
Abstract
This paper presents the emulation of an

embedded system with hard real time cons-
traints and response times of about 220µs.
We show that for such fast reactive systems,
the software overhead of a Real Time Opera-
ting System (RTOS) becomes a limiting fac-
tor, consuming up to 77% of the total
execution performance. We analyze features
of different FPGA architectures in order to
solve the system performance bottleneck. We
show that moving functionality from soft-
ware to hardware through exploiting the fine
grained on-chip SRAM capability of the
Xilinx XC4000 architecture, that feature eli-
minates the RTOS overhead by only a slight
increase of about 28% of the used FPGA
CLB resources. These investigations have
been conducted using our own emulation
environment called SPYDER-CORE-P1. 

1 Introduction
Most of today‘s existing technical applications are control-

led by so-called Embedded Systems. Many different application
areas exist which demand their own specific embedded system
architecture. Therefore, as described in [1], a common defini-
tion of embedded systems does not exist. 

In the area of industrial automation, an embedded system
architecture consists of an application specific hardware part,
which interacts with the environment, and can efficiently imple-
mented using a Field Programmable Gate Array (FPGA). At the
same time, an application specific software part is running on a
microcontroller. Especially the interaction with the system envi-
ronment forces hard real time requirements.

In the last few years, the rapid progress in microelectronic
technology has reduced component costs while simultaneously
making the introduction of the 32 bit embedded microcontroller
[2] in a widespread area of embedded system design1 quicker.
Additionally, novel FPGAs appeared in the market, which pro-
vide increased gate and routing capabilities. Their architectures
are enhanced through powerful new on-chip features like
SRAMs, flexible I/O buffers or fast carry logic. Smaller process
technologies down to the deep submicron area for both micro-
controllers and FPGAs achieve higher clock frequencies, which
provide an enormous acceleration in performance and simpli-
fies system design. These hardware fundamentals enable the
implementation of Real Time Operating Systems (RTOS),
which lead to the rapid increase in total system performance
and the complexity of the embedded system functionality. 

Nevertheless, if fast external response times of about
220µs are to guaranteed, the software overhead due to task-
switching becomes a limiting performance factor. Moving
functionality from software to hardware must be performed to
solve the arising bottleneck. Therefore, exploitation of novel
FPGA on-chip features like the SRAM capability leads to very
efficient embedded system solutions. These issues will be
addressed in this paper, which is organized as follows: 

In chapter 2, we give a short overview of the state of the
art and our own previous work. Chapter 3 introduces the emula-
tion environment SPYDER-CORE-P1, which was developed for
the emulation of sophisticated embedded systems. Chapter 4
describes the benchmark application and the different software
tasks, which are running under the control of the RTOS
VxWorks. Chapter 5 analyzes the performance effect and outli-
nes the bottleneck. Chapter 6 analyzes different FPGA architec-
tures and evaluates their special on-chip features. Chapter 7 the
outlines the results of the investigation and chapter 8 summari-
zes the entire paper.

2 Previous Work

2.1  State of the Art
Hard real time requirements heavily influence the hard-

ware/software partitioning in order to find a good solution with
respect to performance and cost. The traditional method applied
by most system designers today can be described as a two step
solution. First, a printed circuit board containing all the selected
chips is developed and after production, the necessary applica-
tion software is written in the second step. The main disadvan-
tage of this method is the lack of detailed knowledge about the
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internal embedded system behavior, which can only be determi-
ned very late in the design process. If system requirements are
not met, corrections must be made late in the development pro-
cess significantly increasing design time and total costs. Some-
times, the entire project must be cancelled due to time or budget
restrictions.

