Formal Verification of Tree-Structured Carry-Lookahead Adders

Sae Hwan Kim Shiu-Kai Chin
Department of Electrical Engineering Department of Electrical Engineering
and Computer Science and Computer Science
Syracuse University, Syracuse, NY 13244 Syracuse University, Syracuse, NY 13244
sakim@syr.edu skchin@syr.edu
Abstract I T
P G
NeT ¢
Quad trees - trees with four branches, are used to ab- . Cany Lookahead Generator (FIR2)
. ntd Cne2 ntl
stractly describe tree-structured carry-lookahead adders ‘ €
using 4-bit components. The specification and imple- " Gm " (2‘) i J i
mentation descriptions are parameterized and describe R L N L I S 4.bi¢cu:m
tree-structured adders having arbitrarily large inputs colel? cot2l o852 el
and outputs. The descriptions are formally verified us- n2~:1i:b[z/.tlsaﬁz/~q|5 ﬂj;l hin ?i:n (i; hﬁ; j; m*g w/}:a ai.s

ing the HOL theorem prover.
Figure 1. A 16-Bit Carry-Lookahead Adder

1. Introduction

cin

The structure of the adder in Figure 1 1s a quad tree.

Carry-lookahead adders are widely used due to their
superior performance over ripple adders. The expres-
sive power of higher-order logic makes it possible to
define a wide variety of data types and to prove theo-
rems that concisely and abstractly state the properties 3. Tree-Structured Adders
of these types.

Implementations and specifications are described
parametrically using higher-order logic and types.
These parametric descriptions are proved correct once

quad tree.

The carry-lookahead generator is the node of the quad
tree. Each 4-bit carry-lookahead adder is a leaf of the

3.1. Bescribing Implementations Using Quad Trees

and subsequently are specialized to specific values, e.g., Quad trees belong to the recursive type qtree de-
to specific word lengths. scribed informally by:
Carry-lookahead adders are explained in Section 2.
The quad tree type ¢tree is defined in Section 3. Using gtree ::= LEAF | NODE gtree gtree glree glree
gtree, a parameterized implementation description of
tree-structured carry-lookahead adders is defined. Its Quad trees are either a LEAF or a NODE connected to
correctness is stated in Section 4. The conclusions are four other girees.
in Section 5. Tree-structured adders using 4-bit carry-loockahead
circuits are described abstractly using quad trees. Each
2. Carry-Lookahead Adders NODE corresponds to a carry-lookahead generator. Each
LEAF corresponds to a 4-bit carry-lookahead adder. For
Carry-lookahead adder (CLA) circuits are con- example, the 40-bit adder in Figure 2 is described by:
structed using carry-lookahead adders and carry-
lookahead generators (CLG). Figure 1 shows a 16-bit NODE (NODE LEAF LEAF LEAF (NODE
adder as an example. Each 4-bit CLA produces a 4-bit LEAF LEAF LEAF LEAF)) LEAF LEAF
slice of the sum. The CLG generates the carry inputs LEAF

for the three most significant carry-lookahead adders.
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Figure 2. 40-Bit Tree-Structured Adder

3.2. Hierarchical Hardware Descriptions

The abstract quad tree structural descriptions are
converted into hierarchical hardware descriptions with
input and output signals, 4-bit carry-lookahead adders
cladb_imp, and carry-lookahead generators CLG, by
the predicate tree_cla_imp. The arguments of
tree_cla_imp are a quad tree t, carry input cin, adder
inputs a and b, output f, carry output co, and carry
generate and propagate signals G and P.

In the base case, the quad tree argument ¢ is LEAF.
tree_cla_imp describes a 4-bit carry-lookahead adder,
cladb_imp:

Ycina b f co G P.
tree_cla_imp LEAF cin a b f co G P =

Fdef

(HaO al a2 a3 b0 bl b2 b3 £f0 f1 £2 £3.
(a = WORD [a3; a2; al; a0]) A
(b = WORD [b3; b2; bil; b0l) A
(f = WORD [€3; £2; f1; £01) A

cladb_imp cin a0 al a2 a3 b0 bl b2 b3
£0 f1 £2 £3 co G P)

For the recursive case where the quad tree argu-
ment tis of the form NODE t3 t2 t1 t0, tree_cla_imp
connects four subtrees t3, t2, t1, and t0 together us-
ing carry-lookahead generator CLG. Subtree input and
output words a3, a2, al, a0, and b3, b2, bl, b0 are
concatenated together using WCAT to form the input
and output words a and b of the whole adder. The
output fis obtained by concatenating subtree outputs
£3, f2, f1, and f0. The detailed structure of subtrees
t3, t2, t1, and t0 is obtained by recursively applying
tree_cla_imp to each subtree.

Faer VE3 t2 t1 €0 cinabf co GP.

treecla imp (NODE t3 t2 t1 t0) cinab f co G P =

(Ja0 a1 a2 a3 bO bl b2 b3 fO £f1 f2 £3 cind cin8
cinl? cod4 co8 coi2 GO PO G1 Pi G2 P2 G3 P3.
(a = WCAT (a3,WCAT (22,WCAT (a1,a0)))) A
(b = WCAT (b3,HCAT (b2,WCAT (b1,b0)))) A
(f = WCAT (£3,WCAT (£2,WCAT (£1,£0)))) A

nun
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cin a0 b0 fO co4 GO PO A

cin4 al bl f1 co8 G1 P1 A

treecla_imp t2 cin8 a2 b2 f2 col2 G2 P2 A

tree.cla_imp t3 cini2 a3 b3 £3 co G3 P3 A

CLG cin GO PO Gi P1 G2 P2 G3 P3 cin4 cin& c¢inl2
G P)

treecla.imp tO
tree.claimp ti

4. Correctness

Informally, the behavioral specification is the sum
of the values of the inputs cin, a, and b equals the
value of the outputs fand co summed together. This is
formally specified by add_spec where BNVAL, BV, EXP,
and WORDLEN denote the binary word value, bit value,
exponent, and word length functions, respectively.

Vcin a b f co.
add.spec cin a b f co =
BEVAL a + BEVAL b + BV cin =
BEVAL f + BV co * 2 EXP WORDLEN £

Faes

The correctness of tree_cla_ imp with rtespect to
add_spec is proved in [2] using the HOL theorem prover
[1]. The following correctness theorem states that the
behavior of tree_cla_imp is completely contained by
add_spec.

F Vtcinabf coGP.
treeclaimp t cinab f co GP D
add_spec cin a b f co

5. Conclusions

Many hardware devices are built using tree-shaped
structures. The approach outlined here, using pa-
rameterization and tree data types for abstract struc-
tural descriptions, should be applicable beyond carry-
lookahead adders. The advantage of using abstract
structural descriptions is the support of hierarchical
descriptions that ease the verification of implementa-
tions with respect to purely behavioral specifications.
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