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Abstract

Numerical tools to model fracture in MEMS

devices are proposed. The two numerical
procedures are the Element Free Galerkin
method and  the Displacement  Discontinuity

Method. Experiments on MEMS fracture are used
to evaluate the numerical procedures. The test
specimens covered a range of geometries and
designs, including notches, holes and corners.
For  some  specimens both  methods — gave
acceptable  results  compared 1o experiments
(Ballarini et al and Suwito), while for others
results were off by more than 15%. These findings

raise new questions about the applicability of

linear elastic fracture mechanics to model failure
of MEMS devices at microscopic scale.
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1. Introduction

MEMS are commonly made of Silicon whose
mechanical properties are relatively well known at
macroscale but still under investigation at microscale.
Behavior at microscale can be fundamentally different
than at macroscale requiring from the MEMS
community to establish, and with high reliability, the
mechanical propertics of MEMS  materials  and
standard tests to determine these properties. While
there is a wealth of ASTM standard tests for the
determination of mechanical properties, almost none of
them can be implemented (as is) at microscale because
of the impossibility of similar instrumentation at
microscale. As such, new numerical tools and test
procedures need to be developed and be proved
reliable.  From a mechanical perspective, elastic
constants, the complete stress-strain curve, and the
fracture and fatigue properties at temperatures and
environments similar to those where MEMS operate
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need to be determined in order to achieve efficient
design and reliable products. Since MEMS are made of
cither single crystal silicon or polysilicon, these
mechanical properties need to be determined for each
crystal facet ({100}, {111}) and for polysilicon.

This  paper investigates the application of
numerical fracture modeling to simulate experiments.
The numerical  procedures are the clement  free
Galerkin meshless method and a variant of the
boundary element method called the displacement
discontinuity method. The applicability of these two
methods at MEMS scale gives acceptable results
compared to experiments, which can lead us to answer
to some questions like: Is linear elastic fracture
mechanics (LEFM) applicable for MEMS fracture?
Are size effects important? Do flaws, corners, notches,
and holes enhance the fracture mechanical properties
of MEMS devices?

The mathematical foundation of the numerical
methods is presented first and followed by simulation
of experiments.

2. The displacement discontinuity method

The displacement discontinuity method (DDM) is

based on the analytical solution for a constant
displaccment  discontinuity on  several  straight

segments within an infinite clastic region. It consists in
dividing one of these segments into N clements linked
to cach other, and in considering the displacement
discontinuity to be constant over each one. Thus, by
knowing the analytical solution for each constant
elemental  displacement discontinuity, we sum the
effects for all N elements to find the numerical
solution. It is also a means of finding a discrete
approximation to the smooth distribution of relative
displacement (i.e displacement discontinuity) that
exists in reality. Each segment is a boundary clement
and represents an elemental displacement discontinuity
defined in the s, n directions as shown in Fi gure I, and
its components D, and D,

are defined as follow :
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Figurel: Representation of a crack by N elemental
displacement discontinuities.

The effects of a single displacement discontinuity
on the displacements and stresses at an arbitrary point
in the infinite plate can be computed. In particular, the
radial and tangential stresses at the midpoint of the ith
element can be expressed in terms of the displacement
discontinuity components at the jth element as follows:
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Where A etc, are the boundary influence
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coefficients for the stresses. The coefficient A, , for
example, gives the radial stress at the midpoint of the

ith element due to a constant unit tangential

displacement discontinuity (Ij),l =1) over the jth

element.

If we specify the values of the radial and tangential
1 i

stresses o, and o, for each element, we will have a

system of 2N linear equations in 2N unknowns,

namely the elemental displacement discontinuity

I 1
components Dyand D, .

After solving the above equations, we can find the
displacements and stresses at designated points in the
studied body by using the same principle. The
implementation of Fracture mechanics consists in the
determination of the strain energy release rate G. G is
compute in terms of strain and stress on the boundaries
of the cracked region. Considering the problem to be
2D and the material to be linear elastic. The surface
forces T, are imposed on the boundary of the cracked
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region £ and the displacements 1, are imposed on the
remaining part £2;.

T du,; dr.
- J v, S ar
CdA dA

The previous cxprcssu)n allows the computation
of G knowing the displacements and stresses on the
outer contours. In our applications, £2; will not exist
generally (£ =0). The DDM allows the determination
of the stresses and displacements on the boundary and
in every point of the structure.

