A New Heuristic for Rectilinear Steiner Trees

lon |. Mandoiu*

College of Computing
Georgia lInstitute of Technology
Atlanta, GA 30332-0280
mandoiu@cc.gatech.edu

Abstract

The minimum rectilinear Steiner tree (RST) problem is one of the
fundamental problemsin the field of electronic design automation.
The problem is NP-hard, and much work has been devoted to de-
signing good heuristics and approximation algorithms; to date, the
champion in solution quality among RST heuristicsis the Batched
Iterated 1-Steiner (BI1S) heuristic of Kahng and Robins. In a
recent devel opment, exact RST a gorithms have witnessed spectac-
ular progress. The new release of the GeoSteiner code of Warme,
Winter, and Zachariasen has average running time comparable to
that of the fastest available BI1S implementation, due to Robins.
We are thus faced with the paradoxical situation that an exact al-
gorithm for an NP-hard problem is competitive in speed with a
state-of-the-art heuristic for the problem.

The main contribution of this paper is a new RST heurigtic,
which has at its core a recent 3/2 approximation agorithm of
Rajagopalan and Vazirani for the metric Steiner tree problem on
quasi -bipartite graphs—these are graphs that do not contain edges
connecting pairs of Steiner vertices. The RV agorithm is built
around thelinear programming rel axation of asophi sticated i nteger
program formulation, called the bidirected cut relaxation. Our
heuristic achieves a good running time by combining an efficient
implementation of the RV agorithm with simple, but powerful
geometric reductions.

Experiments conducted on both random and real VLSI instances
show that the new RST heuristic runs significantly faster than
Robins' implementation of BI1S and than the GeoSteiner code.
Moreover, thenew heuristictypically gives higher-quality solutions
than BI1S.

1 Introduction

The Steiner tree problem is that of finding a minimum-length in-
terconnection of a set of terminas, and has long been one of the
fundamental problemsin the field of electronic design automation.
Although recent advances of integrated circuit technology into the
deep-submicron realm have introduced additional routing objective
functions, the Steiner tree problem retainsitsimportance: For non-
critical nets, or in physically smal instances, minimum length is
till frequently a good objective function, since a minimum-length
interconnection has minimum overall capacitance and occupies a

*Supported by NSF Grant CCR 9627308.

0-7803-5832-X /99/$10.00 ©1999 |IEEE.

\Vijay V. Vazirani
College of Computing
Georgialnstitute of Technology
Atlanta, GA 30332-0280
vazirani@cc.gatech.edu

Joseph L. Ganley

Simplex Solutions, Inc.
521 Almanor Avenue
Sunnyvale, CA 94086

joe@simplex.com

minimum amount of area. Furthermore, the devel opment of good
algorithmsfor the Steiner tree problem often lays a foundation for
expanding these agorithms to accommodate objective functions
other than purely minimizing length.

The rectilinear Steiner tree (RST) problem—in which the ter-
minals are points in the plane and distances between them are
measured in the 7; metric—has been the most-examined variant
in electronic design automation, since IC fabrication technology
typically mandates the use of only horizontal and vertica inter-
connect. The RST problem is NP-hard [9], and much effort has
been devoted to designing heuristic and approximation a gorithms
[1,2,3,5 10,12,13, 15, 16, 17, 25, 26, 27]. Inan extensive survey
of RST heuristics up to 1992 [14], the Batched Iterated 1-Steiner
(BI1S) heuristic of Kahng and Robins [15] emerged as the clear
winner with an average improvement over the M ST on terminal s of
amost 11%. Subsequently, two other heuristics[3, 16] have been
reported to match the same performance.

After asteady, but relatively ow progress[4, 7, 21], exact RST
algorithms have recently witnessed spectacular progress [23] (see
also[6]). Thenew release [24] of the GeoSteiner code by Warme,
Winter, and Zachariasen has average running timecomparableto the
fast BI1S implementation of Robins[19] on random instances. We
arethusfaced with the paradoxical situationthat an exact agorithm
for an NP-hard problem has the same average running time as a
state-of-the art heuristic for the problem.

We try to remedy this situation by proposing a new RST heuris-
tic. Our experiments show that the new heuristic has better aver-
age running time than both Robins' implementation of BI1S and
the GeoSteiner code. Moreover, the new heuristic gives higher-
quality solutionsthan BI1S ontheaverage; of course, it cannot beat
GeoSteiner in solution quality.

