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Abstract

FPGAs can perform better than ASICs if the logic mapped onto
them is optimized for each problem instance. Unfortunately, this
advantage is often canceled by the long time needed by CAD tools
to generate problem instance dependent logic and the time required
to configure the FPGAs.

In this paper, a novel approach for runtime mapping is proposed
that utilizes self-reconfigurability of multicontext FPGAs to achieve
very high speedups over existing approaches. The key idea is to
design and map logic onto a multicontext FPGA that in turn maps
problem instance dependent logic onto other contexts of the same
FPGA. As a result, CAD tools need to be used just once for each
problem and not once for every problem instance as is usually done.

To demonstrate the feasibility of our approach, a detailed imple-
mentation of the KMP string matching algorithm is presented which
involves runtime construction of a finite state machine. We im-
plement the KMP algorithm on a conventional FPGA (Xilinx XC
6216) and use it to obtain accurate estimates of performance on
a multicontext device. Speedups in mapping time of� 106 over
CAD tools and more than 1800 over a program written specifically
for FSM generation were obtained. Significant speedups were ob-
tained in overall execution time as well, including a speedup rang-
ing from 3 to 16 times over a software implementation of the KMP
algorithm running on a Sun Ultra 1 Model 140 workstation.

1 Introduction

By exploiting the reconfigurability of FPGAs, significant perfor-
mance improvements have been obtained over other modes of com-
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putation for several applications. However, there are two serious
problems that prevent FPGAs from being utilized to their fullest
potential:

� long mapping time;

� long reconfiguration time.

Mapping time refers to the time to compile, place and route the logic
to be used on the FPGA; reconfiguration time is the time needed to
load the configuration data into the FPGA. Mapping computation
onto FPGAs is typically done using CAD tools. It is a time con-
suming process and can take anywhere from a few minutes to a few
days. In order to take advantage of the reconfigurability of FPGAs,
a new mapping should be created for every problem instance. As a
result, the mapping time becomes very critical and it is extremely
important to reduce it.

The time required to completely reconfigure an FPGA is typically
about 1 ms. Since reconfiguration time needs to be amortized over
computation time, frequent run-time reconfiguration is not possible.
It should be noted that even partial reconfiguration is not a com-
plete solution to this problem. Since reconfigurability is the key
advantage of FPGAs over other modes of computation, reduction
of reconfiguration time is very important.

In this paper we show how to significantly reduce both mapping
and reconfiguration times throughself-reconfiguration. By self-
reconfiguration we mean that not only does the FPGA load the con-
figuration information itself, but also that it generates the configu-
ration. We show how self-reconfiguration can be efficiently imple-
mented usingmulticontext FPGAs(FPGAs having more than one
configuration context on-chip). Although, such devices have been
primarily designed to reduce reconfiguration times, we show how
they can be used for self-reconfiguration as well.

Self-reconfiguration reduces mapping time because all logic to be
configured is generated by previously configured logic. The map-
ping logic is designed to generate highly specific mapped logic and
is therefore much simpler than general purpose CAD tools. Also, it
executes on an FPGA. For these reasons, the mapping time is con-
siderably lesser than mapping via software running on a host ma-
chine. Self-reconfiguration reduces reconfiguration time because
configurations are generated and stored on-chip which is much
faster than loading it from an external source. Also, multicontext
FPGAs can very quickly switch between stored configurations. As
a result of these improvements, self-reconfiguration allows runtime
generation of logic and its use to be interwoven in ways that would
be impractical otherwise. We demonstrate this power and flexibil-
ity by a string matching algorithm implementation. Even though
our early results are very promising, a deep investigation is needed
to fully understand what can be achieved by using this approach
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(b) Mapping and execution on a self-reconfigurable device.

Figure 1:

to reconfigurable computing, and it seems to be a challenging and
wide open research area.

In the first part of the paper, we introduce self-reconfiguration and
its advantages (Section 2) and how it is achieved using multicon-
text FPGAs (Section 3). In the second part, we introduce the KMP
algorithm (Section 4) and present detailed implementation descrip-
tion and performance analysis (Section 5). The conclusion is in
Section 6.

