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Abstract
The methodology for the integration of design domains
towards  the  purpose of  controlling  dynamic

mechatronics systems is the current challenge of the
modern  engineer. Scaling issues for both the
mechanical and electrical parameters are critical to the
successful design and implementation of a mechatronic
system. In approaching the scaling design methodology

Jor future submicron fubrication, new disciplines of

symbolic matrix techniques and dimensional analysis
must be developed and applied in the design of these
mechatronics systems. This paper presents both an
overview of the techniques and insight using computer
aided design packages for the blending of symbolic
matrix techniques using the admittance matrix created
by  SPICE  and  dimensional  analysis  using
Buckingham's Il parameters.

1. Introduction

The boundaries of traditional engineering disciplines
have been blended by the new age of integrated circuit
fabrication techniques, which have even imposed a new
concept of sensors and actuators, known as
Microelectromechanical Devices (MEMs). Looking at
one of today's products, the MEMs accelerometer which
is used in automotive airbags, represents the integration
of interdependent clectrical and mechanical components.
Likewise, the term, "Mechatronics”, has been coined for
the field of study involving the analysis, design,
synthesis and selection of MEM systems, which combine
both electronic and mechanical components with modern
controls and embedded microprocessors. An important
aspect of the mechatronic design methodology and
philosophy considers the applicability of dimensional
analysis on both the electrical and mechanical
components to achieve performance stabilization. The
mechatronics system matrix form, can be solved by
direct application of determinant theory and tensor
methods; further reduction of the mechatronics system
matrix can be obtained through matrix algebra.
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2. Dimensional
Theorem)

Analysis  (Buckingham ‘s

Dimensional analysis[1,3] provides the key to insight for
telling us how the numerical value of a quantity changes
when the basic units of measurement are subjected to
prescribed changes. It has its beginnings with Maxwell
(1871), the Scottish physicist who used symbols of the
type [F], [M], [L], [T], [¢ ] to denote force, mass, length,
time, and temperature, respectively. The dimensions of
these physical quantities can be manipulated algebraically
and the results can be interpreted to provide information
about the physical processes involved in the scaling
process. The fundamental theorem of dimensional
analysis 1s: If an equation is dimensionally homogenous ii
can be reduced to a relationship among a complete set of
dimensionless products of the system variables, or also
know as Buckingham's Theorem. The dimensionless
products are called IT terms. These terms do not depend
on the fundamental units of measurement. The set of
dimensionless products is complete when each product is
independent and any other dimensionless product that can
be formed from the variables is a product of the pi terms
in the set. This proposes the following questions of: How
many dimensionless products form a complete set? How
arc the dimensionless products formed? These questions
will be answered by looking at the following two
examples (Sections 2.1 & 2.2 & Appendix A).

2.1 Microfluidic Scaling Example[3,7]

To give some insight to dimensionless products, lets
consider a microfluidic example[7]. The first step is to list

all the variables that are involved in the phenomenon.
Suppose the drag force, F, on a smooth body, in a stream

of incompressible fluid with a relative velocity, v, body
diameter, D, mass density of fluid, p ., and viscosity of

fluid, v, is to be found. So, we have the variables F, v, D,
P, v . The dimensionless term will have the form:

T = Futh(‘p(/vU (l)



where the literal constants a to e must be determined.
Since 7 is dimensionless, then:

a+d+e=0 @
a+b+c-3d—-e=0-2a-b—-e=0

This set of equations must be solved. Any solution of

these equations will result in a dimensionless IT term.
From matrix algebra, the number of independent
solutions of a set of simultaneous equations equals the
number of variables for the equation set minus the rank
of the coefficient matrix. The coefficient matrix
becomes: (It is the array of numbers which multiply the
variables a, b, ¢, d and e.)

1 0 0 1 I

| 11 =3 -1
-2 -1 0 0 -1
The rank of a matrix is defined as the order of the largest
non-zero determinant that can be constructed from the
rows and columns of the matrix. For the dimension
matrix of this example, one of the 10 possible 3x3
determinants is

c]- (3)

0 0 1
1 I -1
-1 0 -1
Therefore, the rank of the matrix is 3. Applying the rule
stated above: The number of independent solutions
equals the number of system variables, 5, minus the rank
of the dimension matrix, 3. This gives two [T terms.
The other three are expressed in terms of the other two,
which are called excess variables.

