1999
IEEE/ACM International Conference
on Computer-Aided Design

November 7-11, 1999
San Jose, California

Digest of Technical Papers
FOREWORD

On behalf of the ICCAD-99 Executive and Technical Program Committees, I would like to welcome you to the International Conference on Computer-Aided Design. All of the technical presentations, the panel, the tutorials and related events will take place between November 7-11 at the San Jose DoubleTree Hotel. The hotel is located in central Silicon Valley, near the San Jose airport, and should be a convenient destination for local, US and international attendees. This year, ICCAD is co-located with the International Symposium on System Synthesis, ISSS, to help improve the interaction between CAD researchers working at higher and lower levels of design abstraction. ICCAD and ISSS will have several joint sessions on Wednesday November 10th, the last day of technical sessions for ICCAD and the first day of technical sessions for ISSS.

The technical program for ICCAD-99 was assembled by a program committee which includes experts from industry and academia around the world. The committee, organized and directed by Ellen Sentovich, is made up of ten subcommittees, and each subcommittee had at least five experts in the field evaluating 20-60 technical papers. Each volunteer on the committee devoted several days to reviewing the papers, and then participated in the full-day meeting to select papers for presentation from the many excellent submissions. Only 102 papers were accepted from 318 papers submitted to ICCAD-99.

As in the previous two years, within the technical program we have included six 90 minute embedded tutorials. The intent of these tutorials is to give conference attendees a chance to hear a focused presentation, complete with background, in important CAD areas. Two of the tutorials focus on emerging technologies. In the first, silicon-on-insulator (SOI) issues will be considered; and in the second, CAD approaches for micromachined devices, or MEMS, design will be examined. As has been true for the last several years, there will be an embedded tutorial on interconnect extraction. This year, though, the tutorial will expand to include more on design issues. Moving up the design hierarchy, there will be two tutorials on higher-level simulation. In the first, the use of static timing analysis in transistor sizing will be described, and in the second, the interaction between simulation and formal verification will be examined. Finally, there will be a system-level tutorial focussed on embedded design for media applications.

On Monday night, there will be a technical panel organized by Rolf Ernst. The members of the panel will discuss the positive and negative aspects of the Semiconductor industry's published roadmap. Rolf has assembled both proponents and critics of the roadmap to engage in what should be a lively discussion.

The ICCAD/ISSS joint technical sessions will take place on Wednesday, November 10th, the last day of technical sessions for ICCAD and the first day of technical sessions for ISSS. The first of the joint sessions contains two invited talks which both address system design issues for wireless communication devices. The second session is an embedded tutorial on techniques and applications of embedded java. Finally, a joint panel session will be held Wednesday evening to discuss “System-Level Design: Designers’ Wish List vs. Reality”.

Complementing the technical program is the 1999 tutorial program, on November 11th, organized by Lawrence T. Pileggi. These full-day tutorials offer introductions to state-of-the-art in established CAD areas given by experts and leading researchers in their technical fields. This year's tutorials cover the following topics: 1) Mixed Signal ASIC design, 2) Modern physical design, 3) Low Voltage/Low power design, and 4) Signal integrity in high performance design.

The rapid pace of deep submicron and mixed signal technology development and the pressure for designers to reduce time-to-market is placing enormous demands on CAD tool development. ICCAD-99 offers a place for CAD developers and VLSI designers to meet and exchange ideas about the problems and solutions in the era of system-on-a-chip. We hope ICCAD-99 will be a valuable and enjoyable professional experience.

Jacob White
Conference/Finance Chair

Ellen M. Sentovich
Technical Program Chair
CONFERENCE COMMITTEE

CONFERENCE/FINANCE CHAIR
Jacob White
Massachusetts Institute of Technology
Dept. of EECS, Rm. 36-880
50 Vassar St.
Cambridge, MA 02139
(617) 253-2543
white@rle-vlsi.mit.edu

PROGRAM CHAIR
Ellen M. Sentovich
Cadence Berkeley Labs.
2001 Addison St., 3rd Fl.
Berkeley, CA 94704-1103
(510) 647-2807
ellens@cadence.com

PROGRAM VICE CHAIR
Rolf Ernst
Tech. Univ. of Braunschweig
Inst. Furrdalenverarbeitungsanlagn
Hans-Sommer-Str 66
Braunschweig, D38106 Germany
(49) 531-391-3730
ernst@idaing.tu-bs.de

PAST CHAIR
Hirotto Yasuura
Kyushu Univ.
Kasuga, Koen, 6-1, Kasuga
Fukuoka, 816 Japan
(81) 92-583-7620
yasuura@c.csce.kyushu-u.ac.jp

TUTORIAL CHAIR
Lawrence T. Pileggi
Carnegie Mellon Univ.
Dept. of ECE
5000 Forbes Ave.
Pittsburgh, PA 15213
(412) 268-6774
pileggi@ece.cmu.edu

ASIAN REPRESENTATIVE
Hidetoshi Onodera
Kyoto Univ.
Dept. of CCE
Sakyo-ku
Kyoto 606-8501, Japan
(81) 75-753-5314
onodera@i.kyoto-u.ac.jp

IEEE CS/DATC
REPRESENTATIVE
Charles W. Rosenthal
CWR-Engineering Consultants
3080 SW Fairmount Blvd.
Portland, OR 97201-1439
(503) 245-8398
c.rosenthal@ieee.org

IEEE CS/DA
TC REPRESENTATIVE
Charles W. Rosenthal
CWR-Engineering Consultants
3080 SW Fairmount Blvd.
Portland, OR 97201-1439
(503) 245-8398
c.rosenthal@ieee.org

CONFERENCE MANAGER
Kevin Lepine
MP Associates, Inc.
530 Spine Rd., Ste. A
Boulder, CO 80301
(303) 530-4562
kevin@dac.com

EUROPEAN REPRESENTATIVE
Kari-Pekka Estola
Nokia Research Ctr.
P.O. Box 407, Heikkilantre 7
FIN-00210 Helsinki, Finland
(358) 9-4376-6596
karipekka.estola@research.nokia.com
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pranav Ashar</td>
<td>C&C Research Labs., NEC USA Princeton, NJ</td>
<td>ashar@ccrl.nj.nec.com</td>
</tr>
<tr>
<td>Reinaldo Bergamaschi</td>
<td>IBM Corp. Yorktown Heights, NY</td>
<td>rab@watson.ibm.com</td>
</tr>
<tr>
<td>Shawn Blanton</td>
<td>Carnegie Mellon Univ. Pittsburgh, PA</td>
<td>blanton@mazda.ece.cmu.edu</td>
</tr>
<tr>
<td>Ivo Bolsens</td>
<td>IMEC Leuven, Belgium</td>
<td>bolsens@imec.be</td>
</tr>
<tr>
<td>J. Eric Bracken</td>
<td>Ansoft Corp. Pittsburgh, PA</td>
<td>bracken@ansoft.com</td>
</tr>
<tr>
<td>Francky Catthoor</td>
<td>IMEC Leuven, Belgium</td>
<td>catthoor@imec.be</td>
</tr>
<tr>
<td>Shih-Chieh Chang</td>
<td>National Chung-Cheng Univ. Taiwan, ROC</td>
<td>scchang@cs.ccu.edu.tw</td>
</tr>
<tr>
<td>James Cohoon</td>
<td>Univ. of Virginia Charlottesville, VA</td>
<td>cohoon@cs.virginia.edu</td>
</tr>
<tr>
<td>Maurizio Damiani</td>
<td>C2 Design Automation Santa Clara, CA</td>
<td>maurizio@c2da.com</td>
</tr>
<tr>
<td>Alper Demir</td>
<td>Bell Labs. Murray Hill, NJ</td>
<td>alpdemir@research.bell-labs.com</td>
</tr>
<tr>
<td>David L. Dill</td>
<td>Stanford Univ. Stanford, CA</td>
<td>dill@cs.stanford.edu</td>
</tr>
<tr>
<td>Ibrahim M. Elfadel</td>
<td>IBM Corp. Yorktown Heights, NY</td>
<td>elfadel@watson.ibm.com</td>
</tr>
<tr>
<td>Masahiro Fujita</td>
<td>Fujitsu Labs. of America, Inc. Sunnyvale, CA</td>
<td>fujita@fla.fujitsu.com</td>
</tr>
<tr>
<td>Abhijit Ghosh</td>
<td>Synopsys, Inc. Mountain View, CA</td>
<td>ghosh@synopsys.com or</td>
</tr>
<tr>
<td>Patrick Groeneveld</td>
<td>Magma Design Automation, Inc. Cupertino, CA</td>
<td>patrick@magma-da.com</td>
</tr>
<tr>
<td>Ramesh Harjani</td>
<td>Univ. of Minnesota Minneapolis, MN</td>
<td>harjani@ee.umn.edu</td>
</tr>
<tr>
<td>David J. Hathaway</td>
<td>IBM Corp. Essex Junction, VT</td>
<td>davidh@btv.ibm.com</td>
</tr>
<tr>
<td>Alan J. Hu</td>
<td>Univ. of British Columbia Vancouver, BC Canada</td>
<td>ajh@cs.ubc.ca</td>
</tr>
<tr>
<td>Alexander T. Ishii</td>
<td>NEC USA, C&C Research Labs. Princeton, NJ</td>
<td>alex@ccrl.nj.nec.com</td>
</tr>
<tr>
<td>Margarida Jacome</td>
<td>Univ. of Texas Austin, TX</td>
<td>jacome@ece.utexas.edu</td>
</tr>
<tr>
<td>Jochen A.G. Jess</td>
<td>Eindhoven Univ. of Technology Eindhoven, The Netherlands</td>
<td>j.a.g.jess@ele.tue.nl</td>
</tr>
<tr>
<td>Seiji Kajihara</td>
<td>Kyushu Institute of Technology lizuka, Japan</td>
<td>kajihara@ece.kyutech.ac.jp</td>
</tr>
<tr>
<td>Marta Kerecsen-Rencz</td>
<td>Tech. Univ. of Budapest Budapest, Hungary</td>
<td>rencz@eet.bme.hu</td>
</tr>
<tr>
<td>Kurt Keutzer</td>
<td>Univ. of California Berkeley, CA</td>
<td>keutzer@eecs.berkeley.edu</td>
</tr>
<tr>
<td>Andreas Kuehlmann</td>
<td>IBM Corp. Yorktown Heights, NY</td>
<td>kuehl@watson.ibm.com</td>
</tr>
<tr>
<td>Yuji Kukimoto</td>
<td>Monterey Design Systems, Inc. Sunnyvale, CA</td>
<td>kukimoto@montereydesign.com</td>
</tr>
<tr>
<td>Miriam Leeser</td>
<td>Northeastern Univ. Boston, MA</td>
<td>mel@ece.neu.edu</td>
</tr>
<tr>
<td>Don MacMillen</td>
<td>Synopsys, Inc. Mountain View, CA</td>
<td>macd@synopsys.com</td>
</tr>
<tr>
<td>Joao P. Marques Silva</td>
<td>Technical Univ. of Lisbon Lisboa, Portugal</td>
<td>jpm@inesc.pt</td>
</tr>
<tr>
<td>Renu Mehra</td>
<td>Synopsys, Inc. Mountain View, CA</td>
<td>renu@synopsys.com</td>
</tr>
</tbody>
</table>
ICCAD-99 TECHNICAL PROGRAM COMMITTEE

