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Abstract

In this paper we describe a compiler which quickly synthesizes
high quality pipelined datapaths for pipelined reconfigurable
devices. The compiler uses the same internal representation to
perform synthesis, module generation, optimization, and place
and route. The core of the compiler is a linear time place
and route algorithm more than two orders of magnitude faster
than traditional CAD tools. The key behind our approach
is that we never backtrack, rip-up, or re-route. Instead, the
graph representing the computation is preprocessed to guar-
antee routability by inserting lazynoops. The preprocessing
steps provides enough information to make a greedy strat-
egy feasible. The compilation speed is approximately 3000
bit-operations/second (on a PII/400Mhz) for a wide range of
applications. The hardware utilization averages 60% on the
target device, PipeRench.

1 Introduction

Reconfigurable computing has the potential to change the way
computing is performed. Such systems offer a many-fold in-
crease in performance by better utilizing the large amounts of
silicon available to chip designers, particularly for applications
which can be turned into pipelined datapaths. However, it is
notoriously hard to compile to such systems. In this paper we
describe a compiler which aims to solve this problem. The
compiler uses a natural dataflow representation of the program
to create pipelined datapaths two orders of magnitude faster
than traditional tools.

The source language for the compiler, DIL, is a single as-
signment language that can be easily used by either program-
mers or as an intermediate language in a high-level language
compiler. DIL is expressive enough that it is used to create
parameterized modules which form part of the compilation
process.

The current compiler targets pipelined reconfigurable ar-
chitectures like PipeRench, although our techniques are gen-

eral enough to apply (at least in part) to other fabrics,
such as commercial FPGAs. For PipeRench the compiler
achieves excellent compilation speeds (approximately 3000
bit-operations/second) and yields good hardware utilization
(over 60%). The key to the speed is a deterministic, linear-
time place and route algorithm, which uses the novel tech-
nique of lazy noops. Place and route itself runs at 6000
bit-operations/second. An important reduction in complex-
ity comes from the fact that, instead of creating a flat netlist
and then recreating the datapath implied by the source pro-
gram, the DIL compiler maintains the structure of the program
throughout the compilation process.

In the next section we describe DIL, our data-flow interme-
diate language which is the input for our compiler. Section 2
describes the current class of architectures that our compiler
targets. We describe the language and some of the important
passes of the compiler in Section 3. In Section 4 we describe
our linear time place and route algorithm. In Section 5 we
evaluate the compiler’s performance on a series of benchmark
kernels. We cover related work in Section 6 and conclude
in Section 7.

2 PipeRench

The current version of the DIL compiler targets PipeRench, an
instance of the class of pipelined reconfigurable fabrics [23].
From the compiler’s point of view the two most important
characteristics of PipeRench are that it (1) supports hardware
virtualization and (2) is optimized to create pipelined datap-
aths for word-based computations. Hardware virtualization
allows PipeRench to efficiently execute configurations larger
than the physical fabric, which relieves the compiler from the
onerous task of fitting the configuration into a fixed size fabric.
PipeRench achieves hardware virtualization by structuring the
fabric (and configurations) into pipeline stages, orstripes. The
stripes in an application are time multiplexed onto thephysical
stripes (see Figure 1). This requires that every physical stripe
be identical. It also restricts the computations it can support
to those in which the state in any pipeline stage is a function
of the current state of that stage and the current state of the
previous stage in the pipeline. In other words, the dataflow
graph of the computation cannot have long cycles.

Each stripe in PipeRench is composed ofN processing
elements (PEs). In turn, each PE is composed ofB identically
configured 3-LUTS,P B-bit pass registers, and some control
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Figure 1:Hardware virtualization in PipeRench overlaps com-
putation with reconfiguration and provides the illusion of un-
limited hardware resources.
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Figure 2: The interconnection network between two adjacent
stripes. All switching is done at the word level. All thick
arrows denoteB-bit wide connections.

logic. The three inputs to the LUTS are divided into two data
inputs (A and B) and a control input similar to [7]. Each
stripe has an associatedinter-stripe interconnectused to route
values to the next stripe and also to route values to other PEs in
the same stripe. An additional interconnect,the pass-register
interconnect, allows the values of all the pass registers to be
transfered to the pass registers of the PE in the same column
of the next stripe.

