Reducing BDD Size by Exploiting Structural Connectivity

Ronnie L. Wright
wrightr6 @egr.msu.edu

Michael A. Shanblatt
mas @egr.msu.edu

Department of Electrical and Computer Engineering
Michigan State University
East Lansing, MI 48824-1027

Abstract

Computer-aided design tools have been limited by the
use of the Binary Decision Diagram (BDD). The major
drawback of the BDD is its abundant usage of CPU time
and memory. Techniques such as BDD variable ordering
and sharing have been used in the past to address the size
issue. However, these techniques remain to be limited to
modest-sized circuits. In this paper, we present a signifi-
cant variation to the conventional BDD, the Connective Bi-
nary Decision Diagram (CBDD). The CBDD addresses the
size issue concerning conventional BDD implementations
by employing the use of minimized-scalable binary decision
diagrams (MSBDDs) combined with the structural connec-
tivy present in the circuit’s netlist. The experimental results
section will demonstrate that the proposed method reduces
the BDD size by more than two orders of magnitude for
large circuits.

1 Introduction

Low power consumption has emerged as a key design
parameter for digital VLSI systems. The trend has been
to develop methodologies and techniques which maintain
a circuit’s throughput and area constraints while achiev-
ing some desired level of power efficiency. The power
efficiency revolution was initiated by the introduction of
high-throughput portable electronic devices, such as laptop
computers, portable televisions, camcorders, and wireless
communications systems. Thus, power analysis and opti-
mization have become important tasks to be addressed by
computer-aided design tools.

Probability-based power analysis tools depend heavily
on BDDs to determine signal activity, while historic uses of
BDDs have been in the digital circuit design areas of syn-
thesis, verification, and testing. The BDD is not a new con-
cept. As early as 1959, Lee in [6] introduced the concept
of Binary Decision Programs and a set of rules to trans-

0-7695-0104-4/99 $10.00 © 1999 IEEE

form these programs into switching circuits. Later, in 1978,
Akers in [1], revisited the concept of BDDs by using the
diagram as a means to define, analyze, and test large digital
functions from and implementation-free perspective. It was
in 1986, that Bryant in [4], demonstrated the advantages of
BDDs as a canonical representation. Bryant demonstrated
that BDDs have two very useful properties. First, BDDs
are canonical: given the BDDs for two circuits, the two cir-
cuits are equivalent in behavior if the BDDs are identical.
Second, BDDs are effective at representing combinatorially
large sets, which is useful in FSM equivalence checking and
logic minimization.

2 BDD Overview and Background

BDDs represent a switching function as a directed
acyclic graph (DAG). A graph will fundamentally consist
of an interconnection of nodes (vertices) and edges (arcs).
There are two node types: decision nodes or terminal nodes.
Terminal nodes are characterized by not having outgoing
edges which lead to children nodes, and contain fixed val-
ues which possibly correspond to the output of a function.
Decision nodes are characterized by having outgoing edges
which lead to other decision nodes or terminal nodes. The
decision node is labeled with a variable identifier and has
one outgoing edge for each value this variable can assume.

Since Boolean decisions are being made, the decision
node variable identifiers can only assume the values of 0
and 1. The terminal node values will be fixed at either 0
or 1, and the possibilities for edges will be either the 0 —
edge or 1 — edge. The 0 — edge will be chosen when the
decision node variable assumes the value 0, and the 1 —edge
is chosen when the decision node variable takes on the value
1. Figure 1 provides an example BDD. Typically in BDD
graph representations dotted arcs represent the 0 — edges,
while the solid arcs represent 1 — edges.

The BDD size is directly related to the number of nodes
in the BDD’s graph, which is controlled by the number of
input variables and their ordering. One such BDD type,

oRoRol

Figure 1. BDD example.

the ordered binary decision diagram (OBDD), addresses the
BDD size issue by considering input variable ordering. The
ordering of input variables determines the level at which
each input will appear in the BDD’s graph. In the OBDD
the ordering will remain the same for each path taken from
the root (lowest order) node to a terminal node. Different
input variable orderings lead to different BDDs, with each
potentially having a different size. Consider the switching
function given by Equation 1. An input variable ordering of
a < b < ¢ < d leads to the BDD displayed in Figure 2.
While an input variable ordering of b < ¢ < a <d leads to
the BDD representation displayed in Figure 3.

fla,b,c) = abc + bd + ¢d %))

Figure 2. BDD with
ordering 1.

Figure 3. BDD with
ordering 2.

Clearly the second ordering provides the more compact
BDD representation, it has smaller node count. Hence,
a good input variable ordering will yield a more compact
BDD representation with reasonable memory usage [5].

A modification to the OBDD is the reduced-ordered
BEDD (ROBDD). In the ROBDD an initial ordering is given
and the iterative identification and removal of isomorphic
subgraphs and redundant nodes takes place. The removal
results in a BDD which is minimal for the given input vari-
able ordering, and canonical in form.