Shin-ichi Minato
NTT Network Innovation Labs.
Kanagawa, Japan
minato@exa.onlab.ntt.co.jp

Miodrag Potkonjak
Univ. of California
Los Angeles, CA
miodrag@cs.ucla.edu

Luis Miguel Silveira
INESC
Lisboa, Portugal
lms@inesc.pt

Rajeev Murgai
Fujitsu Labs. of America, Inc.
Sunnyvale, CA
murgai@fla.fujitsu.com

Sudhakar M. Reddy
Univ. of Iowa
Iowa City, IA
reddy@eng.uiowa.edu

Vigyan Singhal
Cadence Berkeley Labs.
Berkeley, CA
vigyan@cadence.com

Keith Nabors
Cadence Design Systems, Inc.
San Jose, CA
nabors@cadence.com

Kaushik Roy
Purdue Univ.
West Lafayette, IN
kaushik@ecn.purdue.edu

Mandayam Srivas
SRI International
Menlo Park, CA
srivas@csl.sri.com

Tuyen V. Nguyen
IBM Austin Research Lab.
Austin, TX
tuyenn@austin.ibm.com

Sachin S. Sapatnekar
Univ. of Minnesota
Minneapolis, MN
sachin@ece.umn.edu

Balsha Robert Stanisic
IBM Corp.
Rochester, MN
stanisic@us.ibm.com

Steven M. Nowick
Columbia Univ.
New York, NY
nowick@cs.columbia.edu

Majid Sarrafzadeh
Northwestern Univ.
Evanston, IL
majid@eecs.nwu.edu

Nur A. Touba
Univ. of Texas
Austin, TX
touba@ece.utexas.edu

Emil S. Ochotta
Xilinx, Inc.
San Jose, CA
emil@xilinx.com

Donatella Sciuto
Politecnico di Milano
Milano, Italy
sciuto@elet.polimi.it

Kazutoshi Wakabayashi
NEC Corp.
Kawasaki, Japan
wakaba@sbl.cl.nec.co.jp

Takumi Okamoto
NEC USA, C&C Research Labs.
Kawasaki, Japan
okamoto@ccm.cl.nec.co.jp

Carl Sechen
Univ. of Washington
Seattle, WA
sechen@ee.washington.edu

Wayne Wolf
Princeton Univ.
Princeton, NJ
wolf@ee.princeton.edu

Janak H. Patel
Univ. of Illinois
Urbana, IL
patel@crhc.uiuc.edu

Naveed Sherwani
Intel Corp.
Hillsboro, OR
sherwani@ichips.intel.com

Balsha Robert Stanisic
IBM Corp.
Rochester, MN
stanisic@us.ibm.com

Massoud Pedram
Univ. of Southern California
Los Angeles, CA
massoud@zugros.usc.edu

Thomas R. Shiple
Synopsys, Inc.
Mountain View, CA
shiple@synopsys.com

Majid Sarrafzadeh
NEC USA, C&C Research Labs.
Kawasaki, Japan
wakaba@sbl.cl.nec.co.jp

Janak H. Patel
Univ. of Illinois
Urbana, IL
patel@crhc.uiuc.edu

Naveed Sherwani
Intel Corp.
Hillsboro, OR
sherwani@ichips.intel.com

Balsha Robert Stanisic
IBM Corp.
Rochester, MN
stanisic@us.ibm.com

Massoud Pedram
Univ. of Southern California
Los Angeles, CA
massoud@zugros.usc.edu

Thomas R. Shiple
Synopsys, Inc.
Mountain View, CA
shiple@synopsys.com
Jay K. Adams Pasquale Cocchini Ting-Ting Hwang
Hiroki Akaboshi Johan Cockx Hideyuki Ichihara
Alberto Allara Liang Dai Shinya Ishihara
Jason Anderson Koen Danckaert Jawahar Jain
Harm Arts Kaushik De Damir Jamsek
Toru Awashima Gjalt de Jong Geert Janssen
Adnan Aziz Masato Edahiro Rajeev Jayaraman
Kiarash Bazargan Amir Farrahi Pradip Jha
Subhrajit Bhattacharya John P. Fishburn Chandramouli V. Kashyap
Cristiana Bolchini William Fornaciari Susumu Kobayashi
Manjit Borah Juergen Froessl Chidamber Kulkarni
Pradip Bose Malay Ganai Thomas Kutzschebauch
Elaheh Bozorgzadeh David Garrett Dirk Lanneer
Carlo Brandolese Werner Geurts Rudy Lauwereins
Premal Buch Rick Geyer Luciano Lavagno
Hong Cai Eugene Goldberg Hardy K.S. Leung
Luca Carloni Shankar Govindaraju Johnson Limqueco
Peter Chan Michael Gruver Tai-Hung Liu
Howard Chen Daivd Harris Jinan Lou
Steven Chen Tood Haverkos Jean-Christophe Madre
Chunhong Chen Pei-Hsin Ho Naresh Maheshwari
Benjamin Chen Gabor Hosszu Anmol Mathur
Joe-Ming Cheng Ming-ta Hseih Amit Mehrotra
David Ihsin Cheng Chang-Chao Hsieh Waleed Meleis
Eli Chiprout Warren Hunt Miguel Miranda
<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshiaki Miyazaki</td>
<td>Abhishek Ranjan</td>
<td>Seiichiro Tani</td>
</tr>
<tr>
<td>In-Ho Moon</td>
<td>Rajeev Ranjan</td>
<td>Shantanu Taranfire</td>
</tr>
<tr>
<td>Mayan Moudgill</td>
<td>Lakshmi N. Reddy</td>
<td>Shashidhar Thakur</td>
</tr>
<tr>
<td>Brian Mulvaney</td>
<td>Peyman Rezvani</td>
<td>Jose A. Tierno</td>
</tr>
<tr>
<td>Chris Myers</td>
<td>Michael Riepe</td>
<td>Horia Toma</td>
</tr>
<tr>
<td>Lode Nachtergaele</td>
<td>Sumit Roy</td>
<td>Hsiao-Ping Tseng</td>
</tr>
<tr>
<td>Sudip Nag</td>
<td>Harald Ruess</td>
<td>Johan Van Praet</td>
</tr>
<tr>
<td>Gi-Joon Nam</td>
<td>Hassen Saidi</td>
<td>Diederik Verkest</td>
</tr>
<tr>
<td>Jagannathan Narasimhan</td>
<td>Masoud Salehi</td>
<td>Frederik Vermeulen</td>
</tr>
<tr>
<td>Amit Narayan</td>
<td>Amir Salek</td>
<td>Tiziano Villa</td>
</tr>
<tr>
<td>Sani Nassif</td>
<td>Fabio Salice</td>
<td>Maogang Wang</td>
</tr>
<tr>
<td>Jose Neves</td>
<td>Sachin Sapatnekar</td>
<td>Xinning Wang</td>
</tr>
<tr>
<td>Raymond Nijssen</td>
<td>Hamid Savoj</td>
<td>Janet Wang</td>
</tr>
<tr>
<td>Peter O’Brien</td>
<td>Prashant Sawkar</td>
<td>Qi Wang</td>
</tr>
<tr>
<td>Valerie Ohm</td>
<td>Ken Scott</td>
<td>Chun Wong</td>
</tr>
<tr>
<td>Yoshihiro Ono</td>
<td>Luc Semeria</td>
<td>Praveen Yalagandu</td>
</tr>
<tr>
<td>Manish Pandey</td>
<td>Kanna Shimizu</td>
<td>Xioajian Yang</td>
</tr>
<tr>
<td>Marios C. Papaefthymiou</td>
<td>Cristina Silvano</td>
<td>Ching-Wei Yeh</td>
</tr>
<tr>
<td>Phiroze Parakh</td>
<td>Kanwar Jit Singh</td>
<td>Masayuki Yuguchi</td>
</tr>
<tr>
<td>Wim Philipsen</td>
<td>P. V. Srinivas</td>
<td>Ken Yun</td>
</tr>
<tr>
<td>Irith Pomeranz</td>
<td>Atsushi Takahara</td>
<td>Min Zhao</td>
</tr>
<tr>
<td>Freddy Potargent</td>
<td>Wataru Takahashi</td>
<td></td>
</tr>
</tbody>
</table>
TUTORIAL 1