The structure of the interconnect is depicted in Figures 2
and 3. Both the inter-stripe interconnect and the pass-register
interconnect switchB-bit wide buses, not individual bits. A
limited set of bit permutations are supported in the intercon-
nect by barrel shifters which can left shift any input coming
from the inter-stripe interconnect. Currently, the inter-stripe
interconnect is implemented as a full crossbar.

The richness of the network is, however, misleading for
two reasons: we only have limited access to the interconnect
and the fact that all switching is bus based. All values which
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Figure 3:The structure of a processing element. There areN
PEs in each stripe. Details about the zero-detect logic, the fast
carry chain and other circuitry are left out.

are destined to a non-adjacent stripe must be placed in a pass
register. Furthermore, access to the inter-stripe interconnect is
limited to either the output of the LUTs or one of theP pass
registers. The only place where a bit can change its position
in a word is in the barrel shifters. The barrel shifters provide
a limited range of movements for the bits, so some kinds of
wiring patterns in the circuit require several stages through the
interconnection network (for instance, the bit-reversal of all
the bits in a PE).

DIL is parameterized to allow the generations of configura-
tions for chips with any number of PEs (N ), pass registers (P ),
and PE granularity (B). It can also be parameterized by the
the connectivity of the inter-stripe interconnect. In this paper
we report results for stripes with 16 8-bit PEs each having 8
pass registers. The inter-stripe interconnect is a full crossbar,
which hasN inputs and 2N outputs, i.e., the A and B inputs
to the PE can each have a different source.

3 The DIL Language and Compiler

DIL is designed to be both the target of a high-level language
compiler (e.g., C or Java) and a language that a programmer
can use to describe algorithms for reconfigurable computing
systems. DIL does not expose any of the peculiarities of the
fabric, being completely hardware independent. It provides a
rich set of operators (the set of operators of the C language,
augmented with a few other).

Our thesis is that for widespread acceptance of reconfig-
urable architectures, programmer effort must be substantially
reduced. Thus our main goal is to provide a fast compiler for
a high-level language. We trade solution quality for speed,
which enables us to perform very fast compilation, compared
to classical CAD tools.

3.1 The DIL Language

DIL is a high-level language. There is no notion of hardware
resources, timing, or physical layout for the DIL programmer.
As a consequence most of the compilation process (including



1
2 typedef fixed<*,0> uint; // arbitrary width
3
4 // one multiply-accumulate step
5 tap(uint xin in, uint xout out, uint yin in, uint yout out, uint w)
6 {
7 yout = yin + xin*w;
8 xout <1= xin; // delay by one register element
9 }
10
11 // Generic FIR filter; weights and # of taps are passed as arguments
12 filter(uint xin in, uint yout out, uint weights, uint taps)
13 {
14 uint x[taps], y[taps]; // intermediate results
15 uint i;
16
17 tap(xin, x[0], 0, y[0], weights[0]); // the first tap
18 for (i=1; i < taps; i=i+1) { // the rest of the taps
19 tap(x[i-1], x[i], y[i-1], y[i], weights[i]);
20 }
21 yout = y[taps-1]; // assign the result to the output
22 }
23
24 // Instantiate one FIR filter with 5 taps
25 main(fixed<8,0> xin in, fixed<12,0> yout out)
26 {
27 uint taps = 5;
28 uint w[taps] = { 5,4,3,2,1 };
29
30 filter(xin, yout, w, taps);
31 }

Figure 4:DIL code to implement a 5 tap FIR filter.main is the function used to interface to the outside world.

code optimizations) should be portable to architectures other
than PipeRench. DIL is a single assignment language: any
variable can be assigned to only once. With few exceptions it
is very similar to Silage and behavioral Verilog.

DIL allows the programmer to manipulate arbitrary-width
integer values and, unless directed explicitly, ensures that no
information loss occurs due to overflow or conversions. A
powerful module system and a parameterized module library
allow the user to customize the meaning of the language’s
operators.

We illustrate the features of DIL using the example in
Figure 4 which shows how a Finite Impulse Response filter
(FIR) with 5 taps could be implemented. The definition of
the circuit is given by Outputi =

Ptaps

i=0
Inputi �weighttaps�i.

The circuit described by this program will accept one input and
will produce one output every clock cycle. The latency of the
circuit will be at least 5 clock cycles, but possibly more due to
the insertion of additional pipeline stages.

The FIR code in Figure 4 contains most of the important
features of DIL.