2 Introduction to Self-Reconfiguration

2.1 Problem instance dependence and hard-
ware compiling

The effectiveness of reconfigurable computing is better exploited by
building hardware solutions for each single instance of a given prob-
lem. That essentially means that a good application for reconfig-
urable devices should read the input of the problem (theinstance),
computeinstance dependentlogic, i.e. logic optimized for that par-
ticular instance, and load it into a reconfigurable device to solve the
problem. Applications which produceinstance independentlogic
to be loaded onto a reconfigurable device are simply not exploit-
ing the power of reconfiguration. In that case the logic mapped is
static, depends only on the algorithm used, and is not conceptually
different from ASIC approach.

A large class of applications developed for reconfigurable devices
can thus be modeled in the following way (see Figure 1(a)). A pro-
cess M reads the input problem instance. Depending on the instance
a logic E, ready to be loaded, is computed such that it is optimized
to solve that single problem instance. This process is usually ex-
ecuted by the host computer. LetTM denote the time to perform
this.

After reconfiguring the device, E is executed. LetTME denote
the time to reconfigure. The timeTE required for the execution
includes the time needed for reading the inputs from the memory
and producing the output. Therefore, the time required by the ex-
ecution of a single iteration of the computation described above is
TI = TM + TME + TE.

The actual execution time on the reconfigurable device isTE. It is
often very low compared with the time needed to solve the same
problem by using a software solution, due to hardware efficiency.
This has been used to claim that very high speed-up can be achieved
by reconfigurable computing. It should be clear that this is not a fair
way to compare the performance of reconfigurable systems. How-
ever, this is frequently done. We believe that all times involved in
computing the solution to a given instance of a problem should be
taken into account.

The timeTM required by M varies considerably among applica-
tions, and usually ranges from a few minutes to several hours, and,
for some particularly complex logic, even days! The reason lies in
the fact that usually CAD tools are used. CAD tools are very pow-
erful and general applications, but their flexibility is obtained at the
expense of large computing time. In fact, what is actually done,
is to compile, using a CAD tool, each single instance to derive the
logic E to be used to solve the problem.

The fact thatTM is usually large limits the effectiveness of recon-
figurable computing. In [1], for example, a shortest paths algorithm
is implemented. In that case, the execution timeTE for a problem
instance is order of microseconds, while the mapping timeTM is or-
der of hours. Also in [15], the proposed algorithm for SAT usually
takes hours to be mapped. SAT is NP-complete, and thus a good
candidate to makeTM affordable sinceTE is usually very high. In
spite of that, when mapping time is taken into account, only mod-
est speedups are obtained. The timeTME depends on to the device
used. For FPGAs, for example, it is typically around 1 millisecond,
and it is related to the bottle-neck represented by the bus connecting
the host computer to the FPGA board. Even if the reconfiguration
time TME is often much lower than the mapping time, it can still
be unacceptable for most real-time applications.

Some efforts have been made to overcome these problems. For ex-
ample, in [7] CAD Tools are used only once to compute a generic
skeleton logic. Then, for each problem instance, some limited
changes are made by the host computer to build an instance depen-
dent circuit and load it into the FPGA board. This is an interesting
technique that can be useful to lower the mapping timeTM , but
cannot avoid the bottle-neck represented by the bus connecting the
host computer to the FPGA board. In [7],TM + TME is around 3
seconds, still too high for a large class of applications.

This paper presents a novel approach to reconfigurable computing
which is able to dramatically reduceTM andTME . Since M has to
be speeded up, what we propose is to let fast reconfigurable devices
to be able to execute it (see Figure 1(b)). In case a single FPGA is
being used, this essentially means that the FPGA should be able to
read from a memory the problem instance, configure itself, or a part
of it, and execute the logic built by it to solve the problem instance.
Evidently, in this case M is itself a logic circuit, and cannot be as
complex and general as CAD tools are.

Letting FPGA system execute both M and E on the same chip gives
the clear advantage that CAD tools are used onlyonce, in spite of
classical solutions where they are needed for computing a logic
for each problem instance. This is possible since the adaptations,



needed to customize the circuit to the requirements of the actual
input, are performed dynamically by the FPGA itself, taking advan-
tage of hardware efficiency.

Another central point is that the bus connecting the FPGA system to
the host computer is now only used to input the problem instance,
since the reconfiguration data are generated locally. In this way, the
bottle-neck problem is also handled.

These ideas are shown to be realistic and effective by presenting a
novel implementation of a string matching algorithm. String match-
ing is one of the most important problems in Computer Science,
both from a theoretical and from a practical point of view. In Sec-
tion 5, a detailed implementation is described, andTM + TME is
shown to be around28�s, for patterns 16 character long, achieving
a dramatic speed-up over classical FPGA computations.

