikovsky for many
enlightening discussions.

5

Design.Net No. Average improvement CPU seconds
term. BI1S IRV GeoSteiner BI1S BI1S+ IRV GeoSteiner

16BSHREG.CLK 185 1.757 1.757 1.757 5.17 1.31 0.25 2.80
16BSHREG.RESET 406 3.666 3.666 3.810 52.23 10.07 1.65 4.37
16BSHREG.VDD 573 8.079 8.079 8.118 165.47 30.29 2.94 1.73
16BSHREG.VSS 556 7.854 8.131 8.192 155.15 36.71 3.29 7.90
MAR.BRANCH 188 9.007 9.158 9.221 7.73 1.26 0.62 5.21
MAR.CLK 264 7.637 7.748 7.957 16.53 2.34 1.57 13.16
MAR.GND 245 6.300 6.321 6.476 13.22 1.96 1.26 1.03
MAR.RESET 109 11.206 11.246 11.246 1.22 0.24 0.16 0.65
MAR.VDD 340 6.038 6.003 6.181 46.75 7.69 1.59 8.19

Table 1: Gain over MST and running time for VLSI instances.

References

[1] Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide: An
approximation algorithm for the generalized Steiner problem on net-
works, SIAM J. on Computing, 24 (1995), pp. 440–456.

[2] Piotr Berman and Viswanathan Ramaiyer. Improved approximations
for the Steiner tree problem, J. of Algorithms, 17 (1994), pp. 381–408.

[3] M. Borah, R.M. Owens, and M.J. Irwin. An edge-based heuristic for
Steiner routing, IEEE Trans. on CAD 13 (1994), pp. 1563–1568.

[4] U. Fössmeier and M. Kaufmann. Solving rectilinear Steiner tree
problems exactly in theory and practice, Proc. 5th European Symp.
on Algorithms (1997), Springer-Verlag LNCS 1284, pp. 171–185.

[5] U. Fössmeier, M. Kaufmann, and A. Zelikovsky. Faster approxima-
tion algorithms for the rectilinear Steiner tree problem, Discrete and
Computational Geometry 18 (1997), pp. 93–109.

[6] J.L. Ganley. Computing optimal rectilinear Steiner trees: A sur-
vey and experimental evaluation, Discrete Applied Mathematics, 89
(1998), pp. 161–171.

[7] J.L. Ganley and J.P. Cohoon. Improved computation of optimal rec-
tilinear Steiner minimal trees, Int. J. of Computational Geometry and
Applications, 7 (1997), pp. 457–472.

[8] R.-H, Güting, O. Nurmi, and T. Ottmann. Fast algorithms for direct
enclosures and direct dominances, J. of Algorithms, 10 (1989), pp.
170–186.

[9] M.R. Garey and D.S. Johnson. The rectilinear Steiner tree problem
is NP-complete, SIAM J. Appl. Math., 32 (1977), pp. 826–834.

[10] Michel X. Goemans and David P. Williamson. A general approxi-
mation technique for constrained forest problems, SIAM J. on Com-
puting, 24 (1995), pp. 296–317.

[11] M. Hanan. On Steiner’s problem with rectilinear distance, SIAM J.
Appl. Math., 14 (1966), pp. 255–265.

[12] J.-M. Ho, G. Vijayan, and C.K. Wong. New algorithms for the rec-
tilinear Steiner tree problem, IEEE Trans. on CAD, 9 (1990), pp.
185–193.

[13] F.K. Hwang. An O(n logn) algorithm for suboptimal rectilinear
Steiner trees, IEEE Trans. on Circuits and Systems, 26 (1979), pp.
75–77.

[14] F.K. Hwang, D.S. Richards, and P. Winter. The Steiner tree problem,
Ann. of Discrete Math. 53, North-Holland, Amsterdam, 1992.

[15] A.B. Kahng and G. Robins. A new class of iterative Steiner tree
heuristics with good performance, IEEE Trans. on CAD, 11 (1992),
pp. 1462–1465.

[16] F.D. Lewis, W.C.-C. Pong, and N. Van Cleave. Local improvement
in Steiner trees, Proc. of the 3rd Great Lakes Symp. on VLSI (1993),
pp. 105–106.

[17] H. J. Prömel and A. Steger. RNC-approximation algorithms for the
Steiner problem, in R. Reischuk and M. Morvan, editors, Proc. of
the 14th Symp. on Theoretical Aspects of Computer Science (1997),
volume 1200 of Lecture Notes in Computer Science, pages 559–570.

[18] S. Rajagopalanand V.V. Vazirani. On the bidirected cut relaxation for
the metric Steiner tree problem, 10th ACM-SIAM Symp. on Discrete
Algorithms, 1999, pp. 742–751.

[19] Gabriel Robins. Steiner code available at
www.cs.virginia.edu/˜robins/steiner.tar.

[20] G. Robins and J.S. Salowe. Low-degree minimum spanning trees,
Discrete and Computational Geometry 14 (1995), pp. 151–165.

[21] J.S. Salowe and M.D. Warme. Thirty-five-point rectilinear Steiner
minimal trees in a day, Networks 25 (1995), pp. 69–87.

[22] V.V. Vazirani. Approximation Algorithms. Book in preparation avail-
able at www.cc.gatech.edu/fac/Vijay.Vazirani/book.ps.

[23] D.M. Warme, P. Winter, and M. Zacharisen. Exact Algorithms for
Plane Steiner Tree Problems: A Computational Study, Technical
Report DIKU-TR-98/11, Dept. of Computer Science, University of
Copenhagen, 1998.

[24] D.M. Warme, P. Winter, and M. Zacharisen. The GeoSteiner 3.0
package, ftp.diku.dk/diku/users/martinz/geosteiner-3.0.tar.gz.

[25] Y.F. Wu, P. Widmayer, and C.K. Wong. A faster approximation
algorithm for the Steiner problem in graphs, Algorithmica 23 (1986),
pp. 223–229.

[26] M. Zachariasen. Rectilinear Full Steiner Tree Generation, Networks
33 (1999), pp. 125–143.

[27] A. Zelikovsky. An 11/6-approximation algorithm for the network
Steiner problem, Algorithmica, 9 (1993), pp 463–470.

6

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