� The type declaration in Line 2 declares the typeuint to
be an unsignedinteger of arbitrary width (the ‘* ’ denotes
an arbitrary width). Eachuint variable in the program
will actually have a different width, which is determined
by the compiler. While any variable in the program
may be given an explicit width, the only variables which
must have their widths specified are thein and out
parameters tomain .

� DIL features procedure-like modules (e.g.,tap in Line 5).

One can pass (or return) arrays to (or from) modules. For
example,weights in Line 12 is an array of constants.
Array elements, like all variables, can be assigned to
only once.

� The symbol ‘<1=’ (e.g., in Line 8) stands for “delayed
assignment with one unit of delay.” The final circuit will
have 5 registers which are used to hold the last 5 input
values for the convolution computation.

� Thefor construct (on Line 18) is used to instantiate an
entire series of taps, each with a different weight. As in
Verilog, thefor loops are unrolled at compile-time.

� All of the C operators are available, including integer
multiplication and division. We have also added some
other useful operations, like bit-range selection (denoted
byvalue[high, low] ) and bit-string concatenation
(denoted byx.y ).

3.2 The DIL Compiler

The whole compilation process is depicted in Figure 5. The
compiler first reads in the architecture of the target circuit. For
example, with PipeRench this file describes the width of the
processing elements (B), the number of I/O buses available,
the signal propagation delays, the number of pass registers (P ),
the structure of the inter-stripe interconnect, the target clock
speed (i.e. the critical path), etc.

In the evaluation phase the compiler inlines all modules,un-
rolls all loops and generates a straight-line, single assignment
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Figure 5:The main stages of the DIL compiler.

1
2 main(fixed<8,0> xin in, fixed<12,0> yout out)
3 {
4 fixed<*,0> x[5], y[5];
5
6 y[0] = 0 + xin *5; x[0] <1= xin;
7 y[1] = y[0] + x[0]*4; x[1] <1= x[0];
8 y[2] = y[1] + x[1]*3; x[2] <1= x[1];
9 y[3] = y[2] + x[2]*2; x[3] <1= x[2];
10 y[4] = y[3] + x[3]*1; x[4] <1= x[3];
11 yout = y[4];
12 }
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Figure 6:The straight-line program and internal graph representation of the FIR filter.

program. The result obtained from the FIR filter is shown at
the left of Figure 6.

After this, the program is converted into a graph upon which
the rest of compiler operates. The right side of Figure 6 shows
the graph synthesized for the filter. The nodes of the graph are
operators and the edges represent wires. ThePnodes represent
input-output ports, the square boxes are the delay registers.

The graph structure is hierarchical, in the sense that the
nodes can be graphs themselves (as in Figure 9). The hier-
archical representation is a direct result of our node synthesis
methods. For instance the graph in Figure 9 has been created by
substituting foreach multiplier node in Figure 6 a correspond-
ing multiplier implementation. The hierarchical representation
is particularly useful when we wish to avoid processing a group
of nodes. We group the nodes into a subgraph and tag the sub-
graph so that it is viewed as a single node.

The DIL compiler is implemented in 29000 lines of C++
code. Nodes, graphs and wires are C++ objects. The compiler
is extremely modular: inserting a new compiler pass means
writing a new method for the graph class. Right now the
compiler consists of more than 30 passes, most of which run in
linear time in the size of the graph. In the rest of this section we
describe some of the more interesting passes and their effects
on the FIR program. Section 4 is devoted to the description of
the fast place and route algorithm.

3.2.1 Type and Value Inference

This pass computes the minimum width required for the wires
(and implicitly the amount of logic required for computations).
The compiler determines the minimum widths necessary for
each wire by symbolically evaluating the graph over the values
f0;1; xg, wherex represents the unknown value. In addition
to storing a bit vector with the best known value for each wire,
the compiler also stores the maximum absolute value that can
be on the wire. This is used to restrict the wire widths from
growing unnecessarily for addition. For example, ifa, b, and
c are 4-bit unknown wires, thend=a+b; e=d+c yields a
maximum width of 5 bits, not the 6 bits which would result if
no maximum were kept.1

Additionally, if the compiler can determine that any of
the bits on a wire are constant, it will use those constants
to help simplify the graph. For example, this pass would
determine that the assignmenta = (b&5)[1,1] causesa
to be assigned the single 1-bit wide constant 0.

