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ABSTRACT
Pipelining of data path structures increases the throughput rate at
the expense of enlarged resource usage and latency unless
architectures optimized towards specific applications are used.
This paper describes a novel methodology for the design of
generic bit-level pipelined data paths that have the low resource
usage and latency of specifically tailored architectures but still
allow the flexible trade-off between speed and resource
requirements inherent in generic circuits. This is achieved through
the elimination of all skew and alignment flip-flops from the data
path whilst still maintaining the original pipelining scheme, hence
allowing more compact structures with decreased circuit delays.
The resulting low latency is beneficial in the realization of all
recursive signal-processing applications and the reduced resource
usage enables particularly the efficient FPGA realization of high
performance signal processing functions. The design process is
illustrated through the high level synthesis-based FPGA
realization of a 9th-order wave digital filter, demonstrating that
high performance and efficient resource usage are possible. For
example, the implementation of a wave digital filter with 10-bit
signal word length and 6 bit coefficients using a Xilinx
XC4013XL-1 device supports sample rates of 2.5 MHz.
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1. INTRODUCTION
Traditionally, digital filters have been implemented as software
solutions on dedicated digital signal processing (DSP) chips and
are usually limited to audio frequency applications. To achieve the
higher speed of operation required in many real-time DSP
applications such as digital filter, FFT and DCT implementations
an ASIC route is a viable and effective option. Despite its
benefits, this route has some shortcomings including limited
flexibility regarding design changes, layout costs and delivery

time. Recently, growing gate densities and decreasing delay times
of FPGAs coupled with powerful synthesis tools have provided a
potential alternative to ASIC realizations. In such customized
realization the critical operations involve multiplications and
additions and to achieve the required performance, high
throughput functional modules are needed. This demand is often
satisfied by dividing the combinatorial logic of adder and
multiplier modules into a number of pipeline stages with
intervening registers or latches controlled by a global clock signal.
Numerous examples of the resulting pipelined multipliers [1] and
multiply-and-accumulators (MACs) [2], [3], [4] have been
presented in the literature.

The developed pipelining schemes provide high throughput rates
but result in high resource usage and large circuit latency due to
the skewing and re-alignment of input and output data. Both
problems have been addressed in many publications and are
overcome with the design of architectures tailored towards a
specific application. Since data formats at inputs and outputs of
functional modules with the same pipelining scheme are
compatible, the concerned operations are chained. This allows a
considerable reduction of average latency because skewing and
re-alignment of data is required only at the circuit input and
output. It has been shown that this technique is particularly useful
in the design of FPGA [5] and systolic array-based [6] FIR filters
and in the design of multiply, square root and divide modules [7].

Although long delay times are generally acceptable in non-
recursive DSP functions, recursive DSP applications such as IIR
filters suffer from a reduction in sample rate because of the large
latency introduced in the feedback loop. In an attempt to
overcome this problem, scattered look-ahead and decomposition
techniques [8] have been utilized. This technique avoids the
latency problem by unfolding the recursive computation of the
filter output value to the level of pipelining required. The main
disadvantage of this approach is the increase in hardware
complexity, which grows logarithmically with the level of
pipelining. A technique without this shortcoming utilizes a most
significant bit (MSB) first computation to feed the obtained result
bits immediately back into the recursive computation of the filter
output [9]. Thus the latency in the feedback path is reduced to the
time required until the MSB is obtained, independent of the filter
word length [10]. A shortcoming of this technique is the need for
a signed binary number representation (SBNR) whose redundancy
increases hardware requirements and necessitates conversion logic
from two’s complement representation to SBNR and vice versa.
An alternative approach used in the alleviation of the latency



problem exploits the short coefficient property of wave digital
filters to minimizing the critical path delay within the recursive
part of the filter algorithm [11], [12].