Our results are obtained by exploiting a number of recent al-
gorithmic and implementation ideas. On the algorithmic side, we
build ontherecent 3/2 approximation algorithm of Rajagopal anand
Vazirani [18] for the metric Steiner tree problem on quasi-bipartite
graphs; these are graphsthat do not contain edges connecting pairs
of Steiner vertices. Thisagorithmis based on thelinear program-
ming rel axation of asophisticated integer formulation of the metric
Steiner tree problem, called the bidirected cut formulation.

It is well known that the RST problem can be reduced to the
metric Steiner tree problem on graphs [11]; however, the graphs
obtained from the reduction are not quasi-bipartite. We give an
RV-based heuristic for finding Steiner trees in arbitrary (non quasi-
bipartite) metric graphs. The heuristic, called Iterated RV (IRV),

computes a Steiner tree of aquasi-bipartitesubgraph of theorigina
graph using the RV algorithm, in order to select a set of candidate
Steiner vertices. The process is repeated with the selected Steiner
vertices treated as terminals—thereby alowing the algorithm to
pick larger quasi-bipartite subgraphs, and seek additional Steiner
vertices for inclusion in the tree—until no further improvement is
possible.

The speed of our heuristic depends critically on the size of the
quasi-bipartite subgraphs considered in each iteration. We reduce
the size of the graphsthat correspond to RST instances by applying
reductions, which are deletions of edges and vertices that do not
affect the quality of the result. Our key edge reduction is based
on Robins and Salowe's result that bounds the maximum degree
of arectilinear MST [20], and allows us to retain in the graph at
most 4 edges incident to each Steiner vertex. Notably, the same
reduction is the basis of a significant speed-up in the running time
of BI1S, and is currently incorporated in the implementation [19].
Our vertex reduction is based on a simple empty rectangl e test that
has its roots in the work of Berman and Ramaiyer [2] (see aso
[5, 26]).

We ran experiments to compare our implementation of IRV
against Robins implementation of BI1S [19] and against the
GeoSteiner code of Warme, Winter, and Zachariasen [24]. There-
sultsreported in Section 4 show that, on both random and real VLS|
instances, our new heuristic produces on the average higher-quality
solutionsthan BI1S. The quality improvement is not spectacular,
around 0.03% from the cost of the MST on the average, but we
should note that solutions produced by BI1S are themselves less
than 0.5% away from optimum on the average; this leaves little
space for improvement.

More importantly, IRV’'s improvement in solution quality is
achieved with an excellent running time. Our IRV code runs 4—
8 times faster than GeoSteiner, and 28 times faster than Robins
implementation of BI1S on random instances with up to 200
terminals—the speed-up increases with the number of terminals.
On random instances, GeoSteiner has about the same average
running time as Robins' BI1S code, with a factor 2 advantage for
BI1S on small instances.

After noticing that BI1S can &l so benefit from vertex reductions,
we aso incorporated the empty rectangle test into Robins' BI1S
code. The enhanced BI1S code becomes 60% faster than our IRV
code on random instances. However, this does not necessarily
mean that BI1S is the best heuristic in practice: results on real
VLSl instances indicate a different hierarchy. On these instances
IRV is faster than the enhanced BI1S, and GeoSteiner is aso
substantially faster than Robins' BI1S. It is often claimed [15]
that random RST instances are statistically indistinguishable from
real VLS| instances. Our results show that thisclaim isonly partly
true: While the relative solution quality does not change between
experiments ran on random instances as compared to those ran on
VLSl instances, the relative running time may change.

It is interesting to note that, due to poor performance and pro-
hibitive running times, none of the previousal gorithmswith proven
guarantees for the Steiner tree problemin graphs[1, 2, 10, 17, 27]
wasfound suitabl easthe coreal gorithmicideaaround which heuris-
tics can be built for use in the industry. Our adaptation of the RV
algorithm fills thisvoid for thefirst time, and pointsto the impor-

tance of drawing on the powerful new ideas developed recently in
the emerging area of approximation agorithms for NP-hard opti-
mization problems [22].

The remainder of this paper is structured as follows. Section 2
describesthe RV a gorithm and itsheuristic extension to non quasi-
bipartite graphs. Section 3 describes how this extension, IRV, is
used to solve RST instances, and Section 4 presents experimental
results comparing IRV with BI1S and GeoSteiner on test cases
both randomly generated and extracted from real circuit designs.