3.2.2 Optimizations

The compiler applies a whole set of optimizations to the graph,
some typical in traditional CPU compilers and some more

1In all the graphs in the following figures the number printed close to each
wire indicates the compiler-derived width of the wire.



1 typedef unsigned fixed<*,0>;
2
3 mult(unsigned input0 in, unsigned input1 in, unsigned output out)
4 {
5 unsigned partial[input1_size + 1];
6 unsigned i;
7
8 partial[0] = 0;
9 for (i=1; i<=input1_size; i=i+1) {
10 partial[i] = partial[i-1] + ((input1[i-1,i-1]) ? (input0<<(i-1)) : 0);
11 }
12 output = partial[input1_size];
13 }

Figure 7:A piece of the library module written in DIL which implements unsigned multiplication as an array multiplier.
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Figure 8:Decomposition of a
large “and” gate.

Figure 9:The FIR filter with multipliers
substituted.

Figure 10:The FIR filter after optimizations.

characteristic of CAD tools. The optimization passes include:
common sub-expression elimination, dead code elimination,
bit-level constant propagation, algebraic simplifications (e.g.
aˆa = 0 ), register reduction (this is a form of re-timing [19]),
and interconnection simplification (e.g. ifa andb are 16-bit
quantities, the expression(a.b)[7,0] is actually equivalent
to b[7,0] ).

3.2.3 Library loading

The library is a powerful element for extensibility, retargetabil-
ity and customization. The library is similar in power to module
generators in [8, 20, 4]. The library modules are more pow-
erful than those in [22, 18, 14] because the library modules

are optimized by the compiler when instantiated. Currently
we use the library to implement operators which cannot be
synthesized directly in hardware (e.g. *, %) and to decompose
operations on wide wires into smaller pieces. Figure 8 shows
how a “bitwise and” operation on 32 bit values is decomposed
into narrower pieces.

An example of a (slightly simplified) library module to im-
plement unsigned multiplication is shown in Figure 7. When
the compiler encounters a multiplication operation in the com-
piled program, it initializes the variablesinput0, input1,
input1 size , etc., and attempts to load the modulemult
from the library. The library is a plain text DIL program. The
programmer can rewrite the above module, for instance as a
Booth multiplier or as a CSD multiplier.



Figure 9 shows (in a very low resolution) how the FIR
filter looks after the multipliers are decomposed using the li-
brary. Figure 10 shows how FIR looks after the optimization
passes have been run. Because all multiplicands are manifest
constants they are successfully reduced to a few adders (only
the adders corresponding to the 1 bits in the multiplicand are
retained). The nodes labeled<x> are width-conversion op-
erators, which either truncate or sign-extend the value tox
bits.

3.3 Width adjustment

The width adjustment pass adjusts the widths of the wires to
match the width of the PE, i.e., it makes all wires multiples
of B bits. While this may seem trivial at first, it proved to be
very tedious due to the nature of 2’s complement arithmetic.
The obvious solution, to sign-extend all magnitudes up to the
next multiple ofB bits, is very costly because sign extension
consumes precious circuitry (2 PEs per value in the current
implementation). We have implemented a solution which relies
on the fact that adjusting the sources of an operation most often
will cause the output to be adjusted too. For example, adding
two 2-bit wires yields a 3-bit wire, but if the 2-bit wires are
correctly sign extended, then the result is also already the
correct size.

However the complete picture is more complex, as sign-
extension is not always the correct way to bring a value to a
certain size. For example, supposea; b, are each 2-bit wide
signed values and a PE is 4 bits wide. Ifa andb are compared
with a < operator, then to get a correct result from a 4-bit
comparison they should both be sign-extended. On the other
hand, if we want to computea.b (the concatenation), it turns
out that this is most efficiently implemented on PipeRench
(for this width combination) as the operation(a << 2) |
b, which requiresb to be padded with zeros instead of being
sign-extended (ifb were negative, sign-extending it would give
the wrong result).

3.3.1 Code generation

The normal output of the compiler is “assembly language”,
essentially a description of a fully placed and routed netlist.
Currently we generate assembly for the only architecture sup-
ported, PipeRench. Porting to a new architecture would involve
writing a pass to translate an (annotated) graph to the suitable
output and possibly changing the library and architecture input
file.