All previously described approaches have addressed the problem
of reducing resource usage and shortening circuit latency by
chaining the functional modules in the data path, hence resulting
in application-specific architectures. Tremendous efforts have
been put into the design of these architectures, however their use
is restricted to the targeted application. This contrasts to the
flexibility of generic data path structures with their resource
sharing capabilities and the possibility of trading circuit speed for
design size on functional module level. This paper describes a
new methodology for the design of bit-level pipelined data path
structures which exploits the flexibility of generic data paths but
reduces resource usage and circuit latency such that a performance
comparable to application-specific architectures is achieved. The
provided flexibility is best exploited with the application of high-
level synthesis methodologies to generate efficient data paths in
shortest possible development times. Section 2 discusses the
problems inherent in the design of generic data paths and presents
a novel design methodology. The implications on practical
designs are discussed in section 3 through the design and FPGA
realization of a 9th-order wave digital filter.

2. DESIGN METHODOLOGY
In the design of generic data path structures, a parallel input-
output requirement is usually imposed to all building blocks [13],
allowing the connection of all components to a data path as shown
in Figure 1. The given structure consists of adder and multiplier
modules for the execution of common operations in DSP
functions, registers for the storage of intermediate results and an
interconnection network. Note that one multiplier input is
connected to a ROM that accommodates the constant coefficients
used in many DSP applications. Pipelined functional modules
used within this type of data path structure must comply with the
parallel input-output requirements. Since pipelined functional
modules process different bits of the input data in subsequent
clock cycles, for example with least significant bit (LSB) first, a
conversion into the bit-parallel format is needed. This is usually
achieved with triangular arrays of skew and alignment flip-flops
as shown in Figure 2 for the example of a pipelined parallel array
multiplier, used as representative for all pipelined functional
modules, ranging from simple pipelined adders [13] to complex
square root modules [7].

Although the consistent use of bit-parallel timing formats allows
the simple construction of data paths, the resulting structures
suffer from two shortcomings. Firstly, the latency of functional
modules increases the execution time of the DSP function and
secondly the large number of skew and alignment flip-flops
increases the design cost. The latency of an LSB-first pipelined
functional module is determined with the number of pipeline
stages. For example, the multiplier in Figure 2 has a latency of
lx+ly clock cycles where lx and ly are the length of X and Y input
vector respectively. The resource requirements of data skewing
and alignment are determined with two triangular flip-flop arrays.
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which means that 265 skew flip-flops are needed for the
realization of a 10 by 10-bit multiplier.
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Figure 1 – Example of a generic data path for signal
processing applications
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Figure 2 – Bit-level pipelined 4-bit two’s complement parallel
array multiplier

A solution to the latency and resource usage problem is available
with the design of application-specific architectures, tailored
towards specific DSP applications. In such architectures pipelined
functional modules with identical interface timing are used,
allowing the chaining of the data path components without the



need for the expensive and time-consuming skewing and
alignment of data words as shown in Figure 3. This shows also
that the triangular flip-flop arrays are only required at the inputs
and outputs of the architecture to conform to the parallel input-
output requirements.
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The simple yet powerful chaining of functional modules leads to
efficient architectures tailored towards a particular application,
however these architectures are not easily designed and do not
provide a flexible trade-off between circuit size and speed. More
efficient and flexible realizations of demanding DSP applications
can be achieved with an alternative approach that eliminates the
need for skew and alignment flip-flops in generic data path
structures. This is shown in Figure 4 for the case of the pipelined
4-bit multiplier that performs two’s complement multiplication
based on the Baugh-Wooley algorithm [14]. The blocks AND,
NAND and XOR represent registered primitive gates, blocks HA
and FA are half adder and full adder cells respectively whilst the
blocks labeled FF and NFF are flip-flops with normal and
inverted outputs. Blocks HA& and FA& contain registered half and
full adder cells with partial product term inputs.