2 Steiner treesin graphs

The metric Steiner tree in graphs (GST) problemis: Given agraph
G = (V, E) whose vertices are partitioned in two sets, 7" and .S,
the terminal and Steiner vertices respectively, and non-negative
edge costs satisfying the triangle inequality, find a minimum cost
tree spanning all terminals and any subset of the Steiner vertices.
Recently, Rgjagopalan and Vazirani [18] presented a 3/2 approxi-
mation a gorithm (henceforth called the RV algorithm) for the GST
problem when restricted to quasi-bipartite graphs, i.e., graphs that
have no edge connecting apair of Steiner vertices. Inthissectionwe
review the RV agorithm, discuss its implementation, and present
an RV-based heuristic for the GST problem on arbitrary graphs.

2.1 Thebidirected cut relaxation

The RV agorithmis based on a sophisticated integer programming
(IP) formulation of the GST problem. A related, but simpler formu-
lationisgiven by thefollowing observation: A setof edges £’ C F
connectsterminasin /" if and only if every cut of G separating two
terminalscrosses at |east oneedge of £’. ThelPformulationresult-
ing from this observation is called the undirected cut formulation.
The IP formulation on which the RV agorithmis based, called the
bidirected cut formulation, is obtained by considering a directed
version of the above cut condition.

Let £ be the set of arcs obtained by replacing each undirected
edge (u,v) € E by two directed arcs « — v and v — u. For a
set C of vertices, let §(C') be the set of arcs u — v withu € C
andv € V' \ C. Findly, if ¢, isafixed terminal, let C contain all
sets C' C V that contain at least one terminal but do not contain
t,. Thebidirected cut formulation attemptsto pick aminimum cost
collection of arcs from £ in such away that each set in C has at
least one outgoing arc:

(1) minimize Z cost(e)x.
eEE
subjectto Y 2. >1, CeC
ere€d(C)
Le € {Oa 1}a €€ E

By alowing z.'s to assume non-negative fractional values we ob-
tain a linear program (LP) called the bidirected cut relaxation of
GST:

(20 minimize Z cost(e)x.
eEE
subjectto > 2. >1, Ce€C
ere€d(C)
Te Z O, e€c

The dual of the covering LP (2) isthe packing LP:

(3) maximize Z Yo
ceC
subjectto Y ye <cosie), e€E
Cre€d(C)
yc > 0, cec

>From LP-dudity theory, the cost of a feasible solution to (3) is
always lessthan or equal to the cost of any feasible solutionto (2),
and hence, less than or equa to the cost of any feasible solution
to (1). The RV algorithm uses this observation to guarantee the
quality of the solution produced: the algorithm constructs feasible
solutionsto both [P (1) and LP (3), in such away that the costs of
the two solutions differ by at most afactor of 3/2.

2.2 TheRV algorithm

The RV agorithm works on quasi-bipartite graphs G. At a coarse
level, the RV agorithmis similar to the Batched Iterated 1-Steiner
algorithm of Kahng and Robins [15]: both agorithms work in
phases, and in each phase some Steiner vertices are iteratively
added to the set of terminals. While BI1S adds Steiner vertices to
T' greedily—based on the decrease in the cost of the M ST—the RV
algorithm uses the bidirected cut relaxation to guide the addition.

In each phase, the RV agorithm constructs feasible solutions
to both IP (1) and LP (3). The bidirected cut formulation and its
relaxation are inherently asymmetric, since they require aterminal
t, to be singled out. However, the RV-Phase agorithm worksin
a symmetric manner: the information it computes can be used to
derive feasible solutionsfor any choice of ¢,.

A sat C C V iscdled proper if both C' and V' \ C' con-
tain terminals; with respect to the origina set of terminals only
sets in C and their complements are proper. During its execu-
tion, the RV-Phase agorithm tentatively converts some Steiner
vertices into terminas; note that the only proper sets created by
these conversions are the singleton sets containing the new ter-
minals. The agorithm maintains a variable y., caled dual, for
every proper set, including the newly created ones. The amount
of dual felt by arc e is 3 .. ¢ 5(c) yo; We say that e is tight when
Yocees(c) Yo = cost(e). A set ' of verticesisunsatisfied if it is
proper and §(C') does not contain any tight arc.