For debugging support (both for debugging the compiler
and DIL programs) the compiler also outputs a graphical rep-
resentation of the circuit in the language of the Unix XFIG
drawing utility (all the circuit graphs in this paper have been
generated automatically in this way).

The compiler can also generate a C program which sim-
ulates the circuit. (Alternatively, the assembler can generate
behavioral Verilog or a text file which can be used by a Java-
based visual simulator.)

4 Place and Route

The core of the DIL compiler is its place and route (P&R)
algorithm. The P&R algorithm is a deterministic, linear-time,
greedy algorithm. The measured performance, as shown in

Section 5, is around 6000 bit-operations/second on a Pentium
II at 400Mhz, or about three orders of magnitude faster than
commercial tools.

The key idea behind our P&R algorithm is to prepare the
graph to ensure routability by decomposing complex intercon-
nection patterns into sequences of simpler ones. The decom-
position is performed by insertingnoops2 in the graph. The
insertion of noops is sufficient by not necessary to guarantee
routability. This allows us to treat thenoops aslazy noops. A
lazy noop is only instantiating when the P&R routine cannot
make progress.

There are several reasons why our P&R algorithm is so fast.
Some of them are specific to PipeRench and some applicable
to other fabrics. In particular, we capitalize on the structure of
the graphs created by computations. In the rest of this section
we discuss the reasons why our algorithm performs well in
spite of the fact that it is deterministic and then we describe the
details of the algorithm.

4.1 Why Our P&R Is Fast

PipeRench is a “compiler friendly” fabric; here are some of its
features which make P&R a simpler task:

� The hardware resources are virtualized. The compiler
does not have to fit the circuit in the available hardware,
so it can indeed trade utilization for compilation speed.

� The interconnection network is relatively rich. The
crossbar between two stripes allows values to be routed
between any two vertical columns. This enables high
quality solutions and trims down the search space, be-
cause there are many feasible solutions (i.e. we can
connect two operators placed in any two columns).

� The very wide pass-register bus allows us to propagate
values between two remote stripes without consuming
any processing elements for this purpose.

� The interconnection network is homogeneous: between
any two stripes the network is identical. (This feature is
not essential, but it simplifies the algorithms.)

There are however other design decisions which we made
which keep the algorithm target-independent and which make
P&R fast:

� We place operators at very high granularities. For in-
stance, we place a 32-bit adder as a single entity (if
allowed by the propagation delay of the carry chain),
instead of flattening it to gate level and manipulating
hundreds of gates individually. This provides at least
one order of magnitude reduction in complexity.

� We compile a restricted language, which can only de-
scribe unidirectional data flow (i.e. pipelined combina-
torial circuits). This simplifies the routing, because by
traversing the graph in topological order we always have
one degree of freedom in the placement of the wires (i.e.
we can choose where to place one end).

� The greedy, non-backtracking algorithm is inherently
fast. In order to enable a greedy placement, we have to
make sure that once a node is placed there still exists

2In actual fact, what we call a noop is really a pass operator: the output gets
the input value.



a solution for the placement of the remaining nodes.
This is summarized by the rule: “no matter what the
placement of the nodes so far, we can always make
further progress by placing at least one other node.”
The global analysis and the technique of lazy noops,
presented shortly, ensure that this rule is always true.

4.2 Why P&R Is Still Hard on PipeRench

There are several features of the PipeRenchinterconnect which
make P&R hard and which are also present in varying degrees
in commercial FPGAs.

� The width of the stripes and of the pass-register bus are
limited. These are hard limits which have to be managed
by the compiler.

� The input ports of the crossbar are scarce, as depicted
in Figure 2. Although we have a crossbar to switch
theN busses in arbitrary fashions, many more values
(N � (P + 1)) compete for the inputs of the crossbar.
More than that, each input port of the crossbar services
exactlyP + 1 fixed lines:P from the pass-register bus
and one from the feedback loop; no more than one of
theseP + 1 values can enter the crossbar at any time.
The placementof values in the pass-registers is thus very
important.

� The crossbar switches words, not bits. Each processing
element acts onB bits, and the values switched by the
crossbar are alsoB bits wide. Outside of using a PE
resource, only the barrel-shifters can reorder bits within a
word; they can shift a word to the left under configuration
control. Thus, something like reversing the order of the
bits in a word cannot be accomplished at all by using only
one level of the interconnection network. (In this sense
our interconnection network is more restricted than the
networks of commercial FPGAs.)