2.2 Self-reconfiguration

The main feature needed by an FPGA device to fulfill the require-
ments needed by the technique shown in the previous section is self-
reconfigurability. This concept has been mentioned few times in the
literature on reconfigurable architectures in the last few years [6][5].
In spite of that, to the best of our knowledge not only no one de-
vised an application that actually used that feature, but no one even
investigated to understand how self-reconfiguration could be used
to achieve superior performance.

The concept of self-reconfiguration was earliest presented in [6],
where a small amount of static logic is added to a reconfigurable
device based on an FPGA in order to build a self-reconfiguring pro-
cessor. Being an architecture oriented work, no application of this
concept is shown.

The recent Xilinx XC6200 is also a self-reconfiguring device, and
this ability has been used in [5] to define an abstract model of
virtual circuitry, the Flexible URISC. This model still has a self-
configuring capability, even though it is not used by the simple ex-
ample presented in [5].

All these devices are potentially capable of self-reconfiguring, and
are thus able of implementing the ideas presented in this paper.
However, moving the process of building the reconfigurable logic
into the device itself requires a larger amount of configuration mem-
ory in the device with respect to traditional approaches. For this
reason, multi-context FPGAs seem to answer better to these re-
quirements, since they have been shown to be able to store a large
amount of different contexts (see [12], for example, where a self-
reconfiguring 256-context FPGA is presented).

3 Multicontext FPGAs

As described in the Introduction, the time required to reconfigure a
traditional FPGA is very high. To reduce the reconfiguration time, a
device having more than one configuration context was proposed in
[4]. Several suchmulticontextFPGAs have been recently proposed
[13][11][14] [8][3].

These devices have on-chip RAM to store a number of configura-
tion contexts, varying from 8 to 256. At any given time, one context

governs the logic functionality and is referred to as theactivecon-
text. Switching contexts takes 5–100 ns. This is several orders of
magnitude faster than the time required to reconfigure a conven-
tional FPGA (�1 ms).

For self-reconfiguration to be possible, the following two additional
features are required of multicontext FPGAs:

� The active context should be able to initiate a context switch—
no external intervention should be necessary.

� The active context should be able to read and write the config-
uration memory corresponding to other contexts.

The multicontext FPGAs described in [13][11][14] satisfy the
above requirements and hence are capable of self-reconfiguration1.

4 The KMP Algorithm for String Matching

The String Matching problem consists of finding all occurrences of
a patternP , of lengthm, in a textT , of lengthn, m � n, with P
andT being strings over a finite alphabet�.

Besides being a fundamental problem in Computer Science from a
theoretical point of view, String Matching is of paramount practi-
cal relevance. Important examples of its application can be easily
found in the areas of Text Processing, Pattern Recognition, Image
Understanding, Databases, and Biology, to name a few. In partic-
ular, applications of String Matching in Biology are of utmost im-
portance, since finding patterns of DNA inside longer sequences is
becoming central in the analysis of human genome.

A naive algorithm that can be used to solve String Matching con-
sists in trying to match the pattern at each position in the text by a
“brute force” search. Meaning that for each positioni in the text,
we perform a do-loop operation to check whether allm characters
of P matchm characters ofT starting from positioni. If we found
a mismatch, say at positioni+ h, we can stop this search and try at
positioni + 1. This leads to a simple, but slow, algorithm, whose
time complexity isO(mn), in the worst case, and thus quite far
from optimality.

It can be remarked, however, that if we find a mismatch at position
i, it makes sense to try at positioni + 1 only if the pattern is such
that its firsth� 1 characters, which are equal to theh � 1 charac-
ters starting at positioni in the text, are exactly equal to theh � 1
characters starting at position2 in the pattern itself. If this is not
the case, we waste our time looking for a match at positioni + 1;
moreover, if this is the case, we also waste time comparing the first
h� 1 characters of the pattern, from positioni+1 to positioni+h
excluded in the text, since we already know that we are going to
find all matches.

More generally, after finding a mismatch at positioni + h, we can
jump in the pattern at the end of the longest prefix that is also a
suffix of the firsth character in the pattern, and keep on comparing
the character at positioni+h in the text. There is no way to find an

1The string matching implementation described later also requires con-
figuration memory writes to take only a few clock cycles. At least one of the
devices [11] allows this and others may also.