MIXED-SIGNAL ASIC DESIGN:
CAD, METHODOLOGY, CASE STUDIES

Speakers:

Rob Rutenbar - Carnegie Mellon Univ., Pittsburgh, PA
Georges G.E. Gielen - Katholieke Univ. Leuven, Belgium
Jim Holmes - Texas Instruments, Dallas, TX
Frank Op’t Eynde - Alcatel Microelectronics, Zaventem, Belgium
Paolo Miliozzi - Conexant Systems, Inc. Newport Beach, CA
Koen Lampaert - Conexant Systems, Inc., Newport Beach, CA

Background: Modern System-on-Chip (SoC) designs are increasingly mixed-signal designs. Unfortunately, just as deep submicron technologies have complicated the design of digital functions with issues such as the design of digital functions with issues such as practical complexity management and predictable timing closure, likewise these technologies complicate the analog subsystems on SoC designs. Since analog circuits exploit (rather than abstract away) the low-level physics of the fabrication process, they remain difficult and costly to design, validate, reuse. The desire to do hand-crafted, one-transistor-at-a-time analog design is increasingly at odds with the need for more analog design productivity, practical circuit synthesis and reuse, and reliable verification at all levels of the mixed-signal hierarchy.

This tutorial is about recent progress in tools and methodologies for complex mixed-signal designs. The ad hoc (and often, nonexistent) analog methodologies of the past will not suffice for the future. The tutorial focuses on emerging mixed-signal tools and technologies, including industrial case studies of some real flows and designs. The intended audience is CAD professionals responsible for implementing of maintaining analog- or mixed-signal tools or flows, and circuit / system designers who have to live with the resulting tools and flows.

Description: The tutorial is divided into two sessions. The morning session will overview emerging CAD ideas and methodologies for mixed-signal designs. The first section will focus on analog building blocks (e.g., amplifiers, comparators) with emphasis on circuit and physical synthesis, libraries and reuse strategies. The second section will focus on system-level, architecture-level design, with emphasis on analog behavioral modeling and power/area/noise estimation.

The afternoon session will focus on examples of industrial CAD flows and design case studies. We will discuss barriers to top-down mixed-signal design in the real world practical methodologies for complex SoC designs, industrial reuse and IP strategies and radio frequency design methodology. Case studies include data channels, a commercial ISDN chip, and a front-to-back RF IC design flow.

Our overall goal is to give the attendee a clear picture of leading-edge industrial mixed-signal design practice, and the outlook for emerging research-level tools, techniques, and methodologies.
TUTORIAL 2

MODERN PHYSICAL DESIGN:
ALGORITHM, TECHNOLOGY AND METHODOLOGY

Speakers:

Andrew B. Kahng - Univ. of California, Los Angeles, CA
Majid Sarrafzadeh - Northwestern Univ., Evanston, IL

Background: This tutorial will cover "the latest word" in physical chip implementation methodology and physical design (PD) algorithm technology. The target audience consists of system and circuit designers who would benefit from understanding tool capabilities in this arena, for CAD engineers (both R&D and support), for design project managers, and for academic researchers. Familiarity with basic PD methodology is assumed.

Description: The first section will briefly review implications for PD of the process technology and system design roadmaps. A convergent RTL-down chip planning and implementation methodology will be given as context for the ensuing material. Fundamental PD problem formulations and algorithms will be summarized, concentrating on latest developments in partitioning, block placement and top-level interconnect optimization, and cell-based place-and-route. We will motivate needs for incremental optimization techniques, dealing with incomplete design data, and new tool interactions and concurrent optimizations.

The second section will focus on "upstream interactions", i.e., interactions between traditional PD and upstream floorplanning and logic synthesis. Various approaches to achieving a convergent, predictable implementation flow will be reviewed. These center around alternate methodologies for prediction/predictability and estimation, e.g., budgeting-based planning, small blocks + wireplanning, layout-driven logic synthesis, constant-delay, etc. Particular attention will be given to performance and signal integrity optimizations.

The third section will zero in on interactions with parasitic estimation, delay calculation, and timing/power/SI validations. Specific requirements for tight analysis loops, and issues for data modeling, data flows, and database organization will be discussed.

The final section will describe new linkages between traditional PD and custom layout and polygon-level optimizations. Such linkages, which may soon permeate high-end ASIC methodologies, are the consequence of manufacturability and cost considerations ($/wafer, catastrophic and parametric yield, sources of manufacturing variability). Process drivers for PD (e.g., phase-shifting masks and layout density control for uniform planarization) also provide strong impetus for PD to adopt custom-on-the-fly methodology.
TUTORIAL 3

LOW VOLTAGE/LOW POWER DESIGN METHODOLOGIES AND CAD

Speakers:

Farid N. Najm - Univ. of Toronto, Toronto, Canada
Anantha Chandrakasan - Massachusetts Institute of Technology, Cambridge, MA
Rajendran Panda - Motorola, Inc., Austin, TX

Background: By way of introduction, we will first briefly review the low power/low voltage problems and provide an outline of the rest of the tutorial, which will be in three parts.

Description: The first part is focused on design techniques. Several emerging technologies such as Multiple and Variable threshold CMOS enable low voltage/low power high performance computing while providing a “knob” to dynamically adjust leakage currents. The challenges in design methodologies and tools for these technologies will be discussed. In many applications, there is significant energy advantage in using an embedded power supply scheme where the voltage can be adapted based on computational demand. Rather than designing a system with a static supply to meet a specific timing constraint under worst case conditions, it is more energy efficient to allow the voltage to vary such that the timing constraints are just met at any given operating condition. The key challenges will be discussed including regulator design, circuit styles and scheduling. Trends in low-voltage library design will also be discussed and will cover logic, memory and low-swing interconnect drivers.

In the second part, we will deal with issues of power estimation and modeling. Estimation and modeling are central to any low power design methodology. After an introduction to fundamentals of power estimation, we will discuss power modeling at the gate/cell level. These models allow power analysis to be done at higher than the transistor level. Modeling and estimation at even higher levels (e.g., RTL) are key to doing early design exploration. These will be discussed next, covering both bottom-up and top-down techniques.

Finally, we will cover power/ground bus analysis and design, power optimization, and leakage power estimation and optimization. An overview of the performance, signal integrity, and electromigration reliability issues related to power distribution problems will be given. Common design styles for power distribution, and a unified methodology to design, analyze, and verify large power/ground grids will be presented with case studies. Modeling of package inductance, decoupling capacitors, and circuit parasitics to study their effect on power grid design will be discussed. Techniques to reduce power grid simulation effort, such as vector compression and static determination of worst case power demand scenario will also be considered. Combinational/sequential logic restructuring, encoding and several special design techniques for power reduction will be reviewed. Some recent transistor level and gate level optimization techniques to reduce leakage power in dual-Vt circuits will also be presented.
TUTORIAL 4

SIGNAL INTEGRITY IN HIGH PERFORMANCE DESIGN

Speakers:

David Blaauw - Motorola, Inc., Austin, TX
Anirudh Devgan - IBM Corp., Austin TX
Abhijit Dharchoudhury - Intel Corp., Austin, TX

Background: This tutorial is intended to help circuit designers, CAD tool developers, and researchers gain an understanding of the problems, available analysis tools, and mitigating circuit techniques in the area of signal integrity for high performance design.

