Efficient Algorithms for Finding Highly Acceptable Designs Based on
Module-Ultility Selections *

Chantana Chantrapornchai

Edwin H.-M. Sha

Xiaobo (Sharon) Hu

Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN 46556
email: {cchantra, esha, shu}@cse.nd.edu
Phone number: (219) 631-8803
Fax number: (219) 631-9260

Abstract

In this paper, we present an iterative framework to solve mod-
ule selection problem under resource, latency, and power con-
straints. The framework associates a utility measure with each
module. This measurement reflects the usefulness of the module
for a given a design goal. Using modules with high utility values
will result in superior designs. We propose a heuristic which iter-
atively perturbs module utility values until they lead to good mod-
ule selections. Our experiments show that the module selections
Sformed by combinations of modules with high utility values are
superior solutions. Further, by keeping modules with high utility
values, the module exploration space can drastically be reduced.

1 Introduction

Module selection in high-level synthesis is a complex problem
due to its interaction with the scheduling and binding processes.
Most existing high-level synthesis tools assume there is only one
resource type of each functional unit during the scheduling phase.
However, in some cases, functional units with the same function-
ality may use different modules to implement. This assumption
can lead to an incomplete characterization of design space. There-
fore, to ensure the fully design space exploration, module selection
process needs to be integrated into the high-level synthesis tools.

In this paper, we present an efficient module selection frame-
work which takes the effect of scheduling into account for a con-
strained environment. The success of the approach lies on the
use of the module utility and inclusion scheduling. We called the
approach utility selection. Moreover, we allow the constraint to
be modeled as a fuzzy constraint, namely acceptability function,
which takes arguments as design attributes. In return, the accept-
ability value describes how good the given design characteristics
are. Such a proposed model can express a design objective, trade-
off between conflicting design criteria, as well as hard (fixed) or
soft (fuzzy) constraint boundary.

Many researchers have been studying scheduling, binding and

*This work was supported in part the NSF under grant number MIP
95-01006, MIP-9612298 and MIP-9701416.

0-7695-0104-4/99 $10.00 © 1999 IEEE

module selection problems. Torbey and Knight proposed a method
which used a genetic algorithm to solve the scheduling and stor-
age optimization problems [7]. However, their method excludes
the fact that functional units with the same function may be im-
plemented by different modules. Ahmad et.al. also used a genetic
algorithm to solve the integrated problem of scheduling, binding,
and module selection [1]: Their formulation, nonetheless, does
not include fuzzy constraints. Ishikawa and De Micheli proposed
a heuristic to find a module selection under latency and area con-
straints [4]. Their approach is neither applicable under fuzzy envi-
ronment nor easily expandable to consider other criteria. Several
works presented heuristics to completely characterize the design
space [6, 3]. However, for a large application and module set,
exploring all designs are still an expensive approach.

2 Models and Problem Descriptions

Operations and their dependencies in an application are mod-
eled by a vertex-weighted directed acyclic graph, called a Data
Flow Graph, G = (V,E, B), where each vertex in the vertex set
V corresponds to an operation and E is the set of edges repre-
senting data flow between two vertices. Function 3 defines the
type of operation for node v € V. Operations in a data flow
graph can be mapped to different functional units which in turn
can be implemented by different modules. Such a system must
also satisfy certain design constraints, for instance, power and
cost limitation. These specifications are characterized by a tu-
ple S = (N,F, M, A, Q), where N is the number of functional
units allowed in the system, F = {f; : Vi € [1,N]} is the
set of functional units allowed in the system, e.g., {add, mul}.
M = {My, IVf € F,Vi € [1,N]}, where each M, contains
a set of eligible modules for functional unit fi, e.g., M¢, =
{ripple_adder, carry-look-ahead_adder}. A is a function map-
ping from My, € M to a set of tuples (aj,... ,ax), where a;
to ax represent attributes of a particular module. In this paper, we
are interested in synthesizing a system under latency and power
constraints. Hence, A(m) = (ai, az) where a; refers to the la-
tency attribute of module m while a; refers to the power con-
sumption of module m. In this paper, we are interested in the
average power consumption per time unit, using the formula in

[5]: P = ;‘w. T is the schedule length, px and ty are
the power consumption as well as execution time of functional
unit fi, and 1y is the number of operations executed by func-
tional unit fx. Finally, Q is a function that defines the degree
of a system being acceptable for different system attributes. If
Q(ai,...,ax) = 0 the corresponding design is totally unaccept-
able while Q(ay,... ,ax) = 1, the corresponding design is defi-
nitely acceptable.