ProcedureTextSearch(P , T )

n = length(T );
m = length(P );
� = ComputePre�xFunction(P );
q = 0; i = 0;
while (i < n) do

if (T [i] 6= P [q])and(q == 0) then
++i;

else if(T [i] 6= P [q])and(q 6= 0) then
q = �[q];

else if(T [i] == P [q])and(q 6= m� 1) then
++ i; ++ q;

else if(T [i] == P [q])and(q == m� 1) then
print “match found”;
++ i; ++ q;

end if
end while

Function ComputePrefixFunction(P )

m = length(P );
�[1] = 0;
i = 1; q = 0;
while (i < m) do

if (P [i] 6= P [q])and(q == 0) then
++i;
�[i] = 0;

else if(P [i] 6= P [q])and(q 6= 0) then
q = �[q];

else if(P [i] == P [q]) then
++ i; ++ q;
�[i] = q;

end if
end while

Figure 2: KMP algorithm Phase 2 (Text search) and Phase 1
(Prefix function Computation).

occurrence of the pattern before that point, and, at the same time, we
can take advantage of internal symmetries of the pattern avoiding
checking characters in the text more than needed.

This is the key idea of the Knuth-Morris-Pratt algorithm, which
computes, for each positionh in the pattern, the longest prefix that
is also a suffix of the firsth character of the pattern itself. This in-
formation is encapsulated in a function� such that�[h] = j if and
only if the firstj characters ofP are the longest proper prefix that
is also a suffix of the firsth characters ofP . Note that� does not
depend on the text, and can be thus precomputed by looking at the
pattern only.

The KMP algorithm is a classical 2-phase computation. It takes
in input the patternP , performs a precomputation onP to get
the function�, and then, in the second phase, uses� to speed-up
the search inside the text. Using terminology introduced earlier,
TM + TME is the time taken by Phase 1 while the time taken by
Phase 2 isTE . The algorithms used for Phase 1 (Prefix function
computation) and Phase 2 (Text search) are shown in detail in Fig-
ure 2. The algorithms shown have been written such that they cor-
respond closely to their hardware implementation. It can be proved
that KMP is optimal, requiringO(m + n) to perform both phases
(see [2] for a proof and a detailed description of the KMP algo-
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Figure 3: Example of� function for a pattern p = ababca. The
index q of the algorithms in Figure 2 can be implemented as a
pointer to a node, and an edge from the nodeh to the nodej is
present if and only if �[h] = j.

rithm).

KMP seems to be an ideal candidate to be implemented on recon-
figurable devices. Indeed, thanks to reconfigurability, the function
�, depending on the input of each single instance of the problem,
can be implemented in hardware, thus considerably speeding-up the
searching phase. A good way to visualize the function� is given in
Figure 3, where each node indicate a position in the pattern, and an
edge is present between nodesh andj if and only if �[h] = j. In
this way, the value of the indexq in the the KMP-Matcher, shown
in Figure 2, can be stored as a pointer to a node, and at each step
of computation the pointerq moves either to the next nodeq+1, if
a match is found, or to the node�[q] indicated by the edge starting
from nodeq, otherwise. This behavior is very similar to that of a
finite state machine, and it is well suited for hardware implementa-
tion, as will be shown in the next section.

Our implementation is devised to handle anon-line version of
String Matching. Meaning that our FPGA system is able to read
an incoming pattern, configure itself depending on it, and solve the
problem on an incoming text. Moreover, it is possible to change the
problem instance by furnishing a new pattern to the system. In this
case, the FPGA reconfigures itself to optimize depending on the
new pattern, and is ready to solve the new instance on an incom-
ing text. All these operations (including reconfiguration) are per-
formed inside the FPGA system itself, without involving the host
computer.

5 Implementation of the KMP algorithm

In this section, we present the details of how the KMP algorithm
exploiting self-reconfiguration would be implemented on a multi-
context FPGA. Unfortunately, multicontext FPGAs are not com-
mercially available. Therefore, we implement the logic on a con-
ventional FPGA and simulate self-reconfiguration via software. We
begin by describing in Section 5.1 how the algorithm is realized in
hardware without discussing any FPGA specific features. Since the
FSM is the most important component, its structure and runtime
construction are described in detail. Section 5.2 presents the details
of how it would be implemented on a multicontext FPGA. The ac-
tual implementation on a conventional FPGA (Xilinx XC6216) is
presented in Section 5.3. Finally, performance is evaluated in Sec-
tion 5.4.