Full resource utilization implies that the different pipeline stages
process intermediate results of lx+ly different multiplications at
any one time and the input bits y0, y1, … 1−yly  represent bits of

the multiplier operations n, n-1, … n-p+1 where p=lx+ly represents
the length of the pipeline. Conversely, the more significant bits of
a particular data word n are provided in subsequent clock cycles,
e.g. bit y0(n) at time t, y1(n) at t+1, … and yl-1(n) at t+l-1.
Similarly, the result bit z0(n) is obtained at time t, bit z1(n) at t+1,
etc as sketched in Figure 5a. To connect the output of such a
pipelined functional modules in a generic data path (Figure 1) to a
register, the individual result bits must be stored in subsequent
clock cycles. This is achieved by splitting the p-bit register into p
individual register cells, each with its own write enable signal wem

as shown in Figure 6. The timing of the individual write enable
signals given in Figure 5b ensures that a data bit zm(n) is stored in
the corresponding register cell at exactly the time t+m when it
becomes available at the functional module output. For example,

the write enable signal we2 ensures that bit z2 of the operation
result is stored during the third clock cycle in its register location.
Similarly, all p-bit wide multiplexers present in a data path are
split into p 1-bit multiplexers and provided with individual
control signals such that the functional modules obtain their input
data with the required timing (Figure 6). As a result, a compact
data path structure is obtained where fully pipelined functional
modules are connected to registers and multiplexers without the
need for skew and alignment flip-flops.
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Figure 4 – Proposed bit-level pipelined two’s complement
parallel array multiplier
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2.1 Reduction of Circuit Latency
The construction of pipelined data paths without skew and
alignment flip-flops results in optimized circuit delays. Figure 7a
shows the timing within a data path based on LSB-first arithmetic
and it can be seen that the least significant result bit of functional
module 1 is stored in register R1 immediately after it becomes
available whilst more significant bits are stored in subsequent
cycles. Since the following operation processes the LSB first, it is
possible to initiate this operation on functional module 2 even if
the more significant result bits are not yet available. A comparison
to a traditionally used data path structure is given in Figure 7b
where the added skew and alignment flip-flops introduce a latency
which increases the overall execution time substantially. For
example, the bit-level pipelined multiplier of Figure 2 requires
lx+ly clock cycles until the MSB is obtained and the following
operation can be initiated whilst it takes only one clock cycle to
obtain the LSB of the functional module in Figure 7a. This
latency reduction is especially important in recursive signal
processing algorithms where the achievable throughput rate is
limited by the latency.

2.2 Reduction of Resource Usage
So far, it has been shown that the latency of a pipelined data path
is reduced significantly by eliminating the need for skew and
alignment flip-flops. A second advantage of this methodology is a
notable saving on flip-flops, determined by:
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where nskew is the number of skew flip-flops and nff is the total
number of flip-flops. In the case of a traditional pipelined
multiplier (Figure 2), it is apparent that a total of
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flip-flops is required to register the outputs of arithmetic blocks
and for the skewing of input and output data. Assuming that
l=lx=ly, Equation (4) simplifies to:
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This shows, for example, that a flip-flop saving of 42 % is
achieved in the case of an 8-bit multiplier and 41 % for a 12-bit
multiplier. Similar savings are projected for other pipelined
functional modules and hence a good estimate of the savings in a
complete data path structure is given with Equation (6). Clearly,
this saving on flip-flop resources is achieved at the expense of an
increase in control path complexity. Although the use of
individual control signals for each register or multiplexer bit
results in a vast amount of control signals, the increase in control
path complexity is significantly less than the savings in the data
path. This is because the exploitation of redundancies and don’t
care conditions amongst the control signals allows a substantial
reduction of the number of unique control signals. The practical
aspects of control path synthesis and the savings on design cost
and latency are considered in the following design example.
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3. DESIGN EXAMPLE
To investigate the implications of the proposed design
methodology, the FPGA realization of a 9th-order wave digital
filter is considered. The filter block diagram shown in Figure 8
consists of 1 first-order and 4 second-order sections, needing a
total number of 10 multiplications, 19 additions and 9
subtractions for the calculation of the filter output value. The
realization of this filter description based on the described data
path structure allows a flexible trade-off between speed and
resource requirements of a particular application. Generally, the
mapping of filter description to data path structure is a complex
and time-consuming task. One solution to this problem is the use
of behavioral level compilers that allow the automatic mapping of
algorithms into highly optimized circuit structures [15]. Here the
high-level synthesis tool ARGEN [15], [16] is used to generate
detailed timing and structural information. The start time as
generated by ARGEN and the execution delay until the LSB of all
filter operations is obtained is shown in Figure 9 assuming bit-
level pipelined functional modules described in the previous
section. The obtained data path structure optimized for Xilinx
XC4000E FPGAs is shown in Figure 10 and it can be seen that 2
adders, 1 multiplier and 16 registers are used.