Using a function @ to define the acceptability of a system is
a very powerful model. It can not only define certain constraints
but also express design goals. In Figure 1(a), an example of z-
curve shape fuzzy constraints is shown. The boundary is (latency
= 150, power p = 120) while the objective is to optimize the
weighted sum of latency and power 2t + p (tradeoff ratio 2:1).
Figure 1(b) presents the projection of the function in Figure 1(a)
into a latency and acceptability plane. An inner z-curve (tighter
latency) corresponds to a looser power constraint.

T i
e
G
s
v

=

%

i
i
s

i

%
s

§

N

X

(a) z acceptability (b) Latency-Acceptability

Figure 1. Example of of acceptability func-
tions

In this paper, the combined scheduling/binding and module
selection problem we intend to solve can be formulated as fol-
lows: Given a specification containing S = (N,F, M, A, Q),
and G = (V,E, B), select modules m € M, for a functional unit
., VFi, based on the resulting module utility values while max-
imizing the acceplability degree of the solutions executing graph

G.

3 Utility Selection Framework

We use the concept of utility values to compute the utility se-
lection. Each module is associated with a utility value, which rep-
resents the usefulness of a module. The module may be present
in good designs which optimize a certain goal and/or bad designs
that do not satisfy the design goal. We allow the utility value of
a module to be any real number between 0 and 1 to represent this
ambiguity. Note that the design using those modules with utility
value of 1 should be of the highest quality.

The operations of the framework at a high level is straight-
forward. First, a designer give initial utility values. Then, the
framework improves them until they lead to good module selec-

129

tions. Figure 2 depicts the utility selection framework in details. It
consists of two main steps, scheduling and utility value improve-
ment. The first phase, inclusion scheduling, takes a data flow
graph, the number of functional units required in a target system,
and a module set as well as their associated utility values as inputs
and constructs a general schedule. Rather than creating all possi-

Initial wtility assignmeat
F

cla ra alu .. O
Scheduling “pd“’e ‘ [-‘
)

Module set

/ Funit} &
: (cla-add, ra-add, alulg
[« etc. Y

* H Funit2 !
schedule, . : B ; i
lency & povs : LGy

Calculate Utility
Value Inprovement

Tmprovemen
ecessary L
yes

no

Module selection

Funitt
cla-add, alulé

Figure 2. Utility selection framework

output

ble schedules, inclusion scheduling creates only one schedule for
the entire module combinations for efficiency. More importantly,
it produces varying latencies and powers which are close approx-
imation of the latencies and powers generated by the schedules
of all module combinations [2]. Such informations are useful for
future assessment of modules’ usefulness.

Particularly, while calculating a schedule, latency, power as
well as the corresponding module usages are recorded. These data
are then used as inputs to the second phase: the utility value im-
provement. In this step, the utility value of each module is ad-
justed. For a given module, the acceptability of every latency and
power pair that the module contributes to is analyzed. Intuitively,
if 2 module causes a lot of unacceptable latency and power values,
the utility of the module should be decreased. On the other hand,
if a module contributes to a lot of high-acceptability latency and
power values, the module’s utility value should be increased. The
statistics of a module usage for each latency and power value are
used as a scaling factor to the acceptability value for the module
for signifying the module’s contribution. Based on this idea, we
have developed a heuristic to compute the relative adjustment of a
utility value. The adjustment is then applied to update the previous
utility value. The 2-step process is repeated until the adjustment
values converge to zero. The experimental results show that the
average number of iterations is approximately eleven.

Inclusion Scheduling

In order to construct an inclusion schedule based on a utility
assignment, we borrow some techniques form the fuzzy theory [8].
In particular, we model modules and their respective utility values
as a fuzzy set with respect to the corresponding functional unit.
For functional unit f, and its eligible module set M¢, we(m) €
[0,1],¥m € My, describes a utility value of module m. This

concept implicitly shows that a functional unit has fuzzy execution
times and powers.

Inclusion scheduling is a scheduling method which takes into
consideration of fuzzy characteristics, e.g., fuzzy set of varying
latency (power) values associated with each functional unit. The
output schedule, in turn, also consists of fuzzy attributes. The ac-
tual steps in inclusion scheduling is given in Algorithm 3.1. In
a nutshell, inclusion scheduling simply replaces the computation
of accumulated execution times in a traditional scheduling algo-
rithm by the fuzzy arithmetic-based computation: pa.p(z)
Vz=xwy (A (%) A pg(y)), where V and A denote max and min
operations respectively, * is an arithmetic operation, e.g., maxi-
mum, addition, etc. In our case, z is a tuple of latency and power
attributes. Hence, fuzzy arithmetics is used to compute possible la-
tencies and powers from the given functional specification. Then,
latencies and powers of different schedules are compared to select
a functional unit for scheduling an operation.