Description: As designs are reaching Giga-Hertz clock rates, designers are increasingly forced to make trade-offs between the signal integrity and performance constraints for a design. In today’s high performance designs, signal integrity arises from a number of complex issues and requires careful design and analysis of the power grid, circuit structures, and high speed interconnects.

The first part of this tutorial will give an overview of different signal integrity problems in a design and will demonstrate with industrial examples how they cause functional and performance failures. Also a brief overview of circuit extraction and interconnect modeling techniques will be covered.

Next, power grid signal integrity will be addressed, including resistive voltage drops, inductive voltage drops, and power grid resonance problems. Different power grid topologies and design methodologies will be discussed and illustrated with a number of industrial examples. The analysis approach and associated fast linear solution techniques will be presented.

The third part of this tutorial will focus on signal integrity of the circuits and interconnects. We will present different analysis approaches to evaluate cross coupling noise, and charge sharing noise and to determine if it causes functional failures. Also the effect of noise on the delay of the circuit will be addressed. We will present a number of examples of failures in industrial designs and will discuss methods for correcting noise problems.

The final part of the tutorial will discuss approaches for noise avoidance and emerging signal integrity issues, specifically self and mutual inductance, bipolar and floating body effects in SOI technologies, and signal integrity problems in ultra-low voltage designs with dual Vt technologies.
PANEL:

CAD ROADMAPS - USEFUL, REDUNDANT OR EVEN OBSTRUCTIVE?

Moderator: Rolf Ernst - Technical Univ. of Braunschweig, Braunschweig, Germany

There will be a new edition of the SIA roadmap this year. The SIA roadmap has been used by the semiconductor industry to develop new products and technologies in close synchronization. The SIA roadmap also contains a CAD section which defines the tools necessary to make the predicted technological progress happen.

In general, roadmaps are developed to support management decisions and to control longer term technological innovation, and - in this context - define relevant fields for academic research. Despite a much smaller size, the EDA industry experiences similar delay times from academic research to widely accepted products. Complex interdependencies between CAD tools, IP libraries, standardization processes and company design methodologies make predictions difficult. Embedded system design added additional hooks to the world of software development. So, reliable CAD roadmaps could be a valuable decision support for the EDA, semiconductor and systems industries.

On the other hand, roadmap prophecies, if taken serious, tend to be self-fulfilling due to their influence on technological investments and, eventually, on research funds. So, roadmaps could potentially stifle innovation especially in a highly dynamic area such as system design.

The distinguished panel will discuss the usefulness and the impact of CAD roadmaps. It includes authors of the SIA roadmap, of Asian and European CAD roadmaps, as well as highly influential representatives from academia and from the EDA industry.

Panel Members:

Ivo Bolsens - IMEC, Leuven, Belgium
Raul Camposano - Synopsys, Inc., Mountain View, CA
Tamotsu Hiwatashi - Toshiba Corp., Kawasaki, Japan
William Joyner - SRC, Research Triangle Park, NC
Edward A. Lee - Univ. of California, Berkeley, CA
Richard Newton - Univ. of California, Berkeley, CA
Gabriele Saucier - IMAG, Grenoble, France
PANEL:
SYSTEM LEVEL DESIGN:
DESIGNERS’ WISH LIST VS. REALITY

Moderators: Reinaldo Bergamaschi - IBM T.J. Watson Research Ctr., Yorktown Heights, NY
Daniel Gajski - Univ. of California, Irvine, CA

System level design has brought together a number of formidable challenges, such as methodology, software and hardware design and design automation, to name a few. More than ever, the successful design of a system requires all these challenges to be addressed - by both the designers and the design automation tools.

Designers, better than anyone else, know what the problems are. Design automation companies claim to know how to solve them and have the products to prove it. Is this really true? Are the design automation tools really solving the hard problems or skimming over the real challenges? This panel addresses exactly that by confronting the views of distinguished designers and tools developers.

The panelists belong to two teams. The designer team will present the main problems in doing system design including verification, IP use, integration and synthesis among others, and try to show that many of the real problems are not being addressed by current tools. The tools team will explain how the tools are indeed tackling the real problems and how the designers can make the best use out of them.

The attendees can expect a very interesting, informative and technical debate. At the end, the audience will be the judge and a verdict will be passed on what the real problems are, which ones can be solved with existing tools, and what needs to be done in the future to address the system design challenges.

Panel Members:
Michael Franz - Toshiba America Electronic Components, Inc., Milpitas, CA
William Lee - IBM Corp., Research Triangle Park, NC
Kees Vissers - Philips Research Labs., Eindhoven, The Netherlands
Joachim Kunkel - Synopsys, Inc., Mountain View, CA
Grant Martin - Cadence Design Systems, Inc., San Jose, CA
Arkady M. Horak - Motorola Inc., Austin, TX
Table of Contents

Foreword ii i
Conference Committee ... xiv
Technical Program Committee x v
Reviewers .. xvii
Tutorial 1: Mixed-Signal Design: CAD, Methodology, Case Studies xix
Tutorial 2: Modern Physical Design: .. xx
Algorithm, Technology and Methodology
Tutorial 3: Low Voltage/Low Power Design Methodologies and CAD xxi
Tutorial 4: Signal Integrity in High Performance Design xxii
Panel: CAD Roadmaps – Useful, Redundant or Even Obstructive? xxiii
Panel: System Level Design: Designers’ Wish List vs. Reality xxiv

Session 1A: Sequential and Datapath Optimization

Moderators: Narendra V. Shenoy, Synopsys, Inc., Mountain View, CA; Maurizio Damiani, C2 Design Automation, Santa Clara, CA

1A.1 MARSH: Min-Area Retiming with Setup and Hold Constraints 2
 Vijay Sundararajan, Sachin S. Sapatnekar, Keshab K. Parhi

1A.2 OPTIMISTA: State Minimization of Asynchronous FSMs 7
 for Optimum Output Logic
 Robert M. Fuhrer, Steven M. Nowick

1A.3 Bit-Level Arithmetic Optimization for Carry-Save Additions 14
 Kei-Yong Khoo, Zhan Yu, Alan N. Willson, Jr.

Session 1B: Placement I

Moderator: Carl Sechen, University of Washington, Seattle, WA

1B.1 Attractor-Repeller Approach for Global Placement 20
 Hussein Elawil, Shawki Areibi, Anthony Vannelli

1B.2 Cell Replication and Redundancy Elimination During Placement for 25
 Cycle Time Optimization
 Ingmar Neumann, Dominik Stoffel, Hendrik Hartje, Wolfgang Kunz

1B.3 Concurrent Logic Restructuring and Placement for Timing Closure 31
 Jinan Lou, Wei Chen, Massoud Pedram
Session 1C: BDDs in Formal Verification

Moderators: Andreas Kuehlmann, IBM Corporation, Yorktown Heights, NY; David L. Dill, Stanford University, Stanford, CA

1C.1 Implicit Enumeration of Strongly Connected Components 37
Aiguo Xie, Peter A. Beerel

1C.2 Least Fixpoint Approximations for Reachability Analysis 41
In-Ho Moon, James Kukula, Tom Shiple, Fabio Somenzi

1C.3 Lazy Group Sifting for Efficient Symbolic State Traversal of FSMs 45
Hiroyuki Higuchi, Fabio Somenzi

1C.4 Efficient Manipulation Algorithms for Linearly Transformed BDDs 50
Wolfgang Günther, Rolf Drechsler

Session 1D: Analog and Mixed-Signal

Moderators: Balsha Robert Stanisic, IBM Corporation, Rochester, MN; Ramesh Harjani, University of Minnesota, Minneapolis, MN

1D.1 Noise Analysis of Non-Autonomous Radio Frequency Circuits 55
Amit Mehrotra, Alberto L. Sangiovanni-Vincentelli

1D.2 New Methods for Speeding up Computation of Newton Updates in Harmonic Balance
M. Gourary, S. Ulyanov, M. Zharov, S. Rusakov, K. Gallapalli, B. Mulvaney

1D.3 Design and Optimization of LC Oscillators 65

1D.4 Modeling and Simulation of the Interference due to Digital Switching 70
in Mixed-Signal ICs
Alper Demir, Peter Feldmann

Session 2A: Power Optimization

Moderators: Renu Mehra, Synopsys, Inc., Mountain View, CA; Luca Benini, University of Bologna, Bologna, Italy