TheRV-Phase a gorithm startswith y set to O for every proper
set C, and an empty list . of tight arcs. It then proceedsinaprimal-
dual manner, by dternatively raising dual variables as long as this
does not violate the packing constraints of (3), and picking tight
edgesinto L, thus satisfying more and more proper sets. When the
algorithm stops, all proper sets are satisfied by tight arcsin L

The RV-Phase algorithm:
1. L « 0; For each proper set C', yo + 0.
2. While there exist unsatisfied sets do:

Uniformly rise the y values of minimally
unsatisfied sets until an arc © — v goes tight.
Ifué¢ T, thenT «+ T U{u}; goto Step 1.
Else, L « L U{u— v}.

Theorem 1 [18] (a) If arc u — v, u ¢ T, goes tight then
cost(MST(T U {u})) < cost(MST(T)).

(b) At the end of the RV-Phase algorithm, cost(MST(7" U
{u})) > cost(MST(T')) for every u ¢ T'.

The RV agorithm (whose pseudocode we omit) repeats the
RV-Phase agorithm followed by removal of unnecessary Steiner
vertices, until no further improvement is made in the cost of
MST(T). At the end of the algorithm, the duals raised around
proper sets are converted into a solution to (1) by picking ¢, and
discarding ys's with S ¢ C. The 3/2 approximation guarantee
follows by relating the cost of this solution to the cost of MST(T').

2.3 Efficient implementation of the RV-Phase al-
gorithm

Since our heuristic on general graphs uses RV-Phase as a subrou-
tine, we describe here an efficient implementation of it. Several
implementation ideas are derived from the following key property
maintai ned throughout the RV-Phase agorithm:

Lemma?2 [18] Let « and v be two terminals. If all arcs along
somepathu — x3 — - - - — @ — v aretight, then so arethearcs
onthereverse path,v — xzx — -+ — 1 — u.

For implementation purposeswe do not need to keep track of the
duals raised; all that matters is the order in which arcs get tight.
The tightening time of an arc can be determined by monitoringthe
number of minimally unsatisfied sets (henceforth called active sets)
that are felt by that arc. It is easy to see that the set of vertices
reachable viatight arcsfrom aterminal « alwaysform an active set;
Lemma 2 impliesthat no other active set can contain «. Thus, we
get:

Coroallary 3 For anyterminal u, thereisexactly oneactive set con-
taining « at any time during the algorithm. Hence, the tightening
timeof anyarcu — v, u € T, isexactly cost(u, v).

Unlike terminals, Steiner vertices may be contained in multiple
active sets. Hence, arcs out of Steiner vertices will fed dud at
varying rates during the algorithm.

Lemma4 Let u bea Seiner vertex. If arc u — v isthefirst arc
out of « to go tight, then arc v — u goestight at the same time or
before u — v does. Moreover, each arc u — w for whichw — u
isalready tight will go tight when v — v goestight.

Proof: Inorder to get tight, v — v must feel some active s¢t, i.e,
there must exist a tight path from a termina v' # v to u. After
u — v getstight, thereisatight path from +’ to v, and by Lemma2
the reverse path (hence the arc v — w«) must aso be tight. The
second claim follows similarly. O

Sinceseveral arcsout of aSteiner vertex get tight simultaneoudly,
we say that a Steiner vertex crystallizes. Note that crystalization
is precisely the moment when the vertex begins to be treated as
terminal. Lemma 4 impliesthat, in order to detect when a Steiner
vertex crystallizes, it suffices to monitor the amount of dual felt for
the shortest arc out of that Steiner vertex.

Our implementation maintains alist of active sets; initially con-
taining a singleton set for each terminal. We also maintain the
amount of dua felt by the shortest arc out of each Steiner vertex,
initially 0. Arcsout of terminalsare sorted in non-decreasing orde,
then marked as tightened one by one. As new arcs are tightened,
we update the list of active sets and the amount of dua felt by the
shortest arcs out of Steiner vertices, crystallizing Steiner vertices as
needed. The maintenance of the list of active sets has aworst case
runningtimeof O (k-|T'|-|S|), where k isthe number of crystallized
Steiner vertices—all other operations can be easily implemented in
O(k - E| - log|V).

24 Theheuristicfor general graphs

A simple way of dealing with non-quasi-bipartite graphs is to re-
move all Steiner-Steiner edges and then run the RV agorithm. To
allow Steiner-Steiner edges to come into play, we iterate this pro-
cess. If a Steiner vertex is added to 7" during some run of the RV
algorithm, for subsequent runs we extend the graph by adding all
edges incident to it, not just those leading to terminals.