The more scientific approach tries to describe the behavior
of a system at a high level of abstraction. After the design entry
step, some performance evaluation is done followed by co-syn-
thesis techniques for software and hardware as described in
[6][7]. The result is verified using one or more combined simu-
lators. This approach suffers from the lack of an appropriate
design language to describe all the aspects of an embedded
system. A mixture of different languages must therefore be
used. Each language addresses a separate part of the system,
which makes design entry a time consuming and difficult task.
Additionally, the complex interaction between the system and
its environment must be modelled for simulation, which is also
very difficult and in some cases impossible without an unrea-
sonable amount of resources, tools and design time. 

If we compare the two design methods mentioned, we can
say that using the traditional method leads to a system without
detailed knowledge of behavior during the design process and is
mainly based on the experience of the designers to make it
work. The scientific approach recognizes that fact, but suffers
itself from a lack of appropriate tools to apply the method. This
was our motivation to search for an applicable method for get-
ting detailed information based on understandable measure-
ments of the system during an early design stage. Furthermore,
the method should be very close to the final target system and
avoid estimations of the embedded system behavior to decrease
the risk involved with the development.

An approach, which is able to provide these features, is
embedded system emulation. It offers the possibility to find the
best hw/sw partitioning and the best usage of system resources
early in the design process. Many different emulation environ-
ments exist. A few environments [8][9] are principally very fle-
xible, but because of the high degree of flexibility are not
suitable for an embedded system like the type of fast reactive
embedded systems under consideration here. This is due to the
great expansion of the resulting system, leading to the loss of
real time capability. Therefore, we have developed the new
emulation environment explained in chapter 3.

In the last section, we have clearly motivated the use of the
emulation method, which allows to move functionality from
software to hardware and visa versa, in order to find the best
hw/sw partitioning. That capability is mainly based on a closely
coupled microcontroller to one or more different FPGAs. One
key feature when moving functionality from software to hard-
ware is the appropriate memory needed for the data structures
assigned to the function. Therefore, novel FPGA architectures
provide different on-chip memory capabilities, which can be
used to increase system integration and clock speed while
decreasing I/O pin requirements, in contrast to providing off-
chip memory. Principally, two different types of on-chip
memory have emerged, which can be described with fine-grai-
ned and coarse-grained.

Fine-grained memory is available in FPGAs like the
Xilinx XC4000 architecture [12]. Each lookup-table can be pro-
grammed as a small SRAM. These SRAMs can be combined
for larger SRAM-arrays. Due to the fact, that SRAM can be
implemented in each CLB, the SRAM-capability is distributed
over the entire chip area, but consumes much CLB and routing

resources if large SRAM memory is to be implemented.
Another memory feature is provided by the Xilinx XC6000
architecture [13], in which each memory bit in a flip-flop is
stored. The interesting feature, in contrast to the other architec-
tures, is the fact that each flip-flop is embedded in the XC6000
chip architecture and can be accessed for read or write by a
microcontroller, without any additional FPGA routing
resources. That feature simplifies the exchange of intermediate
results between a software task running on a microcontroller
and a hardware task, which operates at the FPGA.

The coarse-grained approach is used in the Actel
A3200DX FPGAs [15], the Altera 10K devices [14] and the
Lattice ispLSI 6192 FPGAs [16]. Its basic characteristic is
distinguished through dedicated SRAM blocks with array sizes
from 2k up to 32kBit, which are embedded onto the FPGA
architecture. Due to the fact that such large SRAM arrays are
dedicated on-chip features, it can be used without any reduction
of the programmable logic resources. If an application requires
only small or no SRAM arrays, that chip area occupied by the
SRAM is wasted. Current research work [17][18] tries to use
such embedded SRAM as a large multi output ROM to imple-
ment logic, should the application do not require memory. This
ongoing work is an interesting research topic, but is still not
available today in standard VHDL-based development tools for
FPGAs.

2.2  Our Basic Work
The past two years were marked by the development of

innovative embedded systems in the area of industrial automa-
tion and communication. This was done in cooperation with
several companies in which these embedded systems were used
for industrial applications. This work serves as a basis for the
current research work, which investigates more effective
methods for embedded system design exploiting FPGAs.