2A.1 Provably Good Algorithm for Low Power Consumption with 76
Dual Supply Voltages
Chunhong Chen, Majid Sarrafzadeh

2A.2 A Novel Design Methodology for High Performance and Low Power 80
Digital Filters
Khurram Muhammad, Kaushik Roy

2A.3 A Bipartition-Codec Architecture to Reduce Power in Pipelined Circuits 84
Shang-Jang Ruan, Rung-Ji Shang, Feipei Lai, Shyh-Jong Chen, Xian-Jun Huang

Session 2B: Placement II

Moderators: Majid Sarrafzadeh, Northwestern University, Evanston, IL; Gary Yeap, Monterey Design Systems, Inc., Sunnyvale, CA

2B.1 AKORD: Transistor Level and Mixed Transistor / Gate Level Placement 91
Tool for Digital Data Paths
Tatjana Serdar, Carl Sechen

2B.2 Analytical Approach to Custom Datapath Design 98
Serkan Askar, Maciej Ciesielski

2B.3 An Integrated Algorithm for Combined Placement and Libraryless Technology Mapping 102
Yanbin Jiang, Sachin S. Sapatnekar
Session 2C: Domino- and ATPG-Based Logic Synthesis
Moderators: Rajeev Murgai, Fujitsu Labs. of America, Inc., Sunnyvale, CA; Massoud Pedram, University of Southern California, Los Angeles, CA

2C.1 Timing-driven Partitioning for Two-Phase Domino and Mixed Static/Domino Implementations
Min Zhao, Sachin S. Sapatnekar

2C.2 Implication Graph based Domino Logic Synthesis
Ki-Wook Kim, C.L. Liu, Sung-Mo Kang

2C.3 Synthesis for Multiple Input Wires Replacement of a Gate for Wiring Consideration
Shih-Chieh Chang, Jung-Cheng Chuang, Zhong-Zhen Wu

Session 2D: Electrical and Thermal Analysis

2D.1 Transient Sensitivity Computation for Transistor Level Analysis and Tuning
Tuyen V. Nguyen, Peter R. O’Brien, David Winston

2D.2 An Efficient Method for Hot-spot Identification in ULSI Circuits
Yi-Kan Cheng, Sung-Mo Kang

2D.3 A Scalable Substrate Noise Coupling Model for Mixed-Signal ICs
Anil Samavedam, Karti Mayaram, Terri Fiez

2D.4 Towards True Crosstalk Noise Analysis
Pinhong Chen, Kurt Keutzer

Session 3A: Automatic Test Pattern Generation
Moderators: Janak H. Patel, University of Illinois, Urbana, IL; Vamsi Boppana, Fujitsu Labs. of America, Sunnyvale, CA

3A.1 SAT Based ATPG Using Fast Justification and Propagation in the Implication Graph
Paul Tafertshofer, Andreas Ganz

3A.2 Techniques for Improving the Efficiency of Sequential Circuit Test Generation
Xijiang Lin, Irith Pomeranz, Sudhakar M. Reddy

3A.3 Concurrent D-Algorithm on Reconfigurable Hardware
Fatih Kocan, Daniel G. Saab

Session 3B: Routing
Moderators: Patrick Groeneveld, Magma Design Automation, Inc., Cupertino, CA; Louis Scheffer, Cadence Design Systems, Inc., San Jose, CA

3B.1 A New Heuristic for Rectilinear Steiner Trees
Ion I. Mándoiu, Vijay V. Vazirani, Joseph L. Ganley

3B.2 An Implicit Connection Graph Maze Routing Algorithm for ECO Routing
Jason Cong, Jie Fang, Kei-Yong Khoo

3B.3 The Associative-Skew Clock Routing Problem
Yu Chen, Andrew B. Kahng, Gang Qu, Alexander Zelikovsky

3B.4 Efficient Incremental Rerouting for Fault Reconfiguration in Field Programmable Gate Arrays
Shantanu Dutta, Vimalvel Shanmugavel, Steve Trimberger
Session 3C: Logic-Level Performance Optimization
Moderators: Masahiro Fujita, Fujitsu Labs. of America, Inc., Sunnyvale, CA; Hamid Savoj, Magma Design Automation, Inc., Cupertino, CA

3C.1 Optimal P/N Width Ratio Selection for Standard Cell Libraries 178
David S. Kung, Ruchir Puri

3C.2 Performance Optimization Under Rise and Fall Parameters 185
Rajeev Murgai

3C.3 Performance Optimization Using Separator Sets 191
Yutaka Tamiya

3C.4 Factoring Logic Functions Using Graph Partitioning 195
Martin C. Golumbic, Aviad Mintz

Session 3D: Practical Issues in Order Reduction
Moderators: Luis Miguel Silveira, INESC, Lisboa, Portugal; Tuyen V. Nguyen, IBM Austin Research Lab., Austin, TX

3D.1 TICER: Realizable Reduction of Extracted RC Circuits 200
Bernard N. Sheehan

3D.2 Realizable Reduction for RC Interconnect Circuits 204
Anirudh Devgan, Peter R. O’Brien

3D.3 RLC Interconnect Delay Estimation via Moments of Amplitude and Phase Response
Xiaodong Yang, Walter H. Ku, Chung-Kuan Cheng

3D.4 Practical Considerations for Passive Reduction of RLC Circuits 214
Altan Odabasioglu, Mustafa Celik, Lawrence T. Pileggi

Session 4A: Embedded Tutorial
Moderator: Ellen M. Sentovich, Cadence Berkeley Labs., Berkeley, CA

4A.1 Formal Verification Meets Simulation ... 221
David L. Dill, Serdar Tasiran

Session 4B: Embedded Tutorial
Moderator: Lawrence T. Pileggi, Carnegie Mellon University, Pittsburgh, PA

4B.1 Interconnect Parasitic Extraction in the Digital IC Design Methodology 223
Mattan Kamon, Steve McCormick, Kenneth L. Shepard

Session 5A: Timing Optimization
Moderator: Alexander T. Ishii, NEC USA, C&C Research Labs., Princeton, NJ

5A.1 Cycle Time and Slack Optimization for VLSI-Chips 232
C. Albrecht, B. Korte, J. Schietke, J. Vygen

5A.2 Clock Skew Scheduling for Improved Reliability via Quadratic Programming ... 239
Ivan S. Kourtev, Eby G. Friedman

5A.3 Formulation of Static Circuit Optimization with Reduced Size, Degeneracy and Redundancy by Timing Graph Manipulation
Chandu Visweswariah, Andrew R. Conn
Session 5B: Compilation Techniques for Embedded Systems
Moderators: Abhijit Ghosh, Synopsys, Inc., Mountain View, CA; Donatella Sciuto, Politecnico di Milano, Milano, Italy

5B.1 Function Inlining under Code Size Constraints for Embedded Processors 253
 Rainer Leupers, Peter Marwedel

5B.2 Function Unit Specialization through Code Analysis 257
 Daniel Benyamin, William H. Mangione-Smith

5B.3 Lower Bound on Latency for VLIW ASIP Datapaths 261
 Margarida F. Jacome, Gustavo de Veciana

Session 5C: High Level Power Exploration
Moderators: Farid N. Najm, University of Toronto, Toronto, Canada; Kaushik Roy, Purdue University, West Lafayette, IN

5C.1 Interface and Cache Power Exploration for Core-Based Embedded System Design 270
 Tony D. Givargis, Jörg Henkel, Frank Vahid

5C.2 Dynamic Power Management Using Adaptive Learning Tree 274
 Eui-Young Chung, Luca Benini, Giovanni De Micheli

5C.3 Analytical Macromodeling for High-Level Power Estimation 280
 Giuseppe Bernardchia, Marios C. Papaefthymiou

5C.4 Parameterized RTL Power Models for Combinational Soft Macros 284
 Alessandro Bogliolo, Roberto Corognati, Enrico Macii, Massimo Poncino

Session 5D: Analog and Mixed Signal Test
Moderators: Kwang-Ting (Tim) Cheng, University of California, Santa Barbara, CA; Shawn Blanton, Carnegie Mellon University, Pittsburgh, PA

5D.1 Validation and Test Generation for Oscillatory Noise in VLSI Interconnects 289
 Arani Sinha, Sandeep K. Gupta, Melvin A. Breuer

5D.2 Fault Modeling and Simulation for Crosstalk in System-on-Chip Interconnects 297
 Michael Caviello, Sujit Dey, Xiaoliang Bai, Yi Zhao

5D.3 Robust Optimization Based Backtrace Method for Analog Circuits 304
 Alfred V. Gomes, Abhijit Chatterjee

Session 6A: Globally Untimed Locally Timed Design
Moderators: Kenneth Y. Yun, University of California at San Diego, La Jolla, CA; Steven M. Nowick, Columbia University, New York, NY