� We have to map computations of arbitrary widths to
a network and processing elements which only act on
multiples ofB bits each.

4.3 The P&R Algorithm

The circuit entering P&R contains two types of operators:
computation operators, which modify bits, androuting-only
operators, which only reorder bits. Logical shift, bit selection
and concatenation fall into the latter category. The goal of
the P&R algorithm is to map all routing-only operators to the
interconnection network. Only when this is not possible will
routing-only operators consume processing resources. In the
graph at the left of the Figure 11 we have shaded the computa-
tion operators; the white squares are routing-only operators.

P&R consists of several pre-processing steps followed by
the actual placement. Here is how the pre-processing is done:

1. Early in the compilation process nodes that are too large
to fit in a stripe (or whose carry chain is too long to
meet the timing requirements) are broken into pieces, as
indicated in Section 3.2.3.

2. The next phase transforms the graph to ensure that it is
routable. The subgraphs comprised entirely of routing-
only operators describe a permutation from source bits to
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Figure 11: Inserting noops to break complex interconnection
patterns into products of simpler ones.

destination bits3. If the transformationcould possiblybe
too complex for the interconnection network to handle,
then lazy noop operators are inserted into the graph.
This transforms the permutation into a series of simpler
permutations. This pass is implemented using pattern
matching: it looks for complex patterns and splits them,
as shown in Figure 11.

3. An interference analysisis performed on the graph. The
goal of this pass is to ensure that all the source wires of a
node are available at the crossbar. Interference analysis
is a global pass, resulting in what is essentially looka-
head capabilities for the greedy placement algorithm.
On PipeRench the sources will be at the crossbar when
the PEs that are sources of the wires are in different
columns. The pass annotates the graph so that the placer
will attempt to place nodes with a common descendant
in separate columns.

4. Additional constraints are computed for placement sched-
uling order (e.g., place nodea before nodeb) and posi-
tion (e.g., both inputs of a MUX cannot be placed in the
rightmost column because the MUX needs one column
more to the right to route the selection wire).

After these preliminary steps are carried out, the actual
P&R is done:

5. Using list scheduling on the topologically sorted graph,
each node which is a computation-operator is considered
in turn for placement in the current stripe. When no node
can be added in the current stripe, processing moves to
the next one.

6. Before a node is placed, the compiler determines if it
would create a combinational delay that exceeds the
maximum allowed value. If so, the node is considered
for placement in the next stripe, slicing the delay path
with a pipeline register.

7. Before any placement of a node is attempted, the fea-
sibility of placing anode is analyzed. This analysis is
based on the position of the sources, which have already
been placed.

3Strictly speaking it is a many-to-one function, because one bit value may be
broadcast to several destinations, for instance when sign-extendinga value.



This step asks the question: “could this node be placed
in a completely empty stripe, assuming all the com-
putation resources and the interconnection network are
free?” This amounts to a test of the complexity of the
interconnection pattern between the sources of the node
and the node itself. For instance, a node whose input
is obtained by the bit-reversal of the output of another
node will never be placeable on PipeRench.

8. If the node is unplaceable, we look for lazy noops in
the subgraph connecting the node to its sources. The
pre-processing steps ensure that such a noop exists. All
noops between the unplaceable node and its source are
considered in the order of increasing distance from the
unplaceable node. The first one that can be placed is se-
lected, and turned into a “real” noop,which will consume
PEs. This noop is next inserted into the list schedule,
and the placement continues.

When this noop is placed in a PE, the effect is to decom-
pose the permutation between the sources and the des-
tination into two permutations, which are implemented
using two interconnection networks: one between the
sources and the noop and one between the noop and the
node itself. This is a form of “divide et impera”: di-
vide the permutation into simpler ones and place each of
them.

A noop may be also used to move a value from one
column of the pass-register bus to another one; this can
relieve the contention for the input ports of the crossbar.

This entire algorithm works in a greedy fashion: a placed
node is never moved or removed. The preprocessing steps
and the noop insertions guarantee that a solution always exists
(i.e. since all the permutation transformations between noop
are very simple and the operators are small enough, we know
that the “forward progress” rule is true.)

