A Software Acceptance Testing Technique
Based on Knowledge Accumulation

Y1 Yu, Fangmei Wu
Dept. of Telecommunication Engineering
Shanghai Tiedao University, P. R. China
E-mail:yuyi@shtdu.edu.cn

Abstract

Svstem acceptance testing in general relies on the
specification of svstem requirements, but for complex
svstems, especially for complex safety systems, the issue
whether system requirements specified by users are
complete should be considered. This paper presents a
software acceptance testing technigue based on
knowledge accumulation, which . help to expose ihe
software faults caused by th. lack of knowledge. A
software test tool using the technique jor the railway
signaling computer interlocking svstems and some 1ested
results are also introduced in this paper.

Keywords: software, ac.eptance testing.
accumulation, railway signaling. interlocking

knowledge

1. Introduction

As a commonly recognized procedure in software
engineering, the acceptance testing of a software system
is conducted after 1its integrated testing has been
completed. The object of an acceptance testing should be
an integrated software system, and there should be
generally no error on its interface. The task of the
acceptance testing is to verify the operational availability
of a software system being tested or to ensure that all
functions of the software system are in conformity with
what are expected by users. Ideally the software system
functions required by users should be specified precisely
1n a user requirements document at the user requirements
analysis phase. However in practice it is very difficult to
describe the user requirements accurately and completely,
especially for the development of a new software system
or a complex safety system. It is true that the user
requirements document can be revised and substantiated
continuously in the whole life-cycle of a software
development. But on account of the lack of knowledge or
the one-sided understanding, for example. users do not
understand the characteristics of a software product and a
software engineer does not have some specific knowledge,
mistakes in a user requirements document or
misunderstanding of the document can not be completely

0-7695-0104-4/99 $10.00 © 1999 IEEE

296

avoided. To identify the software faults due to this kind of
the lack of knowledge and the inaccurate knowledge
representation, it 1S necessary to pay attention to the
knowledge acquirement and accumulation the
acceptance testing phase.

in

2. The Software Acceptance Testing Model

Software acceptance testing adopts essentially the
black-box testing technique and is user-oriented generally.
The software acceptance testing model can be simply
shown by the following function.

VY= 7(X)
Here, f () is represents a software system to be

tested and can be regarded as a black-box: X is a test
case input set for acceptance testing: And Y is the output
set.

The task of software test is to expose faults in a
software system under test, but the technique based on
black-box can only find the failures of a software system
under test. The following issues must be addressed when
a software acceptance testing is carried out using black-
box testing technique:

® Determining relation between X and Y ;
® Sclecting test case generation strategy;

@ Judging test results;

@ Acquiring and accumulating knowledge.

2.1 Determining relation between X and Y

From the external angle. a software system can be
classified as either an input determined system. or an
output determined system. or an Input-output all
determined system or an undetermined system.

Assuming that X is an input set of the software
system under test. Y is an output set of the software
system. and R = {{x,v}lx e X, v €Y} is the 2-
element relation between the X and the }. a software
system is termed as an input-output all determined system

if R meets all following conditions (1), (2), (3) and (4),
as an input determined system if Rmeets only the
conditions (1), (2) and (4). as an output determined
system if R meets only the conditions (1), (3) and (4),
and as an undetermined system if not.

Condition (1): R does not contain the element
{x,y,} and the element j{x,y,} at the same time.

where y; # v, and y,,y, €1
X
Y

I

Condition (2). {x}
Condition (3). {y}
Condition (4). R is sole.

Condition (1) rules out the undetermined outputs of a
system under test against an input x . Condition (2)
means that the system has an output or several outputs
against each input x of the input set X . Condition (3)
means that each output y of the output set Y of the

i

system is activated by an input x . Condition (4) means
that the relation R between X and Y of the system is
sole. The cause-consequence diagram [1] may be a good
method to show the relation K.