When stresses are applied, Equation 3 can be
written as:

(3)

G =lj7; du g @.a)
2 dl

This expression is written in an incremental {orm,

where the displacements before and afier crack growth

of length dl are designated by ;' et u. The term

inside the integral cxprcssion 1s wrilten as:

T, du, (u — ,4,-]> “4.b)
then equation 4 is written as:
Gdl= JTi 42— Jar + JTi (b2 - b, Jar (5)

Q
Thus, the numerical computation of G is done by the
discretization of Equation (5). We obtain a sum of the

1 .
- i, ] on the contour £ and of the

products 1; (u ; : ;

products T, (1‘),-z - D,»l )on the crack.
3. The element free Galerkin Method

The element free Galerkin method (EFGM) is a
meshless method and is suitable for problems with
changing geometry such as crack propagation since it
does not require any meshing. The crack is simply
considered as a boundary extension. The numerical
procedure is quite similar to that of finite element
except that, in EFGM, least square interpolants are
used to approximate the dependant variables. These
interpolants use an influence domain to define the
connectivity between nodes.

For an arbitrary point x€ Q, we define a small
domain £, surounding this point with Q, C Q.
Considering a function 1u(x) where x=(x, y) defined on
the domain €. Thus for any given point x& Q,, the
function u(x) is approximated by :

nt

u(x)= 2 p; (0 a; ()=p' (x)a(x) (©)

whcru p; (x) are monomials in the space coordinates
=[x, y] and g; (x) are coefficients that are function of
a(x) are obtained by using the L-norm which
consists in minimizing the expression:
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where 7 is the number of points in the neighborhood of

x where the weight function w( x — x;) # 0, and 1, is
the nodal value of u# for x = x;. Equation (7) leads to
the following linear relations between a (x) et u;

A ax)=Bx)u (8)
where A(x) and B(x) are defined as :
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A(x) = Z w, () ph(x,)p(x ;) 9)

!
B(x)= [w‘(x)p(x]), Wy (X) p(Xq)ine, W, (X) p(x”)] (10)
by defining the shape functions as :
m
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J
1" (x) can be writen as :

W0 =Y g0, (12)
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In this work, the exponential weight function is
selected and is defined as:

crv(d, /(:)Zk _ C~((lm, //:):k (11 < dm[
)= e (13)
O, dl > dml

Finally, the problem is solved by a stiffeness
equation Ku = f where K and f are composed of
submatrices Ky (2% 2) and f; (2 x 1) given by:
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where D is the elastic matrix and
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Lif u, , is prescribedon I,
oy = pee _ (19)
* | 0if u,  is prescribedon T,

Fracture mechanics concepts are introduced by
defining the domain of the J integral near the crack tip.

4. Application to MEMS fracture

The two methods were used to  simulate
experiments conducted by Ballarini et al (1997) and
Suwito and Dunn.

Case study 1

The test setup of Ballarini et al (1997) is shown in
fig.2 and the numerical model in fig.3. The length x
which corresponds to the uncracked ligament has three
values 6, 10 and 20zan . A probe was used to open the
notch (the notch is considered as sharp crack in the
mathematical model) to cause fracture where the
prescribed displacement u=4um corresponds to the
probe wedge. Polycrystalline silicon was considered
1sotropic with a Young’s modulus and a Poisson’s ratio
respectively equal to 160 GPa and 0.22. In this
example, we considered the same assumptions as
Ballarini et al.

For the DDM, 300 elements were considered out
of which 150 were used for the crack discretization.
For the EFGM, 600 uniformly distributed nodes were
used. Figures 4.(a) and (b) show the variation of the
stress intensity factor in terms of the distance of the
probe tp from the crack tip. Both methods gave
perfectly concordant results with those obtained by
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Figure 2: Schematic of the Test setup
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Figure 3 : Half of the mathematical model
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Figure 4: Stress intensity factor vs. probe position for
comb distance equal 1o infinity, (a): DDM, (b): EFGM.

Case study 2

Suwito and Dunn (1997) studied the effect of
notch depth on a 3-point beam made of single crystal
silicon. They considered silicon to be anisotropic, as
such only EFGM was used. since our DDM
formulation was based on isotropic assumptions.

The specimen is shown in Fig. 5. The dimensions
of the specimen are L = 20 mm, b=1.5 mm, h=1.08
mm and a was equal to either 0.093mm, 0.147 mm,
0.164 mm or 0210 mm. For this example, 800
uniformly distributed nodes were used.  Results
obtained by using EFGM are compared to those
obtained by Suwito and Dunn in Table 1.
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Figure 5: 3 point flexure beam used by Suwito (notch
angle = 70.53°).

Table 1: Stress intensity factor of 70.53" notched beams
with four different notch depths.

K, (MPa-m’®)
a=0.093mm a=0.14Tmm
o, =86.19 MPa o, =61.90 MPa
Suwito 0.81 0.73
EFGM 0.68 0.69
K, (MPa-m"")
a=0.164mm a=0210mm
o, =61.15 MPa o, =52.60 MPa
Suwito 0.76 0.74
EFGM 0.65 0.67

5. Conclusion

Non-conventional boundary clement and finite
element methods were  successfully used, with
different degrees of success, for the simulation of
silicon MEMS fracture experiments  with  the
assumption of the applicability of linear elastic fracture
mechanics (LEFM). Further simulations need to be

carried before assessing the reliability of these
methods.
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