3.1 Latency of the Filter Realizations
Table 1 shows a comparison between the latency of the data path
based on the proposed methodology and two alternative designs,

assuming FPGAs of the Xilinx XC4000E family. The given
latency represents the number of clock cycles until the LSB of the
operation result is obtained, allowing the start of the next
recursive algorithm execution. While this latency determines the
filter throughput rate, an additional delay is apparent until the
MSB of the filter output is obtained. Design alternative I uses a
pipelined multiplier with skew flip-flops and a combinatorial
adder based on the Xilinx fast carry logic. Design alternative II
makes use of skew flip-flops within all functional modules. It is
assumed that the pipelined multiplier requires 9 clock cycles to
generate the first result bit and the parallel adder requires 3 clock
cycles. This includes the data transfer from source register to
functional module and back to the destination register. Multiplier
and adder with skew and alignment flip-flops have an execution
time of 18 clock cycles. Table 1 shows that the data path based on
the proposed methodology has the lowest latency whilst design II
has the highest. Although design II may not be the most
appropriate solution in the considered filter realization, it still
gives a good indication of the latency increase in designs with
many pipelined operations in the critical path as is the case with
commonly used compression and decoding algorithms. In the
considered example, the proposed methodology leads to 35 % to
70 % faster designs when compared to the two design alternatives.
Similar results in terms of latency reduction have been achieved in
the realization of other signal processing functions, including a
32-point fast discrete cosine transform.
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To allow a comparison of the proposed design methodology to
previously published solutions to the latency problem, a wave
digital filter two-port adapter is considered. Here the delay of an
adder is assumed to be 1 clock cycle and the multiplier delay is lx

clock cycles where lx is the coefficient length. Table 2 sets the
two-port equation execution times for the proposed method, fully
pipelined architectures [17], MSB first approaches [18] and
systolic architectures [12] in contrast. Clearly, it can be seen that
the latency achieved with the proposed method compares
favorably to the other approaches. Note that the MSB first
approach is independent of the coefficient length, which means
that it provides better solutions in applications with long
coefficients. However, this is not of practical relevance in wave
digital filter realizations because commonly used coefficient word
lengths are usually less than 8 bit.

Structure Adder Delay
Multiplier

Delay
Overall
Latency

Proposed 3 9 35

Alternative I 1 3 18 53

Alternative II 2 18 18 113
1 Multiplier with skew and alignment flip-flops, parallel adder.
2 All functional modules with skew and alignment flip-flops.

Table 1 – Comparison of functional module delay and overall
latency of three different data path structures

Architecture
Latency for

coefficient length lx Latency for lx = 6

Proposed lx +2 8

Pipelined [17] lx +2 8

MSB first [18] 9 9

Systolic [12] 2 lx -1 11

Table 2 – Comparison of the wave digital filter two-port
equation execution time

3.2 Resource Usage
The resource usage of the 9th-order wave digital filter realization
based on the proposed structure and the two alternative designs is
compared in Table 3 assuming devices of the Xilinx XC4000E
family. This shows the size of data path, control path and
complete design in terms of configurable logic blocks (CLBs) and
it can be seen that the proposed methodology leads to the
realization with the lowest cost. Since individual control signals
are used for each register or multiplexer bit, the proposed design
methodology requires 624 control signals for the considered data
path. This amount of control signals can be reduced substantially
by exploiting don’t care conditions and redundancies amongst the
signals. For example, the control signals of the multiplexers
connected to registers R4, R5, R6, R12, R14 and R15 can be
generated from a single source. As a result of such efforts, the
control path size increases only moderately from 38 CLBs in a
bit-parallel data path to 96 CLBs.