In the worst case, such a strategy can give rise to solutions
with very low utilization. Backtracking or local optimization
strategies might improve the result. However, we have ob-
served in practice that the quality of our results isgood, as
shown in Section 5. The fast compilation makes this a reason-
able trade-off since we can rely on hardware virtualization to
accommodate configurations of any size.

5 Evaluation

The DIL compiler currently produces configurations for Pipe-
Rench. We evaluate its performance, measuring both com-
pilation speed and resulting configuration efficiency, on 11
benchmarks which include kernels from a wide spectrum of
applications:

ATR implements the shapesumkernelof the Sandia algorithm
for automatic target recognition [26]. This algorithm is
used to find an instance of a template image in a larger
image and to distinguish between images which contain
different templates.

Cordic is a 12 stage implementation of the Honeywell Timing
Benchmark for Cordic vector rotations [11]. Given a
vector in rectangular coordinates and a rotation angle in
degrees, the algorithm finds a close approximation to the
resultant rotation.
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Figure 12:Compilation time in seconds on PII/400Mhz.

CSD implements a 16-bit canonical signed digit multiplier
with the constant 123. CSD multiplication is an efficient
replacement for traditional partial productmultiplication
in reconfigurable logic.

DCT is a one-dimensional, 8-point discrete cosine transform.
The 2-D DCT is an important algorithm in Digital Signal
Processing and is the core of JPEG image compression.

FIR is a FIR filter, like the one exhibited in Figure 4, but with
20 taps and 8-bit coefficients.

IDEA is the heart of Phil Zimmerman’s Pretty Good Privacy
(PGP) data encryption. IDEA implements a complete 8
round International Data Encryption Algorithm with the
key compiled into the configuration [24].

Nqueens is an evaluator for the n-queens problem on an 8x8
board. Given the coordinates of chess queenson a chess-
board, it determines whether any of the queens are in line
of sight to each other.

Over implements the Porter-Duff over operator [5]. It is a
method of merging two images based on a mask of trans-
parency values for each pixel.

Square simply squares a 16-bit signed number.

Varpoly evaluates a polynomial of degree three inx. The
coefficients andx are supplied.

The target of our compilation is a PipeRench chip withB

= 8-bit PEs, stripes 128 bits wide (N = 16), a pass-register bus
of 8 � 16 � 8 bits, and 31 stripes. The target critical path of
PipeRench is set for 10ns (a clock of 100Mhz).

Figure 12 gives the total compilation times (from source
to assembly) as measured on a PII/400 running Linux. Of
upmost interest is the fact that the longest time (for the biggest
kernel) is approximately 8 seconds, justifying our claim of fast
compilation.

In Figure 13 we plot two magnitudes which have different
units of measure. The dark bar is the speed measured in bit-
operations per second, while the light bar is the size of the
corresponding circuit in bit-operations. As mentioned, the
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Figure 13:Compilation speed (PII/400Mhz) and circuit size.
The geometric mean of the compilation speed is a little above
3000 bit-operations per second.

0%

20%

40%

60%

80%

100%

ATR

Cor
dic

CSD
DCT

Enc
od

er
FIR

ID
EA

Nqu
ee

ns

Ove
r

Squ
ar

e

Var
po

ly

P
er

ce
nt

 o
f C

om
pi

le
 T

im
e

other
place
analysis
library
simplification
evaluation

Figure 14:Compilation time breakdown for dominant phases.
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Figure 15: Hardware utilization of the generated code. The
effective utilization discounts noops from taking useful space.
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Figure 16:Speed-up of the application over a 300Mhz Ultra-
Sparc.

geometric average is above 3000 bit-operations/second. The
encoder features an impressive speed becausethe DIL program
itself has been generated automatically. The program therefore
is very regular, is already optimized, and can be placed in a
straightforward manner.

The Figure 14 shows how the compilation time is dis-
tributed among the most important phases of the compilation
process. “Evaluation” includes parsing the source text, in-
lining the modules, unrolling the loops, and generating the
graph. “Simplification” is the first round of constant-folding,
type inference, width computation, etc. “Library” is the time
taken to synthesize the operators from the library, including
the subsequent simplifications. The “analysis” phase is the
global analysis, which inserts the noops, computes the place-
ment hints, and ensures the routability. “Place” is the actual
placement procedure. “Other” is time taken by other general
optimizations. We observe that the cumulative time (i.e. analy-
sis+place) of the complete P&R algorithm is never much more
than half of the total compilation time.