The design of an Asynchronous Transfer Mode (ATM)
diagnostic monitor was characterized by extremely fast external
events of about 3µs, which must be recognized and counted.
Dedicated hardware had to be developed, which consisted of
many 32 bit wide counters. The counter values had to be read
by a microcontroller. The comparison with different FPGA
architectures for that application showed that the XC6000
architecture improves the hardware functionality for gates by
about 60% in contrast to the XC4000 architecture. This impro-
vement is mainly due to the XC6000 open architecture, which
enables access to all application flip-flops without any additio-
nal routing resources. Therefore, the XC6000 FPGA is intere-
sting for applications, which must exchange intermediate values
between software and hardware, such as the application presen-
ted herein, further analyzed in chapter 6. The work about the
ATM-diagnostic monitor [3] was done using our first genera-
tion emulation environment. A further contribution to the cur-
rent work documented in this paper lies in the experience that
emulation is a powerful method to analyze the internal behavior
of complex embedded systems. It guided the definition of the
architecture of our second generation emulation environment
called SPYDER-CORE-P1 [4], which will be described in chapter
3. It was used for the presented work.

Another major project was done in cooperation with diffe-
rent industrial companies and led to the development of an
Actuator Sensor Interface (ASI), a so-called ASI-Master. ASI is
a new system which allows for the connection of up to 128
binary actuator and sensor devices with an appropriate control
unit via a single bifilar cabel. An additional key feature of this



work is the global access to the ASI-Master via the Internet,
which leads to value-added services as described in [5]. Cur-
rently that project uses the RTOS VxWorks, which is running on
SPYDER-CORE-P1. It is used for the scheduling of different
tasks. This application serves as a benchmark and is explained
in chapter 4. That application example was selected due to three
major characteristics:

1. Sophisticated software task architecture controlled by
the RTOS.

2. Novel microcontroller architecture in combination with
different FPGA architectures.

3. Fast reaction times to external events.

4. Sensitive hw/sw partitioning, which heavily influences
the entire system performance.

These characteristics make up a complex internal system
behavior, therefore being suitable to demonstrate the benefits of
the emulation method and the benefit gained by exploitation of
FPGA on-chip features. The presented work gives answers to
three important questions which arise from a system designer´s
point of view:

1. What is the minimum clock speed in order to meet all
real time constraints?

2. How much computation performance is consumed by
the RTOS in a fast reactive system in that case?

3. What is the best hw/sw partitioning to solve the arising
bottleneck mainly caused by the RTOS?

4. What is therefore the best FPGA architecture to imple-
ment the hardware part, especially for the exploitation
of its on-chip features?

This paper shows that these questions are not limited to
that specific application, but are general questions about many
applications in the mentioned area.

3 Emulation Platform SPYDER-CORE-P1
The current version of the SPYDER emulation environment

consists of two boards. SPYDER-ASIC-X1 [10] is one part of the
tool set and mainly addresses the emulation of large VHDL-
based ASICs designs on a FPGA. SPYDER-CORE-P1 is the
second part of the tool set and is used for the emulation of the
entire embedded system architecture. Both boards are compati-
ble and can easily be connected to each other via a backplane.
For the work described here, only SPYDER-CORE-P1 was used,
thus only this board is described in detail (see figure 1). The
SPYDER-CORE-P1 environment provides all the key compon-
ents needed for embedded systems in the area of industrial auto-
mation within a flexible, but still compact architecture, which
guarantees high clock speeds. This enables a real time emula-
tion which is very close to the final target system.

A 32 bit RISC embedded PowerPC 403GA/GCX micro-
controller [2] is used. It provides the following two advantages:

1. It is available in a wide clock frequency range. This
enables the emulation of a large area of applications. An
analysis step can achieve the right values to satisfy all
real time requirements and prevent an oversized or
undersized system. 

2. A flexible programmable bus interface provides a direct
interface to most peripheral devices. This enables the
simple implementation of a low or high end system wit-
hout additional glue logic.