A significant cost saving is achieved in the data path area with the
proposed design methodology (Table 3). Compared to design

alternatives I and II, 191 and 1007 skew and alignment flip-flops
can be saved. This saving is especially important in the case of
FPGA realizations where skew flip-flops leave the associated
combinatorial logic unused and hence lead to poor resource
utilization. Overall it can be seen that the decrease in data path
cost overweighs the complexity increase in the control path,
enabling savings between 10 % and 50 % when using the
proposed design methodology.

Although only FPGA realizations have been considered in this
paper, the design methodology is equally applicable to ASIC
technology. However, the reduction of circuit size is more
beneficial in FPGA based realizations because of the limited
resources and the inflexible grouping of flip-flops and
combinatorial logic into CLBs.

Structure
Data path
size (CLB)

Control path
size (CLB)

Total size
(CLB)

Proposed 335 96 476

Alternative I 2 430 38 513

Alternative II 3 838 38 876
1 Hardware requirements in terms of CLBs.
2 Multiplier with skew and alignment flip-flops.
3 All functional modules with skew and alignment flip-flops.

Table 3 – Comparison of the design size of three different data
path structures

3.3 Discussion
FPGA implementation using a Xilinx XC4013E has shown that
operational speeds of more than 87.5 MHz are possible. Based on
a schedule length of 35 clock cycles (see Figure 9), a filter sample
rate of 2.5 MHz is achieved. Higher speeds of operation were not
achieved because of the high FPGA utilization and the wiring
complexity of the design.

As already indicated earlier, the described design method allows
to trade area savings for an increase in control path complexity. In
generic data paths (Figure 1) there is a large amount of control
signals required for the switching of multiplexers and storing of
operation results. It has been found that the amount of control
overhead depends largely on the number of registers present in the
design because control sharing amongst register control signals is
not easily possible. This is quite different in the case of
multiplexers where inactive periods result in don’t care situations
that simplify the control sharing of multiplexers substantially.
During the construction of a data path it is thus important to find a
trade-off between cost of functional modules, registers,
multiplexers and control path. Such a complex trade-off can only
be evaluated by means of high-level synthesis tools. At this point,
it should be noted that an alternative approach for the reduction of
the control path complexity if possible if various pipeline stages
are grouped into a single stage. In this case, throughput rate can
be traded for control path complexity.

The demonstrated filter implementation does not utilize the fast
carry chains or CLB RAM found on Xilinx FPGAs. This is
however not a limitation of the used design style but shows rather
the general applicability of the design methodology. In the case
that the fast carry logic of Xilinx FPGAs is used, it is possible to
consider carry bits within the pipeline stage where they are



generated and don’t have to be distributed to the next pipeline
stage. The speed of this design realization depends then on the
speed of the fast carry logic and the length of the carry chain. This
contrasts to the described approach where the performance is
determined by the CLB speed and wiring delay.

For two reasons the registers of the design have been implemented
in CLB flip-flops instead of utilizing the CLB RAM capability.
Firstly, the use of the RAM structures is only efficient in the case
that common control signals are used for a large number of bits.
Secondly, the described design methodology allows the grouping
of the register flip-flops together with the register input
multiplexers into a CLB, hence maintaining optimal CLB
optimization.

4. CONCLUSIONS
This paper has described a new design methodology for bit-level
pipelined data paths, providing a solution to the problems of high
resource usage and limited flexibility inherent in previously
reported approaches. Elimination of all skew and alignment flip-
flops in the data path reduces the resource usage notably and more
important, decreases the circuit latency to an extent that was
previously only achievable with specifically tailored architectures.
Although the proposed method is applicable to both, ASIC and
FPGA technology, it is particularly effective in FPGA based
design realizations due to the significant reduction in resource
usage. This allows the realization of high performance signal
processing functions on FPGAs. The implications of the proposed
design methodology on the resulting data path structure have been
illustrated through the high level synthesis-based FPGA
realization of a 9th-order wave digital filter and it has been shown
that high throughput rates are achievable on medium-sized FPGA
devices. For example, the described filter with 10-bit signal word
length and 6 bit coefficients allows sample rates of 2.5 MHz using
a highly utilized a Xilinx XC4013XL-1 device.
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