In Algorithm 3.1, routine Eval_Schedule (Line 9) is where
fuzzy arithmetic is applied. It computes the inclusion schedule
and evaluate whether the schedule is better than a previous one. To
compute an inclusion schedule, an array, whose element contains
a tuple (latency,enery,util), is constructed to represent a fuzzy set
of time and energy. This array stores possible latency and power
of a current schedule and is updated while a node is being sched-
uled. Using this model, one can easily expand the design criteria
by modifying the array structure and the fuzzy calculation part.
At the end of the routine, two input fuzzy sets associated with the
schedule good_S and temp_S are compared and the better one of
the two is chosen.

Algorithm 3.1 (Inclusion scheduling)

Input: G = (V,E,) and

specification Spec = (N,F, M, A, Q)

Output: A schedule S, latency and power

1 Q = vertices in G with no incoming edges
2 while Q # empty do

3 Q = prioritized (Q)
4 u = dequeue(Q); mark u scheduled
5 good_S = NULL;
6 foreach f € {f; : where f; is able to perform 3 (u)} do
7 // find a place to schedule u
8 temp_S = assign(S, u, f)
9 if Eval_Schedule(good_S, temp_S, G, Spec)
10 then good._S = temp.S
11 S = good_S
12 foreach v: (u,v) € E do
13 indegree (v) = indegree (v) — 1
14 if indegree(v) = O then enqueue(Q, V)
16 return(S)

Utility Adjustment Heuristic

Recall that the utility values of modules should reflect the use-
fulness of the modules towards a design goal. In our heuristic, we
compute the positive contribution o (f, m) and negative contri-
bution o_ (f, m) of module m if it were used to implement func-
tional unit f, and use them to compute the relative adjustment value
for each iteration. The adjustment value is computed using the fol-

130

lowing:

o+ (f,m) —o_(f,m)

adj,(m) = where

f o4 (f,m)+o-(f,m)
0‘+(f,m) = Zv(t'p)s'l_u[t'p)=uf(m)"94t,p(f,m)llacc(t,v)
U—(f)m) = Zv(t,p)s_l_p(t,p)=pf(m)'"§%,p(f.m)(l‘uacc(t,v))

The key information here is freq, , (f, m), the number of mod-
ule references for each latency and power value pair, which will
lead to appropriate module utility assignments. This value is ob-
tained by modifying inclusion scheduling to also tally the module
contributing to each pair.

Then, we apply adj¢(m) value in the following manner: if
adj¢(m) equals 1, we double the value of w¢(m) and if adj¢ (m)
equals —1, p¢(m) is reduced by half. [f adj¢(m) is between
(—1,0l, the change of p¢(m) is proportional to half of p¢(m)
and if adj¢(m) is between (0, 1), the change of p¢(m) is pro-
portional to ws{m). After the adjustment for all modules is
made, p¢(m) are normalized with respect to the highest one, i.e.,
norm(ps(m)) = %,Vm € My. If pi¢(m) is the same
as pe{m) from the previous iteration for every m, the adjustment
is no longer needed.

4 Experimental Results

We performed- several experiments on well-known bench-
marks. Table 2 presents some of the results of the experiments
from elliptic filter and discrete cosine transform. The module set
used for these tests are shown in Figure 1.

In Table 2, Column “Spec” displays a specification of a tar-
get system. The linear acceptability functions used in these tests
are described in Column “Acceptability Q. Fields “latency” and
“power” display two vital points (xo,x1) in which any acceptabil-
ity is in between [0,1]. Column “wy : w;” displays a tradeoff
ratio between latency and power of each respectively. Column
“Selected modules” of Table 2 shows the results generated by our
method.

Modules Time Power Modules Time Power
a0 5 60 m0 100 296
al 10 38 ml 160 84
a2 20 23 m2 170 70
a3 35 20 m3 300 55
ad 40 10 mé4 640 29
a5 70 5 mS 770 20

Table 1. Example module set

Take the discrete cosine transform benchmark (the second last
rows if Table 2) as an example. Since the goal is to optimize 5t+p,
we attempt to minimize latency at the expense of increasing power.
Figure 3 characterizes enumerated solutions (generated by com-
puting the schedules for all possible module combinations) in 2-
dimensional latency and acceptability plane as well as power and
acceptability plane. The points in the square box area correspond
to the top rank solutions whose latencies are between [980, 1160]

[Ben Spec. Acceptability @ Selected modules
Tatency | power | wy:wj adder mult

eIf 2a 2mk(1300,1700) (75,150)] 5:1(1) (al a2) (a2) ml m2) (m] m2
elf 2a 2m(1300,1700) (75,150) 1:3(L) (a2 a3 ad) (a2) (m1) (ml1)
dct [2a 2mi(1200,2600% (75,150) [5:1(1) (a2) (a2) 'm] m2) (ml m2
dct Pa 2mk1200,2600) (75,150) [1:3(1) (a2 a3 a4 a5) (a0) (ml) (m2)
ldct Ba 2mi(1000,2000)(200,500) 5:1(1) (a2) (a2) (al a2) (m0) (m0)
ldct Ba 2mi(1000,2000%200,500) 1:3(1) Kal a2) (al a2) (al a2)m! m2) (m1 m2

Table 2. Selected experimental results

and powers are between [418,498]. Both of our selections of Ta-
ble 2, (a2,a2,a2,m0,m0) and (a2,a2,al,m0,m0), resulting in the la-
tency and power (980, 498) and (1010,481) respectively, also lies
in this region.