Our experiments have shown that it is better—in both running
time and solution quality—to extend the graph after running just
one RV-Phase, not the full RV agorithm, on the quasi-bipartite
graph. This givesthe following algorithm:

The IRV Algorithm:
1. Th« T, T

2. Remove from G all edges (u,v) withu ¢ T, v ¢ T,
and run the RV-Phase algorithm on the resulting
graph; this will add some Steiner vertices to 7.

3. Constructan MST on T, then prune from 7'\ 75 all
vertices with tree degree < 2.

4. If cost(MST(T)) < cost(MST(71)), then T1 + T'; go
to Step 2.

5. Return MST(T1).

3 Rectilinear Steiner trees

The rectilinear Seiner tree (RST) problem is defined as follows:
Given a set T of terminalsin the Cartesian plane, find a shortest
interconnection of the terminals using only horizontal and vertical
lines. Lines are alowed to meet at pointsother than the terminals;

non-termina meeting pointsare called Seiner points.

By aclassical result of Hanan [11], there exists an optimal rec-
tilinear Steiner tree that uses only Steiner points located at inter-
sections of vertical and horizontal lines passing through terminals.
Thus, finding a minimum rectilinear Steiner tree on a set of termi-
nal sreduces to finding a minimum Steiner treein the graph induced
by the Hanan grid, with edge costs given by the L; (or Manhattan)
metric, d(u, v) = |2y — To| + |Yu — Yol

The IRV agorithm yields good results when applied to a graph
for which the cost and structure of the minimum Steiner tree does
not change much after the removal of Steiner-Steiner edges. For
the RST problem, the best choice w.r.t. solution quality isto run
IRV on the compl ete graph induced by the Hanan grid. We obtaina
practical running time by applying afew simple, yet very effective
reductionsto thisgraph.

3.1 Edgereductions

By a result of Robins and Salowe [20], for any set of points there
exists a rectilinear MST in which each point p has a most one
neighbor in each of thefour diagona quadrants —z < y < z, —y <
r<yz<y<—z,andy <z < —ytrandated a p. Hence, the
optimum Steiner treein thequasi-bi partitegraphisnot affected if we
removeall edgesincident to aSteiner vertex except those connecting
it to the closest termina s from each quadrant. We can also discard
all edges connecting pairs of terminals except for the |T'| — 1 edges
inM ST (7")—thismerely amountsto aparticular choice of bresking
ties between edges during RV-Phase. Combined, these two edge
reductions |leave a quasi-bipartite graph with O(|7'| + |.S|) edges,
asopposedto O(|T| - (|T| + |S])) without edge reductions.

3.2 Vertex reductions

As noted by Zachariasen [26], the Full Steiner Tree reductions,
which play a crucia role for exact agorithms such as [4, 23],
can also be used to remove from the Hanan grid a large number of
Steiner verti ces without aff ecting the optimum Steiner tree. Simpler
versions of thetests suffice in our case, since we only want to leave
unaffected the optimum Steiner tree in the graph that results after
theremoval of Steiner-Steiner edges.

We incorporated in our code a version of the empty rectangle
test [26], originaly due to Berman and Ramaiyer [2]. For the
configuration in Figure 1, the test says that the grid point (=, y,)
can be safely omitted unless the rectangle determined by terminals
uw and v is empty (i.e, contains no terminals in its interior) and
the shaded quadrant contains at least one terminal. We used a
smple O(|T'|?) implementation of thistest; an O(|T| log|T| + k)
implementation, where k isthe number of empty rectangles, isalso
possible[§].

In fact, the above test can be strengthened [5, 26] so that it
removes all but aset of O(|T'|) Steiner points, still with no increase
in the cost of the optimum RST with no Steiner-Steiner edges. By
using this stronger test, the overall running time of IRV as applied
to RST can be reduced to O(k - |T']?), where k is the number of
crystallized Steiner vertices (usualy asmall fraction of |T7)).

Figure 1: The empty rectangle test.

4 Experimental results

We compared our agorithm against Robins' implementation [19]
of BI1S [15], and against the recent rel ease [24] of the GeoSteiner
algorithm of Warme, Winter, and Zachariasen [23].