A software system to be tested must be a determined
system { cither an input determined system, or an output
determined system or input-output determined
system). In the railway signaling field. the railway
station signaiing control system is a safety mult-
dimensional N-step sequence system [2]. Its interlocking
software should be a determined software system.

an

2.2 Selecting test case generation strategy

There are many strategies and methods to generate
test case at present, for example, the object-oriented
software test strategy[3]. the knowledge-based test
planning[4]. the automated test generation
method[5], the generating functional test cases in-the-
large[6], the strategy based on the safety relation between
the input and the output of system[2], and so on.
Unfortunately, no single testing method can guarantee to
give accurate results in every circumstance. For a
complex safety system, such as the railway signaling
computer interlocking system, more than one methods or
strategies of generating test case should be considered at
the same time. The TAS (Test and Assessment System)
for the safety critical sofiwares of railway signaling
computer interlocking systems introduced later uses
simultaneously the knowledge accumulation strategy and
the strategy based on the safety relation between the input
and the output of system.

case

2.3 Judging test results

297

In the process of acceptance testing. the basis for
passing a judgment on test results is generally the
specifications. But if the software under test is a complex
system or its specifications are informal. the judgment is
not to be based on the specifications alone. and some
supplementary criterions should be considered. In the
TAS. the safety and efficiency the
supplementary criterion.

criterion 1s

2.4 Acquiring and accumulating knowledge

Acquiring and accumulating knowledge in the
acceptance testing phase to make up the
incompleteness requirements document or
specifications, to increase the test efficiency and to reduce
the test cost. Increasing the test efficiency means to find
more faults by using lower test cases.

18 for

of user

3. A Software Acceptance Testing Technique
Based on Knowledge Accumulation

A software acceptance testing technique based on
knowledge accumulation is shown in Fig. 1.

Result Judgment

The Software System
under Test

Knowledge
Accumulation

1

Knowledge
from a person, a group

Specifications

or another test system
Figure 1. A software acceptance testing technique
based on knowledge accumulation

The key to this technique is to establish methods of
acquiring and accumulating knowledge. This paper
introduces two knowledge accumulation methods. a
knowledge accumulation method and a
horizontal knowledge accumulation method. The first
method means that knowledge i1s accumulated by a person.
a group or a knowledge system. The longer time is, the
more knowledge is accumulated. But the second method
means that knowledge is accumulated by exchanging
between different persons, different groups or different
systems. It means that the more different persons,
different groups or different systems there are. the more
knowledge s accumulated.

vertical

The TAS for the safety critical sofiwares of railway
signaling computer interlocking systems has used the
technique based on knowledge accumulation, which
includes the vertical knowledge accumulation method and
the horizontal knowledge accumulation method.

4. A Software Test Tool: the TAS for the
Safety Critical Softwares of Railway
Signaling Computer Interlocking Systems

A railway station signaling control system is a safety
critical multi-dimensional N-step sequence system. At the
present moment there is not any appropriate knowledge
representation available to describe its sequence logic
accurately and completely. Therefore it is too difficult to
describe its user requirements accurately and completely
when the software is used to realize the sequence logic
functions, the reliability and the safety of the system. To
make up for the incompleteness of the user requirements
document. a special tool — the TAS for the safety critical
softwares of railway signaling computer interlocking
systems has been developed by the Testing Center of
Railway Computer Interlocking System of Ministry of
Railways in P. R. China. The TAS has used the software
acceptance testing technique based on the knowledge
accumulation. It consists of some basic software T&APs
(Test and Assessment Platforms). Each basic software
T&AP is composed mainly of the following nine modules.
They are a basic operation set module, a basic case model
module, a case model list module, a case generating
module, an operation selection module, a control software
module, a result analysis module, a recording operation
module and an abstracting case model module. A basic
software T&AP is shown in Fig. 2.

The User Requirements Document
2

Basic The Software System
Operation Set under Test
N
Operation Control Result
Selection Software Analysis

] Case Generating]