Once such ROBDD implementation was developed by
Brace, et al. [3]. This ROBDD implementation made im-

133

provements in the if_then_else (ITE) operator, hashing tech-
nique, and memory garbage collection. The results reported
that an amortized cost of 22 bytes per node was achieved.
Additionally, it was reported that the improvements yielded
a faster, more memory-efficient ROBDD implementation
than the original implementation presented in [4].

Shen, et al. [7], proposed a data structure called the Free
Boolean Diagram (FBD), which improved the ROBDD rep-
resentation by trading off canonicity. One distinction be-
tween the ROBDD and the FBD is that the FBD allows dif-
ferent input variable orderings along different paths from
the root node to a terminal node. Additionally, the nodes
in the graph of the FBD may be of type function, which is
further discussed in [7}. The main contribution of the Shen
work was the development of a probabilistic algorithm that
was based on the work of Blum, et al. [2]. It was reported
that the FBD implementation resulted in an amortized mem-
ory cost of 32 bytes per node, and for certain cases the FBD
size was significantly reduced.

3 The Connective BDD

The Connective BDD (CBDD) is a directed acyclic
graph (DAG), a collection of nodes and edges. An ad-
vantage is its ability to maintain the circuit’s structural
input/output relationships and internal connectivity. The
CBDD can be viewed as an interconnection of MSBDD:s.
The definition of the CBDD is somewhat based on the def-
initions of a DAG and conventional BDD. Structural and
connective relationships are achieved by altering the defi-
nition of the conventional BDD to support additional node
(vertex) and edge (arc) types and properties. A formal defi-
nition of the Connective BDD is given below.

Definition: A Connective Binary Decision Diagram
(CBDD) is a directed acyclic graph which is composed of a
MSBDD set M, vertex set V and edge set E.

1. Vv € V may be of type:
1.1. Input
1.1.1. proceeded by children via 0— and 1— edges
1.1.2. assumes variable primary input value
1.1.3. wvalue(v) € {0,1}

1.2. Internal
1.2.1. proceeded by children via 0—, 1— and v—
edges
1.2.2. assumes variable internal output value
1.2.3. walue(v) € {0,1}
1.3. Terminal
1.3.1. value termination for internal and output
nodes

1.3.2. proceeded by children via v — edges
1.3.3. value is fixed, value(v) € {0,1}

1.4. Output
1.4.1. absolute termination, not proceeded by chil-
dren
1.4.2. assumes variable primary output value

1.4.3. value is fixed, value(v) € {0,1}

2. Ve € E may be of type:
2.1. 0—edge (1 — edge)
2.1.1. traversed when value(v) = 0(1)
2.1.2. outgoing to input, internal, and terminal ver-
tices
2.2. v —edge
2.2.1. propagates value(v) to internal or output
vertices
2.2.2. incoming only to terminal vertices
3. MSBDD set M elements:
3.1. represent minimized-scalable ROBDDs for spec-
ified logic elements
32. Vme M,vertex(m) eV
3.3. ROBDD terminals are connected to internal or
output nodes via v — edges
3.4. V ROBDD:s represent a function on vertex v, f,
35. fo = %i fioww) t Ti * frigh(v) Where z; is a

decision variable

A few differences exist between the conventional BDD im-
plementation and the CBDD. The Internal and Input nodes
of the CBDD are basically decision nodes in terms of the
conventional BDD. The concept of a Qutput node is new,
it represents absolute termination. Terminal nodes differ in
the fact that they only represent intermediate termination for
internal or output nodes. Terminal nodes still carry a con-
stant value of 0 or 1, but are proceeded by an outgoing edge,
the v — edge. There is the addition of the v — edge, which is
used to propagate the value of incoming vertex v to internal
or output vertices. :

In spite of the differences between the conventional BDD
implementation and the CBDD there exist very positive
benefits when using the CBDD. First, the CBDD is not af-
fected by variable input ordering, because the internal func-
tional units of a circuit can be mapped to predefined MS-
BDDs, which are already minimal in size. Second, CBDD
size or number of nodes is directly related to the number of
functional units present in the circuit, so exponential growth
will not occur. Third, CBDDs do not contain redundant be-
havior which is caused by the placement of an input variable
and its potential binomial legacies/generation at each level
in the BDD’s graph. This is replaced by internal nodes and
v — edges which increase the sparseness of the CBDD’s
graph and better represents the structure. Fourth, CBDDs
maintain the structural and connective relationships present
in the actual circuit, preserving structural correlations, and
allowing more accurate estimates of switching activity and
power.