5.1 Hardware Realization

We describe Phase 2 of the algorithm first. Logic is constructed at
runtime in Phase 1 and used in Phase 2. Knowing what the con-
structed logic looks like and how it works makes it easier to under-
stand the subsequent description of Phase 1.

5.1.1 Phase 2: Text Search

The datapath used for Phase 2 (see Figure 2) is shown in Figure
4. The textT is stored in external memory. The indexi in the
algorithm is essentially an address counter used to fetch the next text
character. The entire patternP is stored on-chip. The comparator
is used to compare the appropriate text and pattern characters. The
last major logic block implements the prefix function� .

The operation of the datapath can be easily understood by looking
at Figure 4. Each clock cycle, the fourif conditions are evaluated
in parallel but only one of the statements is executed. The values
of the signalschar match, state zero andstate final
determine which of the four paths is selected. The controller gen-
erates appropriate values for the signalsinc i, inc match,
next state and inc state . If next state is 0, q remains
unchanged for the clock cycle. Otherwise,++ q (state inc=1 )
or q = �[q] (state inc=0 ) is performed. To improve perfor-
mance, the implementation overlaps fetchingT [i] with datapath op-
eration.

Prefix Function FSM As described in Section 4, the prefix func-
tion � can be implemented as a FSM. The FSM containsm states,
0 tom� 1. The state corresponding to the value ofq is the current
state.

There are two standard techniques for implementing FSMs using
programmable logic [9]. One way is using a LUT that stores the
FSM states in a (typically binary) encoded form. As the FSM size
increases, the speed decreases and area required increases because
of the wider and deeper decoding logic and the associated routing.
Also, in the our case two comparators would be required for gener-
ating thestate zero andstate final signals.

The other approach is to use the One-Hot Encoding (OHE)
scheme—one flip-flop is associated with each state. At anytime
exactly one flip-flop has a 1 bit signifying the current state. This
approach is simpler and more efficient as it requires lesser decoding
logic and suits the flip-flop rich architecture of FPGAs.

We exploit properties of� to develop a particularly compact and
simple implementation of the FSM. There are exactly two possible
transitions from each state. One of these is to the following state
(forward edge) and the other is to one of the previous states (back-
ward edge). These properties simplify the routing considerably.
In addition, the signalsinitial state andfinal state are
simply the outputs of the initial and final state flip-flops respectively,
eliminating the need for any comparators.

5.1.2 Phase 1: Prefix Function Construction

As can be seen from Figure 2, Phase 1 is similar to Phase 2. Two
minor differences are thati is initialized to 1 and the patternP is

compared with itself instead of textT . The only major difference
is additional steps for constructing the prefix function� through
assignments to�[i]. In terms of logic, these assignments translate
to constructing the back edges of all the states of the FSM. Con-
struction of the FSM at runtime and the logic required to do so are
described below.

Online FSM Construction The FSM for the given pattern is con-
structed using a preconfiguredtemplate. The FSM template, shown
in Figure 5 is independent of the pattern and constructed before-
hand. Flip-outputs go to the next flip-flop (forward edges) and to
horizontal wires (which runtime back edge construction described
below). At any time during execution, only the flip-flop for state
q has a 1-bit. The template also has storage for the patternP with
P [q] available as the output of the rightmost mux.

At runtime, the first step is to customize the template for the input
pattern sizem. This is done by connecting the output of flip-flop
for statem � 1 to the horizontal wire that is the lower input to
the state 0 flip-flop. This is followed by loading and storing the
pattern on-chip. Next Phase 1 starts, and the execution of statements
�[i + 1] = q and�[i + 1] = 0 in the Phase 1 algorithm results in
the construction a back edge from statei + 1 to stateq or state 0
respectively. As can be seen from Figure 6, this is only a matter of
inserting an OR gate at the appropriate position. The piece of logic
that constructs back edges takesq andi as inputs and computes the

position (ith row andqth column) at which the OR gate is to be
inserted. See Section 5.3 for implementation details of this logic.

In this manner, problem instance dependent logic is mapped within
clock cycles, instead of minutes or hours that would be required if
software was in the loop. Another interesting feature is that in FSM
construction alternates with FSM use (whenever� is read in Phase
1). Such a fine grained interleaving would not be possible without
self-reconfiguration.