6A.1 A Methodology for Correct-by-Construction Latency Insensitive Design 309
 Luca P. Carloni, Kenneth L. McMillan, Alexander Saldanha, Alberto L. Sangiovanni-Vincentelli

6A.2 What is the cost of Delay Insensitivity .. 316
 Hiroshi Saito, Alex Kondratyev, Jordi Cortadella, Luciano Lavagno, Alexander Yakovlev

6A.3 Synthesis of Asynchronous Control Circuits with Automatically Generated Relative Timing Assumptions 324
 Jordi Cortadella, Michael Kishinevsky, Steven M. Burns, Ken Stevens

6A.4 Direct Synthesis of Timed Asynchronous Circuits 332
 Sung Tae Jung, Chris J. Myers
Session 9B: Memory and Interconnect Optimization in High Level Synthesis
Moderator: Kazutoshi Wakabayashi, NEC Corporation, Kawasaki, Japan

9B.1 Memory Bank Customization and Assignment in Behavioral Synthesis 477
 Preeti Ranjan Panda

9B.2 Memory Binding for Performance Optimization of Control-Flow 482
 Intensive Behaviors
 Kamal S. Khouri, Ganesh Lakshminarayana, Niraj K. Jha

9B.3 Improved Interconnect Sharing by Identity Operation Insertion 489
 Dirk Herrmann, Rolf Ernst

Session 9C: System Verification
Moderators: Mandayam Srinivas, SRI International, Menlo Park, CA;
 Pei-Hsin Ho, Synopsys, Inc., Beaverton, OR

9C.1 Formal Specification and Verification of a Dataflow Processor Array 494
 Thomas A. Henzinger, Xiaojun Liu, Shaz Qadeer, Sriram K. Rajamani

9C.2 Distributed Simulation of VLSI Systems via Lookahead-Free 500
 Self-Adaptive Optimistic and Conservative Synchronization
 Dragos Lungeanu, C.-J. Richard Shi

9C.3 Synchronous Equivalence for Embedded Systems: A Tool for 505
 Design Exploration
 Harry Hsieh, Felice Balarin, Alberto L. Sangiovanni-Vincentelli, Luciano Lavagno

Session 9D: Fanout Optimization
Moderators: Yuji Kukimoto, Monterey Design Systems, Inc., Sunnyvale, CA;
 Shih-Chieh Chang, National Chung-Cheng University, Taiwan, ROC

9D.1 On the Global Fanout Optimization Problem 511
 Rajeev Murpai

9D.2 LEOPARD: A Logical Effort-based fanout OPtimizer for ARea and Delay 516
 Peyman Rezvani, Amir H. Ajami, Massoud Pedram, Hamid Savoj

9D.3 Optimum Loading Dispersion for High-Speed Tree-Type Decision Circuitry .. 520
 Jie-Hong Roland Jiang, Iris Hui-Ru Jiang

Session 10A: Timing Analysis
Moderators: David J. Hathaway, IBM Corporation, Essex Junction, VT;
 Joao P. Marques Silva, Technical University of Lisbon, Lisboa, Portugal

10A.1 Symbolic Functional and Timing Verification of Transistor-Level Circuits 526
 Clayton B. McDonald, Randal E. Bryant

10A.2 Body-Voltage Estimation in Digital PD-SOI Circuits and its Application 531
 to Static Timing Analysis
 Kenneth L. Shepard, Dae-Jin Kim

10A.3 Functional Timing Optimization .. 539
 Alexander Saldanha

10A.4 Timing-Safe False Path Removal for Combinational Modules 544
 Yuji Kukimoto, Robert K. Brayton
Session 10B: Concurrency in Embedded Systems
Moderators: Joseph Buck, Synopsys, Inc., Mountain View, CA; Wayne Wolf, Princeton University, Princeton, NJ

10B.1 JMTP: An Architecture for Exploiting Concurrency in Embedded Java
Applications with Real-Time Considerations
Rachid Helaihel, Kunle Olukotun

10B.2 FunState – An Internal Design Representation for Codesign
L. Thiele, K. Strehl, Dirk Ziegenbein, Rolf Ernst, J. Teich

10B.3 Fast Performance Analysis of Bus-Based System-On-Chip
Communication Architectures
Kanishka Lahiri, Anand Raghunathan, Sujit Dey

Session 10C: Semi-Formal Verification
Moderators: Thomas R. Shiple, Synopsys, Inc., Mountain View, CA; Alan Hu, The University of British Columbia, Vancouver, Canada

10C.1 Probabilistic State Space Search
Andreas Kuehlmann, Kenneth L. McMillan, Robert K. Brayton

10C.2 Improving Coverage Analysis and Test Generation for Large Designs
Jules P. Bergmann, Mark A. Horowitz

10C.3 Modeling Design Constraints and Biasing in Simulation Using BDDs
Jun Yuan, Kurt Shultz, Carl Pixley, Hillel Miller, Adnan Aziz

Session 10D: Intellectual Property Protection
Moderators: Emil S. Ochotta, Xilinx, Inc., San Jose, CA; Margarida Jacome, University of Texas, Austin, TX

10D.1 Copyright Protection of Designs Based on Multi Source IPs
Eduardo Charbon, Ilhami Torunoglu

10D.2 Localized Watermarking: Methodology and Application to Operation Scheduling
Darko Kirovski, Miodrag Potkonjak

10D.3 Copy Detection for Intellectual Property Protection of VLSI Designs
Andrew B. Kahng, Darko Kirovski, Stefanus Mantik, Miodrag Potkonjak, Jennifer L. Wong

Session 11A: Embedded Tutorial
Moderator: Jacob K. White, Massachusetts Institute of Technology, Cambridge, MA

11A.1 Path Toward Future CAD Environments for MEMS
Gary K. Fedder, Tamal Mukherjee

Session 11B: ICCAD/ISSS Invited Papers
Moderator: Nikil Dutt, University of California, Irvine, CA

11B.1 Design of a Set-Top Box System on a Chip
Eric Foster

11B.2 On the Rapid Prototyping and Design of a Wireless Communication System on a Chip
Brian Kelley
Session 12A: Embedded Tutorial
Moderator: Jacob K. White, Massachusetts Institute of Technology, Cambridge, MA

12A.1 Advances in Transistor Timing, Simulation, and Optimization .. 611
Jacob Avidan, Abe Elfadel, D.F. Wong

Session 12B: Joint ICCAD / ISSS Session
Embedded Tutorial
Moderator: Reinaldo Bergamaschi, IBM Corporation, Yorktown Heights, NY

12B.1 Embedded Java: Techniques and Applications ... 613
Brian Barry, John Duimovich
Author Index