134

The drawbacks of the CBDD include loss of canonicity,
however, equivalence of two circuits can be determined by
manipulating their CBDDs. Additionally, CBDDs do not
have a single input path from the root to a terminal node,
like conventional BDDs. This is not good because several
paths must be considered when determining a primary out-
put’s value. The positive side of this drawback is that CB-
DDs are more compact, represented by far fewer nodes and
edges than conventional CBDDs, thus traversing of addi-
tional paths in the CBDD may not be that costly. Lastly,
CBDD:s are very compact for large circuits, but may give a
larger than normal or poor representation for small circuits.

4 Implementation

The CBDD implementation reads a BLIF netlist file as
input. The basic logic gates such as N/AND, N/OR, XOR,
and NOT, when encountered during the input phase, are
converted to minimized-scalable BDDs (MSBDDs). These
MSBDDs represent the most reduced BDDs, in terms of to-
tal node count, for the given functional unit (gate) and size.

(a) f(ab) = NAND(a,b) (b) f(a,b) = NOR(a,b)

(d) Ka)=NOT(a)

(¢} f(a,b) = XOR(a,b)

Figure 4. Minimized-scalable BDDs.

Figure 4 displays a small selection of the minimized-
scalable BDDs. Once the MSBDDs are generated, their
outputs are connected to the input nodes of other MSBDD
variables according to the structural properties found within
the netlist. The circuit diagram displayed in Figure 5 is rep-
resented as a CBDD in Figure 6.

x1
—J Den
DY B —— b

x4

Figure 5. Circuit diagram example.

Figure 6. Connective BDD example.

5 Experimental Results

The ISCAS85 benchmark circuits were chosen for the
experiment. The results after applying the CBDD imple-
mentation to the benchmark circuits are summarized in Ta-
ble 1. Additionally, as a means of comparison, Table 1
provides the results of implementations used by Brace and
Shen in [3, 7] for the same benchmarks. The main entity
used in comparing the BDD implementations was the BDD
node count. The BDD node count is used as a measure of
performance for both CPU and memory utilization. For al-
most every circuit, a significant savings in the BDD node
count was observed. This savings was due to sharing of in-
termediate internal MSBDD node outputs, which were used
as subsequent MSBDD inputs at deeper levels within the
circuit structure. The small size of the CBDD is due to the
fact that CBDDs grow with respect to the number of func-
tional units present in the circuit’s structure, not the number
of inputs.

Circuit | #In | #Out | ROBDD [3] | FBD [7] | CBDD
#Nodes | #Nodes | #Nodes

c432 | 36 7 30200 31195 2017
c499 | 41 32 49786 33214 2899
c880 | 60 26 7655 7761 4276
c1355 | 41 32 39858 33214 6411
¢1908 | 33 25 12463 12734 9387
¢2670 | 233 140 Unable 57767 12886
¢3540 | 50 22 208947 88652 17874
c5315 | 178 123 32193 26129 | 26078
c6288 | 32 32 Unable | 115607 | 29361
c7552 | 207 108 Unable 19187 | 37774

Table 1. Benchmark Results.

6 Conclusion

This paper has described the Connective BDD (CBDD)
which was defined as a DAG interconnection of Minimized-
Scalable BDDs. CBDD’s are very economical in represent-
ing large circuits and maintain the circuit’s structural and
connective relationships. CBDDs represent circuits with far
fewer nodes than previous BDD implementations. CBDDs
have a few drawbacks including loss of canonicity, multiple
paths from the root to terminal nodes, and poor represen-
tation of small circuits. The main advantage of the CBDD
is that it does not suffer from exponential growth, when the
number of inputs and logical interconnections grow.

References

[11 S. B. Akers. Binary Decision Diagrams. IEEE Transactions
on Computers, ¢-27(6):509-516, June 1978.

{21 M. Blum, A. K. Chandra, and M. N. Wegman. Equivalence
of Free Boolean Graphs Can Be Decided Probabilistically in
Polynomial Time. Information Processing Letters, 10(2):80-
82, March 1980.

[3] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Im-

plementation of a BDD Package. In Proceedings of the

27th ACM/IEEE Design Automation Conference, pages 40~

45, June 1990.

R. E. Bryant. Graph-Based Algorithms for Boolean Function

Manipulation. IEEE Transactions on Computers, ¢-35:677-

691, August 1986.

{5] R. E. Bryant. Binary Decision Diagrams and Beyond:
Enabling Technologies for Formal Verification. Inferna-
tional Conference on Computer-Aided Design, pages 236~
243, November 1995.

[6] C. Y. Lee. Representation of Switching Circuits by Binary-
Decision Programs. Bell System Technology J, 38:985-999,
July 1959.

[7] A. Shen, S. Devadas, and A. Ghosh. Probabilistic Manipu-
lation of Boolean Functions Using Free Boolean Diagrams.
IEEE Transactions on Computer-Aided Design, 14(1):87-95,
January 1995.

[4]

135

	Main Page
	GLSVLSI99
	Front Matter
	Table of Contents
	Author Index