Figure 1.  Architecture of SPYDER-CORE-P1

The high-speed microcontroller bus is connected to the
main memory and the interface FPGA XC4000. It can be used
to connect the entire microcontroller bus to external devices via
the extension header 2 or it can be used to emulate additional
application specific hardware. Each microcontroller bus signal
is available on the extension header 1. They provide the means
to connect a co-processor, e.g. a reconfigurable XC6000 FPGA,
to the microcontroller very closely and to connect debugging
equipment, e.g. logic analyzer, to the SPYDER-CORE-P1 emula-
tion environment.

Figure 2.  Emulation Flow for SPYDER-CORE-P1

Figure 2 shows the emulation flow for the SPYDER-CORE-
P1 environment. The sw/hw partitioning is done by the desi-
gner. The emulation starts with an initial partitioning and can
rapidly be changed based on the detailed view account obtained
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during the emulation. The software path is supported by the
RTOS design environment, called Tornado. Different Tasks
written in C-code must be compiled using the gnu-C-Compiler.
The Tornado environment links the tasks together with the
RTOS routines and store the code on the hard disk. A dedicated
loader transfers the code to the target board via a 10MBit Ether-
net (TCP/IP) link.

The hardware parts can be described in VHDL and synthe-
sized into a netlist representation using the Synopsys Design
Compiler. The place and route step is performed by the vendor
specific back-end tools. The XC6000 design data can be remo-
tely accessed by the microcontroller via Ethernet from the PC
hard disk, using appropriate VxWorks remote access features.
The configuration is done by the microcontroller using the
XC6000 32 Bit fast microcontroller interface. The configura-
tion data of the XC4000 devices can be downloaded to the SPY-
DER-CORE-P1 board to both a serial EEROM and the XC4000
FPGA itself using CORE-P1 support software tools, which
transfers the bit stream via the AT-ISA-Bus. Actel devices must
be programmed using Actel’s programming equipment and can
be added to the SPYDER-CORE-P1 emulation environment using
the extension header 2 and a dedicated device specific add-on
board. 

A driver device implements a buffer between the high-
speed 32 bit wide microcontroller bus and the slower 8 bit I/O
bus. It connects some frequently used communication and
memory devices to the microcontoller. 

The same architecture shown in figure 1 was used to emu-
late the two applications mentioned in chapter 2.2. The SPY-
DER-CORE-P1 environment was modified by only connecting a
small add-on board with application specific hardware (ASIC
or sub-module) to the extension header 2. In the case of the
ATM-project, a so-called Adpation-Layer-Controller (ALC)
was added and for the ASI-project, a dedicated analog module
was used. 

4 Internet controlled ASI-Master
The Actuator-Sensor-Interface (ASI) connects up to 32

ASI slave chips via a single, bifilar cable with a ASI master unit
(see figure 3). 

Figure 3.  ASI Communication System

That master unit calls in a polling cycle each connected
ASI slave with its own address (bits A4..A0), followed by the
output data image (bits I4..I0) as depicted in the master call.
The ASI slaves respond if the address in the master call matches
their own address, and transfers the input data image back to the
master. Each slave is able to connect up to four binary sensors
(4I) and up to four (4O) actuators. The serial master call proto-
col must be modulated on the ASI cable using a dedicated ana-

log module (see figure 1). An ASI slave is available as a single
chip solution which has the same capability on-chip. Additio-
nally, an ASI power supply unit provides 24 DC voltage for the
slaves via the same cable.

The ASI master is emulated on SPYDER-CORE-P1 very
close to the final target system, without any major changes. The
hardware connection between the microcontroller and the ana-
log module (two wires, serial in and out) is implemented as a
dedicated ASI hardware using different FPGA architectures
(see figure 4). The analysis results are shown in chapter 6. The
microcontroller writes the output data image to the register file
and the ASI UART performs a parallel to serial conversion with
manchester encoding. The digital serial data output is modula-
ted to the ASI cable by the analog module. The receive path
operates analogously to the send path.

