Formal Checking of Properties in Complex Systems Using Abstractions *

Dinos Moundanos

Jacob A. Abraham

Computer Engineering Research Center
The University of Texas at Austin
ENS 424
Austin, TX 78712

Abstract

Only very small designs can be verified currently us-
ing property checking due to state-space explosion. Ab-
stractions have been developed to simplify the design in
an attempt to address this problem. However, the proper-
ties themselves may involve large state spaces, and practi-
cal property checking is generally confined to the control
behavior. This paper describes an elegant techiique for
verifying properties of complex designs where the abstrac-
tion is applied to both the property and the design, thereby
allowing us to verify properties which may deal with the
data space. We demonstrate the technique on a processor
by checking properties which are intractable using existing
model checking techniques.

1 Introduction

Advances in semiconductor technology are allowing the
number of transistors integrated on a chip to increase expo-
nentially. As the resulting designs become more and more
complex, verifying their correctness is becoming more and
more difficult. The current practice in industry is to use
simulation to attempt to detect bugs in the design. Since
simulation is able to check increasingly smaller portions of
designs, there has been a growing interest in using formal
techniques to verify designs [5]. Formal approaches are be-
coming common in checking the correctness of implemen-
tations against specifications (implementation verification),
particularly at the Boolean logic level, and commercial tools
for Boolean equivalence checking are becoming common in
the design flow. The other aspect of formal verification in-
volves proving either that a design is correct with respect

*This research was supported in part by the Semiconductor Research
Corporation under contract 97--DJ-483 and in part by the Texas Advanced
Technology Development and Transfer Program under Project 003658-433
at the University of Texas at Austin. Dinos Moundanos is currently with
Fujitsu Laboratories of America, Sunnyvale, California.

0-7695-0104-4/99 $10.00 © 1999 IEEE

to a set of properties specified by the designer, or that the
design possesses the functionality intended by the designer
(design verification) [6, 1].

1.1 Dealing with State Space Explosion

The number of states in real designs is so large that the
basic techniques for verifying propertics cannot be applied
directly to them. The most important technique used to
handle the verification of realistic circuits is to control the
complexity by abstracting the design into a reduced model.
Even if we were able to abstract the design, the proper-
ties themselves may involve large state spaces, for example,
when specifying properties on data registers. Consequently,
property checking is generally confined to the control be-
havior, and cannot deal with properties dealing with data-
dependent control.

This paper describes an elegant technique for verifying
properties of complex designs where the abstraction is ap-
plied to both the property as well as to the design, allowing
us to verify properties which may deal with the data space.
We specify properties as state machines, and develop an ab-
straction which is applicable to both the property and the
design. We will describe the technique and the decision pro-
cedure that gives the final answer as to whether a property
holds or not on the original machine. We will demonstrate
the effectiveness of this approach on a processor by check-
ing properties which are intractable using existing model
checking techniques.

1.2 The Extracted Contrel Flow Machine
(ECFM) Model

In most applications, including design verification and
test generation, the flow of control is of prime interest.
However, extracting the control machine from a circuit de-
scription is not an easy task because the control circuitry
cannot be distinguished easily from the data path without
relying on designer annotations to the circuit description.

The ECFM of a sequential circuit is a model of the con-
trol flow in the design and is extracted by looking at the
finite state machine representing the complete circuit {2, 3].
The difficulty in identifying the control circuitry often lies
in defining the interface of the control unit with the rest of
the circuit, and not in differentiating the control registers
from registers holding pure data. In the ECFM methodol-
ogy, the designer chooses the registers which are to be con-
sidered as contributing to the control state space and which
make up the data. The key issue here is that we are only in-
terested in the data part of the state space to the extent that
it affects the flow of control in the circuit. Consequently,
we abstract the data registers from the circuit and group
the data into “equivalence” classes with respect to their ef-
fect on the control. This abstraction is done by making the
data registers completely non-deterministic, essentially pri-
mary inputs. This extended input space is then grouped into
equivalence classes.

2 Formal Verification of Properties Using
Abstraction

We have developed a novel technique for verifying cer-
tain kinds of properties for circuits with wide datapaths.
The key point of our approach is the fact that we apply the
same type of abstraction techniques to both the state ma-
chine describing the design and to the state machine that de-
scribes the property to be verified. We specify properties as
labeled finite-state machines (FSMs) written in a hardware
description language (HDL). Both liveness and safety prop-
erties can be described in this framework. Labeled FSMs
are being utilized to account for the non—determinism that
may be present in the design. At least one path through a
labeled state and all paths through non—labeled states must
satisfy the desired behavior for the labeled state machine to
model the property correctly. This means that labeled states
are used to describe non—deterministic behavior and non-—
labeled states account for deterministic behavior. Addition-
ally, a labeled state machine may be partially specified both
in terms of primary outputs and next states. A sink state is
used to absorb all transitions with unspecified next states.
The verification algorithm computes all the states in the de-
sign that are compatible with the specification from its start
state. Both pre-image and inverse image computations are
required because of the two types of states present in the
specification [3].