5.2 Proposed Implementation on a multicon-
text FPGA

Before computation begins, the patternP , pattern lengthm, textT
and text lengthn are stored in external memory that can be accessed
by the multicontext FPGA. The following logic is configured onto
four contexts of the FPGA. Context 0 contains control logic that
governs overall execution of the algorithm. Context 1 has logic for
customizing the FSM for givenm. Context 2 contains datapath for
Phase 1 of the KMP algorithm as well as logic for runtime FSM
construction. Hardwired into this logic are configuration bits for
the OR-gate and its connections (referred to asor gate). The num-
ber of configuration memory writes needed for OR-gate insertion is
sor gate. The FSM is constructed on context 3 in Phase 1. During
Phase 2 it includes the datapath required for Phase 2 as well.

Figure 7 shows the computation performed in each context (compu-
tation done in context 3 during Phase 1 and Phase 2 is shown as con-
text 3a and context 3b respectively). At the end of each statement
is the time required by the logic to execute it. The times are ex-
pressed in terms oftcm (configuration memory read or write time),
tem (external memory read or write time),tclk (one clock cycle
time), tcs (time required to switch contexts) andsor gate. Compu-
tation starts with context 0 switching to context 1 which customizes
the FSM size. The FSM is constructed on a separate context since
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the currently executing context cannot modify itself. Doing do re-
quires data sharing between contexts which is possible on multicon-
text FPGAs [13]. In Figure 7,read em andwrite em refer to an
external memory access whileread cm andwrite cm refer to a
context memory access. Note that no external intervention by the
host machine is required in constructing the FSM.

Next, the logic on context 2 performs Phase 1 of the KMP algo-
rithm. Self-reconfiguration is performed via configuration mem-
ory writes to construct the appropriate back edges. Note how the
FSM back edge construction alternates with use of the partially con-
structed FSM (by switching to context3) alternates every few clock
cycles. Finally context 0 connects the FSM to the text search dat-
apath already present on context 2. Since their positions are fixed
beforehand, the datapath can be interfaced with the runtime gener-
ated FSM to form the complete logic required for performing Phase
2 of the KMP algorithm.

The context switching is similar to context switching of processes
on a uniprocessor. At a time only one of the FPGA contexts exe-
cutes and switching to a context resumes its execution from where
it had stopped earlier due to a context switch. This is possible be-
cause the state of the active context (bits stored in all the flip-flops)
are saved before switching to a different context.

We now deriveTM , TME andTE in terms of the times in Figure
7. TME is the time spent in writecm operations. From the times in
Figure 7,

TME = (m� 1)sor gatetcm (1)

The remaining time spent in contexts 1, 2 and 3a isTM , the time
required to compute the FSM mapping and is given by2

TM = (4m� 2)tcs + (m+ 1)tem + (7m� 4)tclk (2)

Finally, the execution timeTE is the time spent in Phase 2 which

2This is the worst caseTM which corresponds to a pattern containing all
identical characters except the last one.

is3

TE = (2n�
n

m
)tclk (3)

A few remarks on how the above times were determined— readem
P and writecm P are pipelined and take(m + 1)tem time. In
context 3b, only one if statement is executed each iteration taking
tclk time. Similarly context 3a also takestclk time. The execution
time of context 2 depends upon the input pattern and the worst case
occurs when all characters are identical and the last if statement is
executed each iteration. The worst case time is used inTm above.

5.3 Actual implementation on a conventional
FPGA

We implement logic described for contexts 2, 3a and 3b in the previ-
ous section on a Xilinx XC 6216 device. From the implementation
we determinetclk andtem andtcm4. And by using atcs value based
on published context switching times, we obtain using equations 1,
2 and 3, an accurate performance estimate of the KMP algorithm
implemented on an abstract multicontext version of the XC 6216.
The feasibility of such a device should not be in doubt since the ex-
tensions we assume have been demonstrated in various multicontext
devices built so far.

The VCC Hotworks board was used for the implementation. Re-
quired logic was specified in structural VHDL and translated to
EDIF format using velab. XACT 6000 was used for place, route and
configuration file generation. For debugging and runtime support,
XC 6200 Inspector and PCI Test were used. The 128 KB of SRAM
(referred to as external memory henceforth) on the VCC board was
used to simulate the configuration memory of a multicontext device.

3This is the worst caseTE which corresponds to text containingm char-
acter repetitions in each of which the firstm�1 characters match the pattern
and the last one does not.