Recording Operation "‘J
v

’ Case Model List H Abstracting Case Model [

(i

From Other Basic Platforms

Basic Case
Model
/T\

Expert Knowledge
Figure 2. A basic software T& AP

298

The basic operation set module essentially consists of
the operation sets generated according to the user
requirements document of a software system being tested.
The basic case model module consists of the case models
abstracted from the expert knowledge. The case model
list module is practically a test case model list with the
statistics ratio. It derives case models not only from the
basic case model module, but also from an abstracting
case model module that can be the module of the basic
platform itself or the module belonging to other basic
platforms. The structure of getting case models from
other basic platforms is the horizontal knowledge
accumulation method. Others belong to the vertical
knowledge accumulation method. The case model list
module is the link of the TAS for the safety critical
softwares of railway signaling computer interlocking
systems. It links all basic platform of the TAS. The
function of the case generating module is to change the
case models 1nto test cases which are suitable for the
software system under test. The operation seclection
module selects operations from the basic operation set
module or converts the test cases of the case generating
module into operations according to the test task and the
test strategy. The selected operations are sent to the
software system under test and to a control software
module at the same time. Here the control software
module includes a subjunctive interlocking software
system. It is an expert system in fact. Its output serves as
a part of standard of distinguishing whether the output of
tested software system is right or not. The result analysis
module is designed to compare the output of the software
system under test with the output of the subjunctive
interlocking software according to the safety and
efficiency criterion. If the comparing result is that the
safety of sofiware system being tested is lower than that of
the control software or a critical efficiency failure of the
software system under test emerges. a signal to record the
input operation is sent to a recording operation module,
After having received the signal, the recording operation
module records immediately the operations
corresponding to the output. The abstracting case model
module can abstract a test case model from concrete
operations. The abstracted test case model is added to the
case model list.

5. Results and Conclusions

Up to now, seven interlocking software systems have
been tested by means of the TAS for the safety critical
softwares of railway signaling computer interlocking
systems. The results are summarized in Table 1.

The test results are classified as the safety failures.
the critical efficiency failures and the other failures

according to the safety and efficiency criterion. If an
output of the interlocking software system under test is
unsafe or risky, the output is counted as the safety failure.
If an output seriously reduces the availability of the
interlocking software system, it is counted as the critical
efficiency failure. The interlocking software systems
listed in Table 1 are developed by seven different
developers. The tested software 1 in Table 1 is the first
software system tested with the TAS. The tested software
2 and 3 are the second group of sofiware systems tested
with the TAS. And the other four tested softwares are the

third group. The later an interlocking software system is
tested, the larger the possibility of exposing its failures is.
The tendency of average increasing expresses that the
technique based on knowledge accumulation is effective
in acceptance testing phase. Although the effect of the
software acceptance testing technique based on
knowledge accumulation is excellent. there are some
problems that need to be further solved . For example. the
problem of how the test case models are abstracted from
the concrete operations automatically.

Table 1. Test results
THE TESTED RESULTS
GROUPS INTERLOCKING SOFTWARE | PLATFORM
SYSTEM SAFETY CRITICAL EFFICIENCY OTHER i R
FAILURES FAILURES FAILURES | TOTAL

l Tested software | platform | 3 1 6 10
Average 3 1 [10
Tested software 2 platform 1 7 0 17 24
2 Tested software 3 platform 2 10 0 24 34
Average 8.5 0 2053 29
Tested software 4 platform i 7 | 20 28
Tested software 5 platform 2 11 3 31 45
3 Tested software 6 platform 3 9 I 14 24
Tested software 7 platform 4 12 7 22 41

Average 9.75 3 2175 345

References Framework for a Knowledge-Based System to Prepare a

[1] Anne Cartier and Marie-Christine Lartisien, Reliability,
Availability, Maintainability and Safety Assessment, John
Wiley & Sons Ltd., England, 1992

[2] Yi Yu and Fangmei Wu, “A Black-Based Safety Test
Strategy for High-Speed Railway Interlocking Software”,
Journal of the China Railway Society, Vol.19 Suppl,
November 1997, pp. 95-100

[3] Jin Lingzi, “Progress in Testing Object-Oriented Software”,
Computer Research & Development, Vol.35, No.1, Jan.1998,
pp.6-13

[4] Dolly Samson,

“Knowledge-Based Test Planning:

299

System Test Plan from System Requirements”, J. Systems
Software, 1993, pp.115-124

[5] W.T.Tsai, D.Volovik, T.F.Keefe, “Automated Test Case
Generation for Programs Specified by Relational Algebra
Queries”, IEEE Transactions on Software Engineering,
Vol.16, Iss:3, March 1990, pp.316-339

[6] Sandro Morasca, Angelo Morzanti, Pierluigi SanPietro,
“Generating Functional Test Cases in-the-large for Time-
critical Systems from Logic-based Specifications”, Software
Eng. Notes, Vol.21, No.3, May 1996, pp.39-52

	Main Page
	GLSVLSI99
	Front Matter
	Table of Contents
	Author Index