In Figure 15 we display the amount of hardware used by
each application (i.e. how many of the PEs in each stripe are
consumed). We have two bars: one for the utilized hardware,
which averages a little more than 60% across all applications,
and one for “effective utilization”. In measuring effective uti-
lization we do not count the PEs used by noops as utilized
(this is underestimating the utilization since some of thenoops
may actually be absolutely necessary because of the limited
capabilities of the interconnection network). The effective uti-
lization is approximately 55%, reflecting the fact that noops,
on average, consume few resources. Notice also the excel-
lent utilization for the ATR, CSD, Encoder, and FIR. In fact,
Encoder and FIR are impossible to pack tighter, even by hand.

Figure 16 shows the simulated speed-up that the compiled
configurations obtain when running on PipeRench over their
equivalent C programs on a 300Mhz UltraSparc machine. The
numbers are impressive. The bigger the benchmark, the more
the parallelism is exploited, so the greater the speed-up. From
the data, we conclude that virtualized pipelined architectures
provide an enormous potential for performance improvements,
and that we can compile to them.



Finally, we compare commercial tools (Synopsis’s Design
Analyzer combined with Xilinx’s Design Manager targeting a
Xilinx 4085XL) with DIL targeting PipeRench. To some extent
we are comparing apples to oranges because the commercial
tools are much more general. We do the comparison anyway
to ensure that for our domain, the generation of pipelined dat-
apaths, our approach is feasible. The DIL compiler creates the
configuration for DCT 778 times faster than the commercial
tools. Furthermore, the resulting configuration runs 10x faster
on PipeRench than on the 4085XL.

6 Related Work

Many languagesand systems have been proposed for program-
ming RC systems. Most of these systems do not optimize for
pipelined datapath creation and thus compile down to gates
and then rebuild the datapaths from the gates. This often
requires orders of magnitude more time than the DIL com-
piler takes to compile. Early work required this since it relied
on vendor supplied tools for mapping, placement, and rout-
ing [13, 21, 2, 1, 16].

More recently, tools like Gama [6] and Napa-C [15] com-
pile from C directly to the fabric. The DIL compiler differs
from Gama in that it does not need to split the DAG into trees
and can place more operators in a single stripe. Napa-C re-
lies on pre-placed and routed modules and cannot optimize
across these boundaries. The RaPiD-C compiler [9] also tar-
gets pipelineable datapaths, but it is oriented towards a much
coarser-grained architecture. Unlike DIL, which uses linear
time deterministic algorithms, the CORBA-ABS system uses
simulated annealing [10] which often produces better results
but is substantially slower. Other recent fast compilation sys-
tems, notably [12, 25, 27], are less focused on datapaths than
on compiling traditional FPGA designs.

Among the many languages proposed to compile recon-
figurable computing systems, DIL is most similar in spirit to
Silage [17]. Unlike Silage, DIL can be used to express parame-
terized modules which the compiler can load on demand. DIL’s
library loading system is similar to recent module generators
designs [8, 20, 4]. However, the DIL modules are written in
the same language as the main program and remain relatively
architecture-independent.

7 Future Work and Conclusions

In this paper we have presented the design and implementation
of a compiler for a high-level language (DIL) whose targets
are reconfigurable devices. DIL is expressive, extensible, and
completely hardware independent. DIL is intended to be an
intermediate step in the compilation from a high-level language
like C.

We have shown that a fast linear time algorithm for place
and route can yield good utilization, at least for the class of
pipelined reconfigurable architectures. The compilation speed
of approximately 3,000 bit-operations per second is orders of
magnitude faster than traditional CAD tools. Our algorithm
depends on two key features. First, it uses the concept of a
lazy noop to ensure routability wit hout requiring that the noop
actually be inserted in the final configuration unless necessary.
Second, global analysis creates annotations which guide the
place and route process. In addition to a fast,effective place and
route, the compiler implements a wide range of optimizations.

In the future we intend to extend the effectiveness of the
compiler by performing time-multiplexing of the routing re-
sources (similar to [3]), dealing with graphs with non-trivial
cycles, and increasing the quality of the place and route al-
gorithm, in particular by reducing register usage with graph-
coloring based algorithms. We have also begun work on using
DIL as an intermediate language in a compiler for C. Finally,
we intend to test the generality of our algorithms by retargeting
DIL to more traditional FPGA architectures.
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