Ajami, Amir H. 516
Albrecht, C. 232
Alpert, Charles J. 430
Areibi, Shawki 20
Askar, Serkan 98
Avidan, Jacob 611
Aziz, Adnan 584
Bai, Xiaoliang 297
Balarin, Felice 347, 505
Barry, Brian 613
Beattie, Michael W. 437
Beerel, Peter A. 37
Benini, Luca 274
Benyamin, Daniel 257
Bergmann, Jules P. 580
Bernacchia, Giuseppe 280
Bogliolo, Alessandro 284
Boyd, Stephen P. 65
Brayton, Robert K. 544, 574
Breuer, Melvin A. 289
Bryant, Randal E. 526
Burns, Steven M. 324
Carloni, Luca P. 309
Celik, Mustafa 214
Chakrabarty, Krishnendu 391
Chang, Shih-Chieh 115
Chang, Yao-Wen 364
Chao, Mango Chia-Tso 364
Charbon, Edoardo 591
Chatterjee, Abhijit 304, 471
Chen, Chunhong 76
Chen, Hung-Ming 354
Chen, Pinhong 132
Chen, Shyh-Jong 84
Chen, Wei 31
Chen, Yu 168
Cheng, Chung-Kuan 208
Cheng, Yi-Kan 124
Chuang, Jung-Cheng 115
Chung, Eui-Young 274
Ciesielski, Maciej 98
Cong, Jason 163, 358
Conn, Andrew R. 244
Corognati, Roberto 284
Cortadella, Jordi 316, 324
Cuviello, Michael 297
Dammers, A.J. 445
De Micheli, Giovanni 274
de Veciana, Gustavo 261
del Mar Hershenson, Maria 65
Demir, Alper. 70
Devgan, Anirudh 204, 430
Dey, Sujit 297, 566
Dill, David L. 221
Drechsler, Rolf 50
Duimovich, John 613
Dutt, Shantanu 173
Elfadel, Abe 611
Ernst, Rolf 489, 558
Etawil, Hussein 20
Fang, Jie 163
Fedder, Gary K. 606
Feldmann, Peter 70
Fiez, Terri 128
Foster, Eric 608
Friedman, Eby G. 239, 420
Fuhrer, Robert M. 7
Gad, Emad 376
Ganley, Joseph L. 157
Ganz, Andreas 139
Givargis, Tony D. 270
Golumbic, Martin C. 195
Gomes, Alfred V. 304
Gourary, M. 61
Guerra, Lisa M. 406
Gullapalli, K. 61
Güntner, Wolfgang 50
Gupta, Sandeep K. 289
Hajimiri, Ali 65
Harris, Ian 395
Hartje, Hendrik 25
Hassoun, Soha 414
Helaihel, Rachid .. 551
Henkel, Jörg ... 270
Henzinger, Thomas A. 494
Herrmann, Dirk ... 489
Higuchi, Hiroyuki .. 45
Ho, Ron ... 425
Hong, Inki .. 406
Horowitz, Mark A. 425, 580
Hsieh, Harry ... 505
Huang, Xian-Jun ... 451
Ismail, Yehea I. .. 420
Jacome, Margarida F. 261
Jha, Niraj K. ... 385, 482
Jiang, Iris Hui-Ru .. 364, 520
Jiang, Jie-Hong Roland 520
Jiang, Yanbin ... 425
Kelley, Brian ... 609
Kapadia, Hema .. 324
Kocan, Fatih ... 152
Kondratyev, Alex ... 316
Kong, Tianming .. 358
Korte, B. .. 232
Ko, Walter H. ... 208
Kuehlmann, Andreas 574
Kuh, Ernest S. ... 370
Kukimoto, Yuji .. 544
Kukula, James ... 41
Kung, David S. .. 178
Kunz, Wolfgang .. 25
Lahiri, Kanishka ... 566
Lai, Feipei .. 84
Lakshminarayana, Ganesh 385, 482
Lavagno, Luciano .. 316, 505
Lee, Thomas H. .. 65
Leupers, Rainer ... 253
Li, Jing-Rebecca .. 380
Lin, Xijiang .. 147
Liu, C.L. .. 111, 410
Liu, Huiqun ... 400
Liu, Xiaojun ... 494
Lou, Jianan ... 31
Lungeanu, Dragos 500
Macii, Enrico .. 284
Mai, Ken .. 425
Måndou, Ion I. ... 157
Mangione-Smith, William H. 257
Mantik, Stefanus ... 600
Marwedel, Peter .. 253
Mayaram, Kari .. 128
McCormick, Steve 223
McCready, Carolyn 414
McDonald, Clayton B. 526
McMillan, Kenneth L. 309, 574
Mehrotra, Amit .. 55
Miller, Hillel .. 584
Mintz, Aviad .. 195
Mohan, Sunderarajan S.65
Moon, In-Ho ... 41
Muhammad, Khurram 80
Mukherjee, Tamal .. 606
Mulvaney, B. .. 61
Murgai, Rajeev ... 185, 511
Myers, Chris J. .. 332
Nakahla, Michel .. 376
Nassif, Sani R. .. 459
Neumann, Ingmar .. 25
Neves, Jose L. .. 420
Nguyen, Tuyen V. .. 120, 459
Nowick, Steven M. 7
O'Brien, Peter R. .. 120, 204
Odabasioglu, Altan 214
Olukotun, Kunle .. 551
Pan, David Zhigang 358
Panda, Preeti Ranjan 477
Pant, Pankaj .. 471
Papaefthymiou, Marios C. 280
Parhi, Keshab K. ... 2
Pedram, Massoud .. 31, 516
Pileggi, Lawrence T. 214, 437
Pixley, Carl .. 584
Pomeranz, Irith .. 147, 463
Poncinio, Massimo 284
Potkonjak, Miodrag 343, 406, 596, 600
Puri, Ruchir .. 178
Qadeer, Shaz ... 494
Qu, Gang ... 168, 343
Quay, Stephen T. 430
Raghunathan, Anand 566
Rajamani, Sriram K. 494
Ravi, Srivaths ... 385
Reddy, Sudhakar M. 147, 463
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezvani, Peyman</td>
<td>516</td>
</tr>
<tr>
<td>Rhodes, David L.</td>
<td>339</td>
</tr>
<tr>
<td>Roy, Kaushik</td>
<td>80</td>
</tr>
<tr>
<td>Ruan, Shang-Jang</td>
<td>84</td>
</tr>
<tr>
<td>Rusakov, S.</td>
<td>61</td>
</tr>
<tr>
<td>Saab, Daniel G.</td>
<td>152</td>
</tr>
<tr>
<td>Saito, Hiroshi</td>
<td>316</td>
</tr>
<tr>
<td>Saldanha, Alexander</td>
<td>309, 539</td>
</tr>
<tr>
<td>Samavedam, Anil</td>
<td>128</td>
</tr>
<tr>
<td>Sangiovanni-Vincentelli, Alberto L.</td>
<td>55, 309, 505</td>
</tr>
<tr>
<td>Sapatnekar, Sachin S.</td>
<td>2, 102, 107</td>
</tr>
<tr>
<td>Sarrafzadeh, Majid</td>
<td>76</td>
</tr>
<tr>
<td>Savoj, Hamid.</td>
<td>516</td>
</tr>
<tr>
<td>Schietke, J.</td>
<td>232</td>
</tr>
<tr>
<td>Sechen, Carl.</td>
<td>91</td>
</tr>
<tr>
<td>Serdar, Tatjana.</td>
<td>91</td>
</tr>
<tr>
<td>Shang, Rung-Ji</td>
<td>84</td>
</tr>
<tr>
<td>Shanmugavel, Vimalvel</td>
<td>173</td>
</tr>
<tr>
<td>Sheehan, Bernard N.</td>
<td>200</td>
</tr>
<tr>
<td>Shepard, Kenneth L.</td>
<td>223, 531</td>
</tr>
<tr>
<td>Sherwani, Naveed</td>
<td>354</td>
</tr>
<tr>
<td>Shi, C-J. Richard</td>
<td>500</td>
</tr>
<tr>
<td>Shiple, Tom</td>
<td>41</td>
</tr>
<tr>
<td>Shultz, Kurt</td>
<td>584</td>
</tr>
<tr>
<td>Sinha, Arani</td>
<td>289</td>
</tr>
<tr>
<td>Somenzi, Fabio</td>
<td>41, 45</td>
</tr>
<tr>
<td>Stevens, Ken</td>
<td>324</td>
</tr>
<tr>
<td>Stoffel, Dominik.</td>
<td>25</td>
</tr>
<tr>
<td>Sterfl, K.</td>
<td>558</td>
</tr>
<tr>
<td>Sundararajan, Vijay</td>
<td>2</td>
</tr>
<tr>
<td>Tafertshofer, Paul</td>
<td>139</td>
</tr>
<tr>
<td>Tamiya, Yutaka</td>
<td>191</td>
</tr>
<tr>
<td>Tasiran, Serdar</td>
<td>221</td>
</tr>
<tr>
<td>Tausch, J.</td>
<td>453</td>
</tr>
<tr>
<td>Teich, J.</td>
<td>558</td>
</tr>
<tr>
<td>Thiele, L.</td>
<td>558</td>
</tr>
<tr>
<td>Torunoglu, Ilhami</td>
<td>591</td>
</tr>
<tr>
<td>Trimberger, Steve</td>
<td>173</td>
</tr>
<tr>
<td>Ulyanov, S.</td>
<td>61</td>
</tr>
<tr>
<td>Um, Junhyung</td>
<td>410</td>
</tr>
<tr>
<td>Vahid, Frank</td>
<td>270</td>
</tr>
<tr>
<td>van der Meijls, N.P.</td>
<td>445</td>
</tr>
<tr>
<td>van der Wolf, Pieter</td>
<td>461</td>
</tr>
<tr>
<td>Vannelli, Anthony</td>
<td>20</td>
</tr>
<tr>
<td>van Rootselaar, Gert-Jan</td>
<td>461</td>
</tr>
<tr>
<td>Vazirani, Vijay V.</td>
<td>157</td>
</tr>
<tr>
<td>Vinnakota, Bapiraju</td>
<td>467</td>
</tr>
<tr>
<td>Vissers, Kees A.</td>
<td>461</td>
</tr>
<tr>
<td>Visweswariah, Chandu</td>
<td>244</td>
</tr>
<tr>
<td>Vygen, J.</td>
<td>232</td>
</tr>
<tr>
<td>Wang, J.</td>
<td>453</td>
</tr>
<tr>
<td>Wang, Janet M.</td>
<td>370</td>
</tr>
<tr>
<td>White, Jacob</td>
<td>380, 453</td>
</tr>
<tr>
<td>Willson, Alan N. Jr.</td>
<td>14</td>
</tr>
<tr>
<td>Winston, David.</td>
<td>120</td>
</tr>
<tr>
<td>Wolf, Wayne</td>
<td>339</td>
</tr>
<tr>
<td>Wong, D.F.</td>
<td>354, 400, 611</td>
</tr>
<tr>
<td>Wong, Jennifer L.</td>
<td>600</td>
</tr>
<tr>
<td>Wu, Guang-Ming</td>
<td>364</td>
</tr>
<tr>
<td>Wu, Zhong-Zhen</td>
<td>115</td>
</tr>
<tr>
<td>Xie, Aiguo.</td>
<td>37</td>
</tr>
<tr>
<td>Yakovlev, Alexander</td>
<td>316</td>
</tr>
<tr>
<td>Yang, Hannah H.</td>
<td>354</td>
</tr>
<tr>
<td>Yang, Xiaodong</td>
<td>208</td>
</tr>
<tr>
<td>Young, F.Y.</td>
<td>354</td>
</tr>
<tr>
<td>Yu, Qingjian</td>
<td>370</td>
</tr>
<tr>
<td>Yu, Zhan.</td>
<td>14</td>
</tr>
<tr>
<td>Yuan, Jun.</td>
<td>584</td>
</tr>
<tr>
<td>Zelikovsky, Alexander</td>
<td>168</td>
</tr>
<tr>
<td>Zhang, Quishuang</td>
<td>395</td>
</tr>
<tr>
<td>Zhao, Min</td>
<td>107</td>
</tr>
<tr>
<td>Zhao, Yi</td>
<td>297</td>
</tr>
<tr>
<td>Zharov, M.</td>
<td>61</td>
</tr>
<tr>
<td>Zhou, Hai</td>
<td>354</td>
</tr>
<tr>
<td>Ziegenbein, D.</td>
<td>558</td>
</tr>
</tbody>
</table>
CALL FOR PAPERS

The INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN - 2000

ICCAD is oriented towards Electrical Engineering CAD professionals, concentrating on CAD for Electronic Circuit Design.

AREAS OF INTEREST

Original technical papers on (but not limited to) the following topics are invited:

1) PHYSICAL DESIGN AND TEST

1.3 Complete layout systems. Layout migration. Symbolic design & compaction. Physical design planning. DRC, ERC, and layout verification.

1.4 Analog, RF, and mixed signal circuit synthesis, optimization and layout. Analog, RF and mixed signal simulation techniques. Mixed technology design simulation (thermal, packaging, micromechanical).

1.5 Fault modeling, delay test, analog and mixed signal test. Fault simulation. ATPG. Reliability. Yield and manufacturability analysis.

1.6 BIST and DFT. Partial and boundary scan. Memory and core test. System Test. On-line testing.

2) SYNTHESIS AND SYSTEM DESIGN

2.1 Combinational logic optimization for area, timing, power. FPGA optimization. Interaction between layout and combinational logic synthesis. Technology mapping.

2.2 Sequential synthesis and optimization for area, timing, power. Interaction between layout and sequential synthesis. Asynchronous circuit design.

2.3 High-Level Synthesis (scheduling, allocation, binding). Datapath and control synthesis. Synthesis with IP libraries and reuse. Estimation and analysis in high-level synthesis. Memory system synthesis and optimization. HW interface synthesis.

2.4 HW/SW co-synthesis. System synthesis. Hardware platform synthesis and optimization (e.g. SOC). ASIP synthesis. Core based design. Embedded software synthesis (code generation). HW and SW estimation and analysis in embedded system design (area, timing, power). HW/SW interface synthesis.

2.5 Specification, modeling and validation of embedded systems. Languages. Multi-language design. Real-time software and RTOS. System level reuse techniques (e.g. object oriented design, design migration). Embedded systems engineering (e.g. workflow management, systems integration, design methodologies, design metrics, middle ware). Rapid system prototyping.

3) VERIFICATION, MODELING AND SIMULATION

3.1 Circuit-level timing and false path analysis. Transparent latch timing analysis and clock schedule optimization.

3.2 Circuit and interconnect-level timing and power simulation. Interconnect parameter extraction and circuit model generation. Noise and crosstalk analysis. Timing models for interconnect.

3.3 Formal Verification techniques. Switch, logic and high-level simulation. HW/SW co-simulation. High-level design validation.

ORIGINAL PAPERS

3.5 Hierarchical and high-level test generation. Test compaction. Physical design planning. DRC, ERC, and layout verification.

3.6 High-level synthesis and optimization. Compiler generation. Memory system synthesis and optimization. HW interface synthesis.

AUTHOR INFORMATION AND FORMAT

Please submit the following in PDF format:

• 1 page abstract should state clearly and precisely what is new and point out the significant results. The IMPACT, or potential impact, of the contribution will play a major role in the evaluation.

• 1 paper of no more than 6 pages using proceedings format. double columned, 9pt or 10pt fonts including figures, tables and references. (In the proceedings, four pages are free of charge and the maximum number of pages is 8).

• Papers in the wrong format, exceeding the six page limit, or identifying the authors and their affiliations will be rejected immediately.

 - Previously published papers will not be considered: this includes papers published in formal workshop proceedings. Papers presented only orally, or only available through informal distribution, will be considered. Authors should clearly address the significance of their contribution as part of the paper.

 - Proposals for Panel Sessions and Tutorials are also invited.

AUTHOR’S SCHEDULE

Deadline for submissions: April 3, 2000
Notification of acceptance: June 26, 2000
Deadline for final version: August 11, 2000

Papers will not be accepted for submission after April 3, 2000. This deadline is firm and inflexible. No exceptions will be made.

Please direct all correspondence to:

ICCAD-2000 Publications Department
MP Associates, Inc. Telephone: (303) 530-4562
5305 Spine Rd., Suite A Fax: (303) 530-4334
Boulder, CO 80301 Email: terri@dac.com

ICCAD’S Home Page:
http://www.iccad.com

Sponsored by:
THE IEEE COMPUTER SOCIETY DATC
ASSOCIATION FOR COMPUTING MACHINERY/SIGDA
THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

In cooperation with:

CONFERENCE CHAIR:
PROGRAM CHAIR:
PROGRAM VICE CHAIR:
PAST CHAIR:
TUTORIAL CHAIR:

Ellen M. Sentovich
Rolf Ernst
Lawrence T. Pileggi
Jacob White
Andreas Kuehlmann

Cadence Berkeley Labs.
Tech. Univ. of Braunschweig
Carnegie Mellon Univ.
Massachusetts Inst. of Tech.
IBM Corp.

NOVEMBER 5-9, 2000
DOUBLETREE HOTEL
SAN JOSE, CA

AREAS OF INTEREST CONT.

3.8 System simulation. HW/SW co-simulation. High-level design validation.

3.10 BIST and DFT. Partial and boundary scan. Memory and core test. System Test. On-line testing.

3.11 Test generation and test compilation. Test compaction. Physical design planning. DRC, ERC, and layout verification.

3.15 Hierarchical and high-level test generation. Test compaction. Physical design planning. DRC, ERC, and layout verification.

3.16 High-level synthesis and optimization. Compiler generation. Memory system synthesis and optimization. HW interface synthesis.

3.19 Hierarchical and high-level test generation. Test compaction. Physical design planning. DRC, ERC, and layout verification.
Session Index

Session 1A: Sequential and Datapath Optimization
Session 1B: Placement I
Session 1C: BDDs in Formal Verification
Session 1D: Analog and Mixed-Signal
Session 2A: Power Optimization
Session 2B: Placement II
Session 2C: Domino- and ATPG-Based Logic Synthesis
Session 2D: Electrical and Thermal Analysis
Session 3A: Automatic Test Pattern Generation
Session 3B: Routing
Session 3C: Logic-Level Performance Optimization
Session 3D: Practical Issues in Order Reduction
Session 4A: Embedded Tutorial
Session 4B: Embedded Tutorial
Session 5A: Timing Optimization
Session 5B: Compilation Techniques for Embedded Systems
Session 5C: High Level Power Exploration
Session 5D: Analog and Mixed Signal Test
Session 6A: Globally Untimed Locally Timed Design
Session 6B: Task-Level Analysis and Synthesis
Session 6C: Floorplanning and Partitioning
Session 6D: Advances in Model Order Reduction
Session 7A: Core Test
Session 7B: Graph Techniques for Design Optimization
Session 7C: Interconnect
Session 7D: Techniques for Parasitic Extraction
Session 8A: Embedded Tutorial
Session 8B: Embedded Tutorial
Session 9A: Test Pattern Analysis
Session 9B: Memory and Interconnect Optimization in High Level Synthesis
Session 9C: System Verification
Session 9D: Fanout Optimization
Session 10A: Timing Analysis
Session 10B: Concurrency in Embedded Systems
Session 10C: Semi-Formal Verification
Session 10D: Intellectual Property Protection
Session 11A: Embedded Tutorial
Session 11B: ICCAD/ISSS Invited Papers
Session 12A: Embedded Tutorial
Session 12B: Joint ICCAD / ISSS Session: Embedded Tutorial