Figure 4.  Initial ASI-Interface Hardware

The RTOS VxWorks [11] runs on the SPYDER-CORE-P1
emulation platform. It provides a TCP/IP stack for communica-
tion via ethernet. Additionally, this interface is used as a link to
the VxWorks development environment Tornado running on a
host PC. 

During the initial hw/sw partitioning, four tasks run on the
RTOS; two are hard real-time tasks and two tasks have no real-
time constraints (see figure 5).

1. The Int_Service task is a hard real-time constraint task
and is responsible for the data exchange with the slaves.
It generates the current process data image.

2. The Control task is also a hard real-time constraint task
and uses the current process data image to calculate the
control commands.

3. The server task has no real-time requirements and is
responsible for data and command exchange via the
Internet.

4. The embedded C_Server task also has no real-time
requirements and transfers commands between a JAVA
applet running on the calling client computer and the
ASI-Master.

Figure 5.  Initial Software Architecture

For a more detailed description, refer to [5]. 
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5 Embedded System Performance Analysis
Figure 6 shows a timing diagram of the hard real-time

tasks, measured with a logic analyzer. The int-signal shows the
interrupt communication between the ASI interface hardware
implemented (see figure 4) in a FPGA and the microcontroller.
The Int-Service and Control tasks mark their beginning and end
states by accessing a simple I/O device (I/O-signal), recorded
by the logic analyzer. The ASI standard defines the time delay
between two serial bits on the ASI cable during the master call
and slave answer with 6µs. Together with master and slave
break times, the microcontroller must exchange data with a
slave every 220µs. Therefore, this value is an ASI specific real-
time critical constant. During this time, the microcontroller
must execute the following sequence: interrupt reaction,
Int_Service, task change, run Control task, and take a sema-
phore (semTake). To determine the minimum clock speed, all
caches must be disabled, due to the fact that this sequence is a
hard real-time constraint and a worst-case analysis must be
made. Figure 6 shows that if the worst case scenario occurs, it
will still run successfully with a minimum clock speed of
33MHz or more. If the clock speed decreases, the next interrup-
tion (int = low) happens before the semTake currently being
executed has finished. This means, the real-time requirement
can no longer be satisfied.

Figure 6.  Execution Times

Figure 7 shows the clock frequency range from 25 up to 80
MHz on the x-axis. The y-axis shows the ratio of the value of
the real time required for the execution of the mentioned task
sequence (see figure 5) and the real-time critical constant. The
curve depicts the case without on-chip caches, which must be
used to determine the worst case scenario for hard real-time
conditions. If the PPC403 operates at 33 MHz and the worst
case scenario occurs, it is still able to guarantee the real-time
requirement. If the clock frequency decreases, the y-value
increases above one. This means that the microcontroller per-
formance is undersized. 

The ASI-Communication System in figure 3 and the ASI-
Interface Hardware in figure 4 shows for simplicity the system
architecture for one ASI-Channel. That means, one ASI-cable
with up to 32 slaves is connected to the ASI-Master and there-
fore it is called a Single-ASI-Master. Figure 7 shows, that for
this case the microcontroller can met the real-time requirement
with a minimum clock speed of 33 MHz. Current ASI-develop-
ment projects focus on connecting two, three or four ASI-cables
to a common ASI-Master unit in order to extend the number of
slaves by the appropriate factor of two, three or four with only a
slightly increasing of the total system costs. 

If two ASI-cables are connected to the ASI-Master (called
Dual-ASI-Master), the same real-time critical task sequence
(see figure 6) must be executed in half of the time given by the
real-time critical constant (220µs) in order to meet all real-time

requirements for both ASI-channels. In this case, as indicated
by the dashed line at the y-value of 0.5 in figure 7, the real-time
requirements can not be satisfied although the highest available
clock speed of 80Mhz is used. This short explanation motivates
clearly the effort, which were spent to determine the minimum
clock speed for a Single-ASI-Master and the resulting system
behavior, if additional ASI-channels would be added. 