Our verification system is depicted in Figure 1. The de-
sign is assumed to be described at the Register Transfer
Level (RTL) in either Verilog or VHDL. The property is also
expressed as a state machine in either Verilog or VHDL.
Based on designer input, we extract the ECFM of the de-
sign. To continue we apply the same abstraction technique
on the property machine, assuming that it involves data reg-

281

CIRCUIT e VHDE SPECIFICATION
DESCRIPTION - 3 ’ —————-{ QF THE PROPERTY
|
|
B
v
Designer
Input T

ABSTRACTION

MECHANISM
DESIGN PROPERTY
ECFM_ |7 ~{ ECFM

PROPERTY VERIFICATION
FRAMEWORK

1
|
|
i H
[¥

COUNTEREXAMPLE
GENERATION

WITNESS
GENERATION

Figure 1. Property Verification System

isters. Otherwise, if it is only concerned with control be-
havior, the property machine is used as is.

The verification problem is set up as a containment check
(see Figure 2). We check to see whether the property
machine is contained in the state machine describing the
ECFM of the design. This is in contrast to the approach in
[4], where the language of the system is shown to be or not
be contained in the language of the property. This approach
ensures that the behavior of the design is consistent with that
of the specification (property). In our approach we make
sure that the design can perform all the behavior defined
in the specification which is a more realistic paradigm. Fur-
thermore, we do not require knowledge of the initial state(s)
for the design. So our approach guarantees, in the case of
success, that for every possible starting state in the speci-
fication machine, there exists a corresponding state in the
design machine, such that, for each such pair of states, the
language of the design machine (viewed as an automaton)
is contained in the language of the property machine (also
viewed as an automaton). Additionally, there arc several
properties involving existential quantification that are not
expressible in the framework of [4]. For example, the prop-
erty that there exists a path to a reset state from any design
state cannot be expressed.

Abstraction is the process of reducing the proof of a
property on a large state space system to a proof on a smaller
state space (abstract model). Abstractions can be exact,
conservative or aggressive. An abstraction is exact when
properties hold on the abstract model if and only if they
hold on the original model. An abstraction is conservative

when a property that holds on the abstract model holds on
the original model too. Finally, an abstraction is aggressive
when a property that does not hold on the abstract model
does not hold on the actual model cither.

In our case the abstraction falls in the second category,
the category of conservative abstractions. Our abstraction
climinates portions of the datapath and retains the control
behavior of the design. However, the control space of the
abstracted model (the ECFM) is a conservative but close
approximation of the actual control space. This is the case
because, for the most part, datapath registers can assume
any value at any clock cycle.

The question now is what it means for the abstracted
property to be contained in the abstracted machine. The
answer to that question depends on the type of properties
with which we are dealing. In general we have pure control
properties, pure data properties and control--data properties.
Control properties have to do with the control behavior of
the machine and do not involve any data dependencies. Data
properties are those that the datapath must satisfy. Both
Model Checking and Theorem Proving can be utilized for
properties like these. Data properties are beyond the scope
of this paper. Control-Data properties involve both control
and datapath signals. An example of a property of this type
would be that “if an xor command is issued, and no excep-
tions occur, then in 4 time steps, a location will contain the
result of the xor operation on the correct arguments™.

In our framework we are concerned with control proper-
ties and control-data properties. However, in the latter case
we are not interested in verifying correct function imple-
mentation, rather we make sure that the decoding and data
transfer takes place in the correct fashion.

o~

mpy s M(D)
Control
t : Abstraction; E
i . t
mey C moy

C .Containment through
~ weak compatibility

P : Property
D: Design

Figure 2. Theoretical Aspects of the Verification
Process

Since ours is a conservative abstraction it suffers from
the problem of false negatives. This means that a property
may fail on the abstracted model while in reality it holds on

282

the original machine. However, we do not have the problem
of false positives, which means that we cannot have prop-
erties holding on the ECFM that do not hold on the actual
machine. For universal type control properties (for exam-
ple, properties 1, 2, 3, 4 in Table 1) the inference is direct.
This means that if the property holds on the ECFM it is
guaranteed to hold on the original machine. However, in
the case of failure we need to investigate the counterexam-
ple space. For control—data properties we need to do further
processing in both the case of failure and the case of suc-
cess. The main question is whether the witness (in the case
of success) or counterexample (in the case of failure) can be
mapped back to the original machine or not, that is, whether
the abstract sequence is possible on the original design. The
problem of mapping back is a difficult one, and there are no
simple solutions. We have had some success using manu-
facturing test generation (ATPG) techniques. For witnesses
the processing stops when a witness is successfully mapped
to an execution path in the original machine. For counterex-
amples, the examination must be exhaustive. This can be
seen as a process of eliminating false negatives.