4We make the conservative assumption thattcm = tem.



context 0
/*Stage 1 of FSM construction.*/
switch context1; tcs
/*Stage 2 and Phase 1.*/
switch context2; tcs
/*Phase 2.*/
connect Phase 2 datapath;tclk
switch context3; tcs

context 1
reademm; tem
/*Connect final state output to state 0 input.*/
connect flip-flopm� 1; tclk
/*Store pattern characters in pattern registers.*/
reademP ; mtem
write cmP ; mtcm
switch context0; tcs

context 2
i = 1; q = 0; 0
reademm; tem
while (i < m) do

/* One if statment executed every iteration.*/
if (P [i] 6= P [q])and(q == 0) then

++i; tclk
/*Create back edge for�[i] = 0.*/
compute OR gate insertion position;tclk
write cmor gate; sor gatetcm

end if
if (P [i] 6= P [q])and(q 6= 0) then

/*Switch to FSM context and performq = �[q].*/
stateinc=0; tclk
switch context3; tcs

end if
if (P [i] == P [q]) then

/*Switch to FSM context and perform++ q.*/

++ i; inc state = 1; tclk
switch context3; tcs
/*Create back edge for�[i] = q.*/
compute OR gate insertion position;tclk
write cmor gate; sor gatetcm

end if
end while
switch context0; tcs

context 3a
if (inc state == 1) then

if (q == m� 1) then q = 0; else++ q; tclk
end if
if (inc state 6= 1) then
q = �[q]; tclk

end if
switch context0; tcs

context 3b
i = 0; q = 0; 0
reademn; tem
while (i < n) do

/* One if statment executed every iteration.*/
if (T [i] 6= P [q])and(q == 0) then

++i; tclk
end if
if (T [i] 6= P [q])and(q 6= 0) then
q = �[q]; tclk

end if
if (T [i] == P [q])and(q 6= m� 1) then
++ i; ++ q; tclk

end if
if (T [i] == P [q])and(q == m� 1) then

/*Pattern match found.*/
++ i; ++ q; ++matches; tclk

end if
end while

Figure 7: KMP algorithm implementation on a multicontext FPGA.
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Figure 8: Generating configuration memory address for OR-
gate insertion. Address bits 15:14 and 7:6 are constant and
known beforehand.

For Phase 1 we implement on the XC 6216 the Phase 1 datapath,
OR-gate construction logic and the FSM template. All this logic
corresponds to contexts 2 and 3a in Figure 7. For each back edge,
the address in configuration memory where the OR-gate is to be in-
serted is written out to external memory (in one clock cycle). This
information is used to modify the configuration file which is used to
reconfigure the FPGA for computing the next back edge. Knowing
row and column of a logic cell, it is trivial to compute the corre-
sponding configuration addresses since the row and column num-
bers directly form a part of the 6200 address. The logic for OR-gate
computation is thus quite simple and is shown in Figure 8. Insert-
ing the OR-gate and making the appropriate connections needs just
24 bits of configuration data which is embedded in the logic itself.
Three separate writes are required however since each byte needs to
be written to a separate address. Thussor gate = 3. For Phase 2 we
implement logic corresponding to context 3b on the XC 6216. The
logic searches through text stored in the external memory just as a
multicontext FPGA would since no context switching is involved in
this phase.

5.4 Performance Evaluation

From the implementation description in Section 5.3 it should be
clear thattcm = tem = tclk. Based on published literature, we
make the conservative assumption thattcs = 100ns. We deter-
mine tclk as follows. For a given pattern size, we increase the
clock frequency till any further increase makes the implemented
logic stop working correctly. The corresponding clock period is the
value oftclk. tclk increases somewhat with pattern size since the
corresponding FSM is bigger and hence the critical path is longer.
Plugging all the above values into equations 1, 2 and 3 for pattern
sizem varying from 4 to 16, and text sizen = 104 characters, we
obtain the results shown in Table 1.

m tclk TM TME TE Total time

4 81.6 ns 3.7�s 0.7�s 1428�s 1432�s
8 97.6 ns 9.0�s 2.1�s 1830�s 1841�s

16 129.6 ns 22.4�s 5.8�s 2511�s 2539�s

Table 1: Performance of the implementation for various values
of m with n = 104.