Figure 7.  System Execution Resources

At this point the embedded system emulation shows that a
state of the art RTOS achieves task switching times of about
80µs and interrupt reaction times of 27µs. As shown in figure
6, the total time the RTOS uses is 170µs and the total time for
the application is 50µs. Therefore, 77% of the total execution
time (220µs) is consumed by the RTOS. That means:

• If the external environment of a fast reactive system forces
interactions (here 220µs) to the same degree of magnitude
as the task-switching time (here 80µs) plus the interrupt-
reaction time (here 30µs), the software overhead of the
RTOS becomes a limiting factor for the total embedded
system performance. 

• Only a Single-ASI-Master can be realized within the availa-
ble microcontroller clock range. A Dual-ASI-Master (or
more) can not be implemented with a system solution exe-
cuting a Int_Service routine in software.

• That fact forces the Int_Service routine running at the
microcontroller to be moved from software to hardware.
That functionality must be implemented on a FPGA in addi-
tion to the described ASI-Interface hardware depicted in
figure 4, and is described in the next sub-chapter.

5.1  HW/SW Partitioning to solve the bott-
leneck

Figure 8 shows on the left side the flow diagram of the
Int_Service task. If the microcontroller receives an interrupt
(every 220µs), it updates the current input slave data from the
process, and sends the next output slave data to the process. If
all connected ASI-slaves in the polling cycle has been proces-
sed, the entire process data image is generated. If the maximum
of 32 slaves are used, the process data image can be generated
in about 7ms. The Int_Service task, which runs in software,
holds the process data image in the main memory of the micro-
controller. If that functionality should be moved to hardware, a
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memory for the input data image with total size of 192 bits (6bit
x 32) and a memory for the output data image with a total size
of 224 bits (7bit x32) must be provided on the target FPGA
chip. Additionally, the sequential control flow of the software
task must be implemented in hardware using a Finite State
Machine (FSM). 

Figure 8.  Int-Service shift from Software to Hardware

As depicted in figure 9, two on-chip memories with single
port read and single port write capability, and a FSM must be
implemented to realize the entire Int_Service routine in hard-
ware. 

Figure 9.  Architecture of the new FPGA hardware

That additional hardware part is located between the initial
ASI-Interface hardware shown in detail in figure 4 and a stan-
dard 8 bit microcontroller interface on the other side. The FSM
is responsible in transfering the receive data from the slave ans-
wer into the input data image memory and to copy the current
output data image to the ASI-Interface hardware for the next
master call. 

The new FPGA hardware architecture is able to free the
microcontroller from responding to the fast external events

every 220µs. Most applications require the evaluation of the
entire process image every 10ms in order to statisfy real-time
constraints. That means, if the Control task read out the input
data image every 10ms, the task-switching decreases by a factor
of 45 (10ms/220µs) in contrast to the case with the software
Int_Service routine. That leads to the fact that the RTOS must
not perform so many task switches, which results in a dramatic
decrease of execution performance consumption by the RTOS.
That resources can be used to realize a Dual-ASI-Master and
global network communication (see figure 10). 

6 Analysis of different FPGA architectures
The emulation of the ASI-Master shows that the efficiency

of the hardware implementation depends greatly on the
exploitation of on-chip features provided by different FPGA
architectures. For simplicity, the FPGA-resources for a Single-
ASI-Master were depicted. For more than one ASI-channels,
the FPGA-resources increases linear. The used hardware archi-
tecture (depicted in figure 9) serves as a benchmark and were
therefore be divided in three major parts:

1. The initial ASI-Interface hardware, which consists
mainly of finite state machines in combination with
many counters.

2. The FSM for the control flow implementation of the
interrupt handling.

3. The two memory arrays for the input (192 bits) and out-
put data (224 bits) image, which must provide simulta-
neously single port read and single port write capability.