3 Results

We applied our techniques to the Viper microprocessor.
The Viper is a processor designed for safety-critical appli-
cations, and has 33 primary inputs, 53 primary outputs, 251
D-flip flops and approximately 40 instructions. Full reach-
ability analysis is not possible on a circuit of such com-
plexity. This means that traditional formal methods such as
model checking, language containment or explicit enumer-
ation based techniques are no longer applicable. The power
of abstraction and decomposition has to be exploited.

In Table 1 we present verification results for some con-
trol properties of the Viper microprocessor. The list of prop-
erties verified is given below.

1. Reset state not reachable from all states.

2. Resct state reachable from all states after a reset line is
inserted.

3. Execution always returns to fetch state within 6 cycles.
This property is not true if an exception is raised.

4. The above property is true if an exception is not raised.
5. There exist instructions for which the machine goes in the
halt state and stays there. A witness was generated in 3.45s
and mapped back to a sequence applicable to the original
machine in 4.07s—an illegal instruction was found to be the
cause of halting.

The first column specifies the index of the property, while
the second column provides the extraction time for the
ECFM of the Viper. Since the properties being verified are
control properties, no abstraction is necessary on the state
machines specifying those control properties. Columns 3
and 4 give the maximum number of BDD nodes and the

Table 1. Property Verification on the ECFM of the Viper

Property Extr'action # BDD | Time to build | Time to Find Tgtal

Time Nodes BDDs WC, | WC | Time
1 3.85s 852 0.37s 0.0s 0.0s | 4.46s
2 9.07s 1432 0.23s 0.0s | 0.20s | 9.51s
3 3.72s 1170 0.37s 0.0s | 0.70s | 4.40s
4 3.77s 1268 0.38s 0.0s | 0.70s | 4.46s
5 3.78s 1338 0.39s 0.0s | 0.80s | 4.50s

Table 2. Instruction Set verification on the ECFM of the Viper

Property Extr'action Time || # BDD | Time to build | Time to Find Total

Design | Prop. || Nodes BDDs wc,] W Time
1 9.03s 1.91s 3479 0.64s 0.02s | 0.21s | 12.02s
2 10.78s | 2.31s 3120 0.87s 0.05s | 0.39s | 14.93s
3 3.66s | 0.31s 1527 0.40s 0.0s | 0.12s | 4.73s
4 3.96s | 0.39s 1369 0.52s 0.0s | 0.1is | 5.22s

time to build the BDDs, while columns 5 and 6 give the time
needed to obtain the sets of weakly 1-compatible states as
well as the set of weakly compatible states (fixed point). Fi-
nally, column 7 gives the overall time for the verification of

each property.

In Table 2 we present results on instruction set verifica-
tion for the Viper. In performing instruction set verification
our intent is to verify the decoding logic and the data trans-
fer operations rather than the correct function implementa-
tion. The following instructions are verified.

1. XOR Instruction with No—op loop.

2. ADD instruction with No—op loop.

3. Comparison Instruction.

4. WRITE Instruction.

In these cases our abstraction techniques are also applied
on the property machine, and so the time for this process is
given in column 3. As an additional experiment we inserted
a bug in the decoder of the Viper (causing an XOR instruc-
tion to be decoded as an AND instruction). We generated a
counterexample for this case in 3.85 seconds, and mapped
it back to the original machine in 3.2 seconds.

Note that verification of these properties would not have
been possible without the utilization of the abstraction tech-
niques. Additionally, the verification is over all possible
data values, all possible initial states and for all possible
input sequences. This is very critical for the validation of
circuits where the flow of control is more complicated, as
is the case, for example, in pipelined processors with inter-
rupts, exceptions, dynamic scheduling, etc.

283

4 Conclusions

We have presented a novel abstraction technique which
applies the same abstraction to both the property and the
model being checked. This allows designers to verify prop-
erties involving data as well as control for complex designs,
hitherto impossible to verify. In some cases, if a property 1s
true in the abstract model, it is guaranteed to be true in the
original design; in other cases, the abstract witness or coun-
terexample needs to be mapped back to the original design.
We are now studying techniques for the mapping back prob-
lem which will be able to handle more complex designs.

References

[1] Y. Hoskote, J. Abraham, and D. Fussell. Automatic verifica-
tion of temporal properties written as state machines in vhdl.
Proc. of the Sixth Great Lakes VLSI Symposium, 1995.

Y. V. Hoskote. Formal techniques for verification of syn-
chronous sequential circuits. Ph.D. Dissertation, UT Austin
ECE Dept., 1995.

Y. V. Hoskote, D. Moundanos, and J. Abraham. Automatic
extraction of the control flow machine and application to eval-
uating coverage of verification vectors. Proc. [CCD, pages

532-537, 1995.

R. Kurshan. Computer—aided verification of coordinated
processes—an automata theoretic approach. Princeion Uni-
versity Press, 1994.

M. McFarland. Formal verification of sequential hardware: A
tutorial. IEEE Transactions on Computer-Aided Design, 12,
No. 5:633-654, May 1993.

K. L. MeMillan. Svmbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[2]

31

[4]

	Main Page
	GLSVLSI99
	Front Matter
	Table of Contents
	Author Index