All tests were conducted on a SGI Power Challenge machine
with 16 195 MHz P27 processors (only one of which is used in
our sequential implementation) and 4 G-Bytes of internal memory,
running under IRIX Release 6.4 1P27. We coded our heuristicsin
C, and used Robins' publicly available BI1S C code. We compiled
both programs using the gcc compiler (version eges-2.90.27, using
- O4 optimization). Thetimingwas performed usinglow level Unix
interval timers, under similar load conditionsfor all experiments.

The test bed for our experiments consisted of two categories of
instances:

Random instances: For each instance size between 10 and 200,
in increments of 10, we generated uniformly at random 1000
instances consisting of pointsin general position® drawn from
a 10000 x 10000 grid.

Real VLS instances: To further validate our results, we ran all
heuristics on a set of 9 large instances extracted from two
different VLSI designs.

Followingthe standard practice[14], we usethe percent improve-
ment over the MST on terminalss,
cost(MST) — cost(Heuristic)
cost(MST)

x 100,

to compare the relative performance of the three algorithms.

Figure 2 shows the average improvement over MST for BILS,
IRV, and GeoSteiner on random instances. The average running
timesonrandominstancesare plottedin Figure 3, weincludeinthis
comparison the version of BI1S enhanced by the inclusion of the
empty rectangle test (BI1S+). Statistics on the 9 VLS| instances
are presented in Table 1.

5 Conclusions

The experimenta data presented in the previous section shows that
IRV produces high-quality rectilinear Steiner trees, typically better

1A set of pointsis in general position if no two points share a common - or
y-coordinate.

114 |- -8
112 - -
1 |

108 -

% gain over MST

106 -
104

y
102 | o

10 Il Il Il Il
0 50 100 150 200
No. terminals

Figure 2: Average improvement over MST.

12 T T T T

10 -

Avg. CPU time (sec.)

100
No. terminals

Figure 3: Average CPU time.

than those produced by the Batched Iterated 1-Steiner heuristic.
The same data shows that BI1S is significantly sped up by the
addition of the empty rectangle test. With this enhancement, BI1S
runsfaster than IRV onrandom instances, but notonlargereal VLS
instances as those considered in our tests. It should beinteresting to
perform extensivetestsonfull VLS| designsto see how therunning
times of the two heuristics compare when applied to a mix of both
small and large nets.

Our experimental data also confirms the excellent performance
of the exact agorithm of Warme, Winter, and Zachariasen [23].
When exact algorithms achieve practical running times, oneisim-
mediately prompted to ask if any interest remains for sub-optimal
heuristics. We think that this interest will not disapear, definitely
not in those RST applications where speed is more important than
solution accuracy, e.g., in wirelength estimation during placement.
Moreover, heuristics such as IRV and BI1S hold more promise
than the GeoSteiner algorithm for giving efficient extensions to
obj ective functions other than length minimization.

6 Acknowledgments
The authorswish to thank Sridhar Rgjagopalan for hisinvol vement

with an earlier version of thiswork, and Alex Zelikovsky for many
enlightening discussions.

Design.Net No. Average improvement CPU seconds

term. BI1S IRV GeoSteiner BI1S BI1S+ IRV GeoSteiner
16BSHREG.CLK 185 1.757 1.757 1.757 517 131 025 2.80
16BSHREG.RESET 406 || 3.666 3.666 3810 | 5223 10.07 1.65 4.37
16BSHREG.VDD 573 || 8.079 8.079 8.118 | 16547 3029 294 1.73
16BSHREG.VSS 556 7854 8.131 8.192 | 15515 36.71 3.29 7.90
MAR.BRANCH 188 || 9.007 9.158 9.221 7.73 126 0.62 521
MAR.CLK 264 7.637 7.748 7.957 16.53 234 157 13.16
MAR.GND 245 || 6300 6.321 6.476 | 13.22 196 1.26 1.03
MAR.RESET 109 || 11.206 11.246 11.246 122 024 0.16 0.65
MAR.VDD 340 || 6.038 6.003 6.181 | 46.75 769 159 8.19

Table1: Gain over MST and running timefor VLSI instances.
References [14] FK.Hwang, D.S. Richards, and P. Winter. The Steiner tree problem,

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide: An
approximation algorithm for the generalized Steiner problem on net-
works, SSAM J. on Computing, 24 (1995), pp. 440-456.

Piotr Berman and Viswanathan Ramaiyer. Improved approximations
for the Steiner tree problem, J. of Algorithms, 17 (1994), pp. 381-408.

M. Borah, R.M. Owens, and M.J. Irwin. An edge-based heuristic for
Steiner routing, |EEE Trans. on CAD 13 (1994), pp. 1563—-1568.