The SPYDER-CORE-P1 emulation environment offers three
different FPGA (see figure 2) architectures for the analysis. The
following results were obtained:

1. If the XC4000 architecture was used, the initial ASI-
Interface hardware part needs 166 CLBs and the
Int_Service-FSM needs 20 CLBs. The lookup tables
were used as fine-grained on-chip SRAM. If the simul-
taneous single port read and single port write mode is
selected, 16 bits were implemented in one CLB. This
means, a total of 26 CLB must be use for both memory
arrays. The ratio between the additionally implemented
Int_Service part and the initial ASI-Interface hardware
(46 CLB / 166 CLB) is about 28%. 

2. If the XC6000 architecture was used to implement the
initial ASI-Interface hardware part, 841 XC600-cells
were used. The Int_Service-FSM needs 112 cells. The
memory array must be implemented with flip-flops,
which are embedded in the XC6000 architecture. This
means, no routing resources for the access via the
microcontroller are necessary. The simultaneous single
port read and single port write capability must be reali-
zed with additional logic cell and occupies a total
amount of 957 cells. The ratio between the additional
implemented Int_Service part and the initial ASI-Inter-
face hardware (1069 cells / 841 cells) is about 127%.

3. If the Actel A1200XL architecture was used to imple-
ment the initial ASI-Interface hardware part, 436 Actel
logic modules were used. The Int_Service-FSM needs
51 logic modules. The Actel FPGAs provide coarse-
grained embedded on-chip SRAM in devices greather
than A32100DX with a minumum of 1362 logic modu-
les. For applications which require much less than the
A32100DX capacity, only flip-flops are available to
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realize on-chip memory, such as this application, which
leads to 763 logic modules for the appropriate memory
arrays. The ratio between the additional implemented
Int_Service part and the initial ASI-Interface hardware
(814 logic modules / 436 logic modules) is about 187%.

All values were obtained using the same VHDL design
description and the standard development tools as depicted in
figure 2.

7 Results
The result of the ASI-Master emulation using the SPYDER-

CORE-P1 environment gives answers to the questions mentio-
ned at the end of chapter 2.1, which arises from to system desi-
gner’s point of view:

1. The minimum clock frequency is determined by
33MHz in order to guarantee all real-time constraints
under worst-case conditions for a Single-ASI-Master.

2. At 33MHz, the RTOS consumes 77% of the total execu-
tion performance, which is very inefficient due to the
fact, that the external response time of 220µs operates at
the same order of magnitude as the RTOS task-swit-
ching time. 

3. In order to solve that bottleneck, a change of the initial
hw/sw partitioning must be done. The Int_Service rou-
tine must be moved from software to hardware.

4. The investigation of different FPGA architectures
shows that the efficiency of the implementation is grea-
tly influenced by the exploitation of the on-chip
memory capability as summarized in table 1. 

The column for the XC4000 architecture shows clearly,
that the exploitation of the fine-grained on-chip SRAM capabi-
lity led to a very efficient implementation of the Int_Service
functionality. The overall amount of the additional hardware
parts is only increased by 28%, mainly due to the efficient
implementation of the memory. This architecture is best suited
for applications in the lower or medium gate range up to 10.000
gates, which needs on-chip SRAM capability of a few hundred
of bits. This type of application is not limited to the specific
benchmark presented in this paper, but is very common in a
wide range of embedded system applications. 

The column for the XC6000 architecture shows that the
increase for the additional Int_Service hardware rises up to
127%. This is due to the fact that no SRAM capability is availa-
ble and the memory must be implemented with flip-flops like
the Actel A1200XL architecture. In contrast to the Actel chips,
the XC6000 benefits from the fact that all flip-flops are embed-

ded in the chip architecture and can be accessed by the micro-
controller, without any additional routing and logic resources.
In applications with many counters or FSMs, which must
exchange intermediate results with the microcontroller, that fact
can become a major effect and contribute a significant benefit
as described in [3]. 