We now compare the mapping time (TM + TME) of the proposed
multicontext FPGA approach with other approaches. Consider the
case where CAD tools are used to perform the FSM construction.
To findTM for this approach, we determine the time taken to com-
pile a structural VHDL description5 for m = 8 using velab (4 s)

5We ignore the time required to generate the VHDL code for the given

and route it using XACT 6000 (68 s) givingTM = 72 s.TME = 1
ms is the time required to download the configuration onto the XC
6216 via the PCI bus. To makeTM as small as possible, we ex-
plicitly specify placement of logic and use XACT 6000 only for
routing. Even then, as can be seen from row 2 Table 2, the pro-
posed approach is six orders of magnitude faster than the naive use
of CAD tools. Of course a multicontext FPGA is needed to obtain
the speedup. A smarter approach would be to write a program that
directly modifies the binary configuration file based on the input
pattern. This approach is essentially doing in software what we do
on the FPGA itself. Row 3 of Table 2 shows the performance of this
approach6. Although much faster than the CAD tools approach, it
is still more than 1800 times slower than the proposed approach.

Table 3 shows the total execution time speedups over other ap-
proaches. We also compare the performance with a software imple-
mentation of the KMP algorithm running on a Sun Ultra 1 Model
140. As can be seen from row 4 of Table 3, reasonable speedups are
obtained. A key point to note is that the multicontext FPGA is better
than others for all values ofn. This is in contrast to most reported
results where the problem size must be very large to amortize the
high mapping time.

Comparison of the implementation with other FPGA based string
matching implementations is unfortunately not possible due to dif-
ferences in the FPGA architectures and the algorithms used. We
note however, that in [7]TM = 0:16s and TME = 3:05s.
These times are for a naive string matching implementation on 16
CAL1024 FPGAs that runs at 20 MHz. Thus, in [7], speedups
will be obtained only for very large problem sizes due to the high
TM + TME .

6 Conclusion

We have shown dramatic speedups in the time required to map logic
at runtime onto FPGAs. This is done by the novel approach of de-
veloping logic that maps logic and putting the former on the FPGA
itself. As a result CAD tools need to be used just once for each
problem (to build logic that builds logic and some template logic)
and not once for every problem instance as is usually done. The
reduction in mapping time achieved is extremely important because
FPGAs can do better than ASICs only if the mapping is problem
instance dependent, which means that the runtime mapping time is
a part of the overall execution time.

We show how self-reconfiguration can be performed using multi-
context FPGAs and how to efficiently realize the above approach
through self-reconfiguration. We demonstrate our approach by pre-
senting a detailed implementation of the KMP string matching al-
gorithm which utilizes the above approach to construct a FSM at
runtime. An interesting feature of the implementation is that FSM
construction and use of the FSM alternate every few clock cycles.
Such a fine grained interleaving of mapping logic and using it would
not be possible with software in the loop.

Finally, we implement the KMP algorithm on a conventional FPGA
and use it to obtain accurate estimates of performance on a multi-
context device. Our results show high speedups in mapping time

input pattern as it would be quite small. In any case, accounting for this
time would only improve our speedup. The times are obtained on an IBM
PC with a 200 MHz Pentium Pro and 64 MB RAM.

6The timeTM is for a C program running on a Sun Ultra 1 Model 140.



Approach TM TME TM + TME Speedup

Multicontext FPGA 9.0�s 2.1�s 11.1�s 1.0
CAD tool mapping 76 s 1 ms 76 s � 6� 106

Software mapping 20 ms 1 ms 21 ms 1892

Table 2: Speedup in mapping time (m = 8).

Approach TM + TME + TE Speedup
n = 104 n = 105 n = 106 n = 104 n = 105 n = 106

Multicontext FPGA 1.8 ms 18.3 ms 183.1 ms 1.0 1.0 1.0
CAD tool mapping 76.0 s 76.0 s 76.2 s � 105 � 104 � 103

Software mapping 21.8 ms 39.3 ms 204.1 ms 12.1 2.1 1.1
Sun Ultra 1 30 ms 80 ms 680 ms 16.6 4.4 3.7

Table 3: Speedups over other approaches for various values ofn, with m=8.

and reasonable speedups in overall execution time over various ex-
isting approaches.

This work has been done as a part of the MAARC (Models, Algo-
rithms and Architectures for Reconfigurable Computing) project.
The MAARC project is developing a framework of algorithmic
techniques for reconfigurable computing and exploiting this tech-
nology for embedded signal and image processing applications.
Please see [10] for more information.
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