(4

a=-d-e
b=-2a-e=2d +2¢e—-e=2d+e (5)
c=3d+e—-a-b=2d+e

Values can be chosen for d and a to solve for @, b and c.
It makes it simple to choose d=/ and e=0, resulting in
a=-1, b=2, and ¢=2; then choose d=0 and e=1, a=1,
b=1, and c=/. These two sets of values can now be
substituted back, resulting in two independent IT terms.

:FAlVZsz]
:lev]Dlp]

It is possible to obtain valid IT terms from algebraic
manipulation of Eqn. 6, as shown in Eqn. 7.

(6)

w,  vD,
r,=—t= =P (7)
T, v
Eqn. 7 is actually the familiar Reynolds number. Any
two of these three [T terms is a complete set. 77, could

be selected for calculation of the drag force as a function
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of the object’s diameter, velocity, and liquid density. 7,

could determine the conditions at which nonlinear flow
past the object would exist.

2.2 Electrical Circuit Scaling Example[3,7]

It is necessary to determine how the instantanecous
current of a series LC circuit is influenced by the
voltage, inductance, and capacitance. The coefficient
matrix is:

Variable C L E i t
ke -1 1 10 0

m -2 2 0 0

) 4 -2 =3 0 ]

A 2 -2 -1 1 0

Table 1: Coefficient Matrix for LC Circuit

Columns 3, 4 and 5 of rows 1,3 and 4 form a non-zero
determinant. The rank of the matrix is three and the
number of IT terms is two. Choosing « and b as the
excess variables, then ¢, d, and ¢ become:

c=+a-b
d =-a+b (8)
e=-a-b

The solution matrix becomes:

Variable C L E I} !
T 1 o -1 -1 -1
T, o 1 -1 I =1
Table 2: Solution Matrix for LC Circuit
Li
Then 7, =CE T, = and  likewise

= [ n, fC (_) This gives the maximum

current I, as a sca ab e, and is similar to the results
obtained form the conservation-of-energy principle,
where I=v /%. Or, another term is generated if

= 1 = __l___.,7 where classically, the
Jmom, \ze

]

LC
to the results obtained by classical network analysis[5].

angular frequency @, is known to be . Identical

2.3 Nonlinear Polynomial Device -Tunnel Diode

The tunnel diode is a transconductance two-terminal, pn
junction device that has a negative resistance region in
its current versus voltage characteristic. We have seen



that dimensional analysis allows us to express
mathematical equations in the form of dimensionless
parameters, but what happens in the case where a
physical phenomena is not described by exact
mathematical equations? Take for instance, the
characterization of the tunnel diode, which for a SPICE
simulation (GTD POLY (1)} is described by the
following polynomial expression:
I(V)= -3.95510115972848E-17
+1.80727308405845E- 01*C*V
-2.93646217292003E+00%C*VA2
+4.12669748472374E+01%VA3
-6.09649516869413E+02%VA4

+6.08207899870511E+03*VA5
-3.73459336478768E+04*VAG

+1.44146702315112E+05%VA7
-3.53021176453665E+05*VA8
+5.34093436084762E+05%VA9
-4.56234076434067E+05%*VALQ
+1.68527934888894E+05%VAll

Experimentally, the tunnel diode polynomial expression
may be adjusted, by the use of MAPLE, with the
insertion of the parameter C. As shown in Fig. I, just
the variation of C from .99 to 1.01, results in significant
variations in the transconductance model of the tunnel
diode.

(9)
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Figure 1: Tunnel Diode V-I Characteristics

2.4 Two-Port Device: Admittance Matrix

The majority of active devices, such as CMOS, BIT &
BiCMOS amplifiers, may be classified as two-port
networks. This means that the functions of the network
are expressed in terms of an input voltage and current.

The matrix equation, in terms of admittances
(Y; 1,YD,Y2;,Y22) [4J, is shown in Eqn. 10.
i YuYv (Vi
= (10)
Lo YaYa ||V,

2.4.1 TOTAL-SPICE CAD Package [2,8]

The TOTAL-SPICE CAD package allows matrix input,
block diagram manipulation and state-space analysis,
digital and continuous time response, root locus, digital
and  continuous  frequency response, polynomial
operations, matrix operations, digital and continuous
transformation, and SPICE simulation. The TOTAL-
SPICE CAD package can easily create the admittance
matrix, as is shown by analyzing the circuit in Fig. 2.

S ohm«

33 ohms 28 ohm s .S abhm«

Figure 2: Node Locations for TOTAL-SPICE
Simulation

The node equations for Fig. 2 are the following:

5V1 -2V2 = 3
2vp YTy -vy = 22 (11)
—V2+3V3 = 2

The results of inputting Fig. 2 into TOTAL-SPICE are
shown in Fig. 3.