.

0 1000 2000 3000 4000 5000 6000 7000 BOOO 9000 0
alency

(a) Latency and acc. (b) Power and acc.

Figure 3. Enumerated solutions for the dct ex-
periment in the second last row in Table 2

Table 3(a) summarizes the ratio between the number of enu-
merated solutions and average size of the derived elite set (formed
by combinations of the selected modules) for each benchmark. Ex-
amining Column “% Reduction”, one can see that our proposed
approach is able to reduce the search space dramatically.

Table 3(b) shows the average quality of selections found by
utility selection. We divide the solutions into 7 groups according
to the acceptabilities of their corresponding latency and power val-
ues. Columns “Enum” and “USel” shows the average percentage
of module selections per rank for both enumerated set and the elite
set obtained by our algorithm. Though on average, most of module
selections from the enumerated set can result in schedules with low
acceptability degrees, our algorithm is able to capture good mod-
ule selections. This also can be done within a reasonable amount
of time. In the worst case example, discrete cosine transform with
5 functional units, the average running time of utility selection is
about 800 seconds while it takes approximately 10800 seconds to
generate 7776 schedules for all module combinations. Therefore,
utility selection process takes only 7.4% of the running time of the
enumerated approach. From all the tables, one can see that utility
selection efficiently produces high-quality module selections.

131

[Ben. [SpecJUSel:Enuml%Reductio

test] |la 21 4:48 91%

test2 {la2m{ 1.5:294 99% RankBEnumuUSel

deq [la2m|{ 9:294 97% G

fi-wdf2a Im 2.5:252 [99% 21,.d 275,,/? Z?Z‘;

fj-wdff2a 2m{ 3.5: 1764| 99% 39 | 79 |12

vtf [la2m|4.5:2058| 99% P e

LIt Palm| 5:216 97% 4% 5 6% 5%

Clf paz2m| 4:1296 | 99% 5" | 8% | 1%

dct Pa2m3.25:1296| 99% 6" | 3% 12%

det PBa2m|11:7776| 99% 70 144% [1%
(@) (b)

Table 3. (a) # elite set and #enumerated set
ratio (b) Average distribution per rank

5 Conclusion

We have presented a module selection framework that takes
into account of scheduling effect as well as resource, latency, and
power constraints. This approach uses of the utility measure to
model the degree of usefulness of a module. The scheduling and
binding method called inclusion scheduling is used exclusively as
a basis for deriving fuzzy latency and power values, approximat-
ing latency and power enumerated exhaustively, in order to im-
prove module utility to reflect real module goodness. Experiments
show that module utilities are good pointers to module selections.
By using module utility, designers also have alternative in select-
ing initial designs. Our current approach can be integrated in an
iterative design process varying the number of functional units for
complete design exploration.

References

[1] L Ahmad, et. al. Integrated scheduling, allocation and module
selection for design-space exploration in high-level synthesis.
IEE Proc.-Comput. Digit. Tech., 142:65-71, Jan 1995.

C. Chantrapornchai, E. H. Sha, and X. S. Hu. Efficient
scheduling for imprecise timing based on fuzzy theory. In
Proc. MWCAS, 1998.

S. Chaudhuri, et. al. An exact methodology for scheduling in
3D design space. In Proc. ISSS, pp. 78-83, 1995.

M. Ishikawa and G. De Micheli. A module selection algo-
rithm for high-level synthesis. In Proc. ISCAS, pp. 1777~
1780, 1991.

R. Martin and J. P. Knight. Power-profiler: Optimizing ASICs
power consumption at the behavioral level. In Proc. DAC, pp.
42-47, 1997.

7. X. Shen and C. C. Jong. Exploring module selection space
for architectural synthesis of low power designs. In Proc. IS-
CAS, pp. 1532-35, 1997.

E. Torbey and J. Knight. Performing scheduling and stor-
age optimization simultaneously using genetic algorithms. In
Proc. MWCAS, 1998.

{8] L. A. Zadeh. Fuzzy Logic. Computer, 1:83-93, 1988.

(2]

[3]

(41

[3]

[6]

(71

	Main Page
	GLSVLSI99
	Front Matter
	Table of Contents
	Author Index