The column for the Actel A1200XL architecture shows
that the increase for the additional Int_Service hardware
resources rises up to 187%. The main disadvantage is the lack
of on-chip features like SRAM in the gate range up to 10.000
gates. That forces the designer to use flip-flops for the memory,
which is very inefficient. The wide application area below
10.000 gates should be supported with on-chip SRAM features
in the future. This would make that architecture very intere-
sting, especially in combination with the advantage of antifuse
based FPGAs, which do not need external memory for the con-
figuration data. 

7.1  Consequences for the Application
Moving the Int_Service Task to hardware leads to better

exploitation of the hardware resources. It reduces the software
overhead of the RTOS running on the microcontroller. The
positive consequence is that most of the execution performance
of the microcontroller can be used for the application. The final
embedded system architecture is shown in figure 10.

Figure 10.  Embedded System Architecture

A Java applet is running on a client computer and connects
via TCP/IP with the C-Server task running on the PowerPC
microcontroller in the SPYDER-CORE-P1 environment. This link
is used to exchange commands for the Control task, which con-
trols an industrial plant. To do this, it uses the current process
data image generated by the ASI-Master every 7ms.

To demonstrate the entire system, we use a model of an
industrial shelf as shown in figure 11. It can be controlled by 28
sensors for the current x,y,z position of the shelf wagon and 11
actuators for the activation of the electrical motors to move the
wagon.

For all sensors and actuators, a total amount of seven ASI-
slaves (4I/4O) must be connected to the ASI-cable.

A operator can submit commands from his own PC, which
are transfered to the industrial shelf via the internet. A camera
captures the life image from the shelf and reports it back to the
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operator. With this, the operator can observe the execution of
his commands online. If you are interested in a demonstration
of this application, please send a email to weiss@fzi.de or
stecki@fzi.de. We will setup an appropriate user-id and pass-
word for your login. All you need for the evaluation is a run-
ning www-browser and internet access. 

Figure 11.  Demonstrator: Industrial Shelf Model

Note that this additional feature, which we call value-
added services in the industrial automation [5], can therefore be
implemented without increasing the microcontroller perfor-
mance. It is mainly based on the determination of the best hw/
sw partitioning found through emulation and the exploitation of
the FPGA on-chip features.

8 Summary
System performance is influenced by many indeterministic

parameters. In order to meet all real-time requirements and
exploit all available system resources, a detailed knowledge of
the internal behavior is necessary. Therefore, this paper presents
the emulation of a fast reactive embedded system, running
under control of a RTOS, as a powerful method to solve the pro-
blems mentioned and shorten the design time and risks. 

In this paper, a novel emulation environment called SPY-
DER was introduced, emulating very close to the final target
system. A industrial benchmark design was used to demonstrate
this method. The minimum working frequency lies at 33MHz
and the emulation shows that an RTOS consume 77% of the
total execution resources, if the reaction times decreases down
to the same delay as the task-switching times.

In order to solve that bottleneck, the initial hw/sw parti-
tioning based on an Int_Service routine in software must be
changed and moved to hardware. That additional hardware
implementation needs a few hundred bits of on-chip memory in
combination with an FSM. The analysis of different FPGA
architectures shows that the efficiency of the implementation
depends greatly on the exploitation of their on-chip features,
such as SRAM. For the presented benchmark application,
which is very common in a wide range of embedded systems,
the XC4000 architecture with its fine-grained on-chip SRAM
feature is best suited. It is exploited to implement the
Int_Service routine in hardware. Therefore, the additionally
used CLB resources are only 28%. The other architectures show
much higher consumptions, of up to 187%, mainly based of the
lack of appropriate on-chip memory features in the lower and
medium gate range of up to 10.000 gates.
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