***TOTAL-SPICE V1.3 AUG 98%*%
.OPTION GNUPLT MATRIX
I1 0 1 DC 3a
R1 1 .3330HM
R2 1 . 50HM
R3 2 . 250HM
R4 2 10HM
12 2 DC 2A
R5 3 0 .50HM
.PRINT DC V(1)
.END
NODE v NODE v
(1) 0.5905 (2) -0.0228 (3) 0.6591
TOTAL POWER DISSIPATION 3.14E+00 WATTS

W woNno

NODE \

Figure 3: TOTAL-SPICE Results

TOTAL-SPICE generates the following equations,
which can be directly loaded (by the read command)
into MAPLE [5] as shown in Table 3.

NODET :=5.0030 VI - 2.0000 V2 = 3.0000
NODE2 :=-2.0000 V1 + 7.0000 V2 - 1.0000 V3 = -2.0000
NODE3 :=-1.0000 V2 + 3.6000 V3 = 2.0000

{V2=-02284805814, V1 = .5905064729, V3 =
6590506473}
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Table 3: Maple Results for Electric Circuit




2.4.2 CMOS Op Amp

Vpp = +5V

Vh'ul

. 3
of| M, My
1

Vlim

qu = —5V
Figure 4: Folded-Cascoded CMOS Op Amp(6]

Fig. 4 shows the folded-cascoded CMOS op-amp used as
an example for the generation of the DC Admittance
matrix. Table 4 shows the solutions to the node
equations as resolved by Maple.

>read "C/TOTAL/MAPLE/MSPICE;

Node 1 thru Node 3
NODE4 := 66667e-1%12+1.0000%V4-.13866e-11%V8-.13866¢-11 *19.

13866¢-11%V14-13333e-1%V15-.13866¢-11*V17-.13866¢-11*V26-
13333¢-1%127-13866¢-11*V28-.13866¢-11*V30-.13866e-11 *3]-
138660-11%V32-.13333¢-1%V33-.13866e-11%V34-.13866e-11*V39 =
78088e-28

Node 5 thru Node 46

NODE47 -= -.66667¢-1%V23-.66667e-1*V24+.13333%V47 = -
85710e-3

>Solve(!NODE1,NODE2 ... NODE47Y,{V1,V2 ... V47});

(V27 =-4778260375e-2, V34 =-507.4483342, VI = 0,V2=0,V3=
0, V6 =0, V20 =-1.450452740, V43 = -42401.88653, V44 =
2485.406139, VI8 =-.7157805469¢-1, V46 = -873.4345368, V'5 = -
1025309055, V22 =-38.15711826, VI3 = 4040.875976, V14 = -
2651.483586, .....}

Table 4: Maple Results for CMOS Op Amp

3. Conclusion

Dimensional Analysis was applied to both an electrical
circuit and a microfluidic device. The dimensioniess
products were determined, and identified to classical
similar results, indicating the effectiveness
Buckingham parameters in the scaling of mechatronic
devices. In submicron fabrication of mechatronic MEM
devices, the material parameters depend on the electric
and magnetic fields, where the Maxwell’s equations

of
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become nonlinear, and dimensional analysis may
become a valuable tool. This is similar to the situation in
the nonlinear fluid dynamics example, where the
Reynolds number plays a significant part, and is an
actual [T parameter. For more complex circuits, the
admittance matrix from the TOTAL-SPICE simulator
essentially reduces the circuit to a set of equations which
are then read into Maple, in symbolic form. The
symbolic matrix form, can be solved by direct
application of determinant theory and tensor methods, or
further reduced by matrix algebra. Since the system
topology is viewed as a form of transfer functions,
parametric algebraic solutions within the frequency
domain, can be generated in the form of Buckingham T
parameters. Finally, if solutions in the time domain, such
as transients, are desired, the matrix approach based
upon the use of state variables can be employed.
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Appendix A : Symbols, Dimensional

Formula and Units [3]
Quantity, Symbol _Dimensional Formula

Kinematic Quantities

Time Interval, t T}
Velocity, v LT
Quantities in Mechanics
Mass, m [M]
Force, F [MLT?|
Density, O (ML
Viscosity, V (LT
Electrical Quantities
Charge, Q [Ql
Current, | QT
Voltage, V ML*T2Q)
Electric Field, E [MLT?Q]
Resistance, R ML T'Q?
Capacitance, C M1
Inductance, L [ML’Q?
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