U. Fossmeier and M. Kaufmann. Solving rectilinear Steiner tree
problems exactly in theory and practice, Proc. 5th European Symp.
on Algorithms (1997), Springer-Verlag LNCS 1284, pp. 171-185.

U. Fossmeier, M. Kaufmann, and A. Zelikovsky. Faster approxima-
tion algorithmsfor the rectilinear Steiner tree problem, Discrete and
Computational Geometry 18 (1997), pp. 93-109.

J.L. Ganley. Computing optimal rectilinear Steiner trees: A sur-
vey and experimental evaluation, Discrete Applied Mathematics, 89
(1998), pp. 161-171.

J.L. Ganley and J.P. Cohoon. Improved computation of optimal rec-
tilinear Steiner minimal trees, Int. J. of Computational Geometry and
Applications, 7 (1997), pp. 457-472.

R.-H, Giting, O. Nurmi, and T. Ottmann. Fast algorithms for direct
enclosures and direct dominances, J. of Algorithms, 10 (1989), pp.
170-186.

M.R. Garey and D.S. Johnson. The rectilinear Steiner tree problem
is NP-complete, SAM J. Appl. Math., 32 (1977), pp. 826-834.

Michel X. Goemans and David P. Williamson. A general approxi-
mation technique for constrained forest problems, SAM J. on Com-
puting, 24 (1995), pp. 296-317.

M. Hanan. On Steiner’s problem with rectilinear distance, SAM J.
Appl. Math., 14 (1966), pp. 255-265.

J-M. Ho, G. Vijayan, and C.K. Wong. New algorithms for the rec-
tilinear Steiner tree problem, |IEEE Trans. on CAD, 9 (1990), pp.
185-193.

FK. Hwang. An O(nlogn) algorithm for suboptimal rectilinear
Steiner trees, IEEE Trans. on Circuits and Systems, 26 (1979), pp.
75-T77.

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

[26]

[27]

Ann. of Discrete Math. 53, North-Holland, Amsterdam, 1992.

A.B. Kahng and G. Robins. A new class of iterative Steiner tree
heuristics with good performance, IEEE Trans. on CAD, 11 (1992),
pp. 1462—-1465.

F.D. Lewis, W.C.-C. Pong, and N. Van Cleave. Local improvement
in Steiner trees, Proc. of the 3rd Great Lakes Symp. on VLS (1993),
pp. 105-106.

H. J. Promel and A. Steger. RNC-approximation algorithms for the
Steiner problem, in R. Reischuk and M. Morvan, editors, Proc. of
the 14th Symp. on Theoretical Aspects of Computer Science (1997),
volume 1200 of Lecture Notesin Computer Science, pages559-570.

S. Rajagopalanand V.V. Vazirani. Onthe bidirected cut rel axation for
the metric Steiner tree problem, 10th ACM-SIAM Symp. on Discrete
Algorithms, 1999, pp. 742-751.

Gabriel Robins. Steiner code available at
www.cs.virginia.edu/ robins/steiner.tar.

G. Robins and J.S. Salowe. Low-degree minimum spanning trees,
Discrete and Computational Geometry 14 (1995), pp. 151-165.

J.S. Salowe and M.D. Warme. Thirty-five-point rectilinear Steiner
minimal treesin a day, Networks 25 (1995), pp. 69-87.

V.V. Vazirani. Approximation Algorithms. Book in preparation avail-
able at www.cc.gatech.edu/fac/Vijay.Vazirani/book.ps.

D.M. Warme, P. Winter, and M. Zacharisen. Exact Algorithms for
Plane Steiner Tree Problems: A Computational Study, Technical
Report DIKU-TR-98/11, Dept. of Computer Science, University of
Copenhagen, 1998.

D.M. Warme, P. Winter, and M. Zacharisen. The GeoSteiner 3.0
package, ftp.diku.dk/diku/users/martinz/geosteiner-3.0.tar.gz.

Y.F. Wu, P. Widmayer, and C.K. Wong. A faster approximation
algorithm for the Steiner problem in graphs, Algorithmica 23 (1986),
pp. 223-229.

M. Zachariasen. Rectilinear Full Steiner Tree Generation, Networks
33(1999), pp. 125-143.

A. Zelikovsky. An 11/6-approximation algorithm for the network
Steiner problem, Algorithmica, 9 (1993), pp 463—470.

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

