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Abstract
In this work we investigate the routing architecture of FPGAs,

focusing primarily on determining the best distribution of routing
segment lengths and the best mix of pass transistor and tri-state
buffer routing switches.  While most commercial FPGAs contain
many length 1 wires (wires that span only one logic block) we find
that wires this short lead to FPGAs that are inferior in terms of both
delay and routing area.  Our results show instead that it is best for
FPGA routing segments to have lengths of 4 to 8 logic blocks.  We
also show that 50% to 80% of the routing switches in an FPGA
should be pass transistors, with the remainder being tri-state buff-
ers.  Architectures that employ the best segmentation distributions
and the best mixes of pass transistor and tri-state buffer switches
found in this paper are not only 11% to 18% faster than a routing
architecture very similar to that of the Xilinx XC4000X but also
considerably simpler.  These results are obtained using an architec-
ture investigation infrastructure that contains a fully timing-driven
router and detailed area and delay models.

1 Introduction
FPGAs consist of a large number of programmable logic

blocks, which can each implement a small amount of digital logic,
and programmable routing which allows the logic block inputs and
outputs to be connected to form larger circuits.  The delay of a cir-
cuit implemented in an FPGA is mostly due to routing delays,
rather than logic block delays, and most of an FPGA’s area is
devoted to programmable routing [1].  Furthermore, as FPGAs
move into increasingly deep submicron IC processes, the fraction
of total delay due to routing is increasing with each process genera-
tion [2].  Consequently, one must devise routing architectures
which are both fast and area-efficient to create an FPGA that fully
exploits the performance and density potential of deep-submicron
technologies.

In this paper we investigate island-style FPGA routing archi-
tectures; the FPGAs of Xilinx [3], Lucent Technologies [4], and
Vantis [5] employ this style of routing architecture.  A simplified
view of an island-style FPGA is shown in Figure 1.  The routing
architecture of an FPGA defines such features as:

1. The length of each routing wire segment (how many logic
blocks a routing wire spans before terminating),

2. Whether each routing switch is a pass transistor or a tri-
state buffer,

3. Where routing switches are located and which routing
wires they can connect together,

4. Which routing wires in the channel adjacent to a logic
block input or output can connect to that logic block pin,

5. The sizes of the transistors used to build the various pro-
grammable switches, and

6. The metal width and spacing of the routing wires.

In Figure 1, for example, half the routing tracks consist of
length 1 wire segments, while the other half consist of length 2
wire segments.  Some of the programmable routing switches are
pass transistors, while others are tri-state buffers.

In this paper we will focus primarily on determining the best
values for parameters 1 and  2 above:  the bestsegmentation distri-
bution (lengths of routing wire segments) and the best mix of pass
transistor and tri-state buffer switches.  We have investigated
appropriate values for the other four parameters [6, 7], but space
limitations preclude more than a brief discussion of these other
four issues in this paper.  Note however, that we set the other 4
parameters to reasonable values throughout the experiments of this
paper, as this is essential for meaningful architectural comparisons.

Routing architecture design is very challenging because the
best value for each of the parameters above depends on complex
trade-offs.  For example, in an FPGA with too many short wires,
some long connections will be constructed using several short wire
segments connected in series, resulting in poor speed.  If an FPGA
includes too many long wires, however, some short connections
will be forced to use long wire segments, degrading speed and
wasting area.  Similarly, an architecture with too many or too few
tri-state buffer routing switches will likely be suboptimal.  Pass
transistor switches require less area, and they are faster than buffers
for short connections, but connections that pass through many

Figure 1:  Example island-style FPGA routing architecture.
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series switches are better served by tri-state buffers.  As well, the
best mix of routing switches is dependent on the length of the
FPGA’s routing wire segments.  In an FPGA with many long
wires, it will rarely be necessary to connect many switches in
series to make a connection.  Consequently, such an FPGA can
likely use a higher fraction of pass transistor-based switches in its
routing than an FPGA that contains few long wires.

Considering the importance of routing architecture to both
FPGA area and speed, relatively little research has been conducted
in this area.  Some prior work [8, 9, 10, 11] has investigated differ-
ent switch topologies for use in FPGAs where all wire segments
are of length 1 (i.e. span only a single logic block) and has com-
pared architectures only in terms of area-efficiency.  Some studies
have investigated the best distribution of routing wire segment
lengths for use in row-based FPGAs [12, 13, 14, 15], but the meth-
odology used in these studies is not applicable to island-style
FPGAs.  The most directly comparable work to this paper is that of
Brown et al [16, 17] and Chow et al [18].  These studies investi-
gated island-style FPGAs which contained some longer wire seg-
ments.  We extend this prior research in several important ways,
however.  First, we consider the possibility of some routing
switches being tri-state buffers, whereas all prior research has
investigated FPGAs containing only pass transistor switches.  Sec-
ond, we compare FPGAs on the basis of the “true” delay metric —
critical path delay of benchmark circuits — and a detailed, transis-
tor-based area model; prior research has used simpler, and less
accurate, delay and area metrics.  Third, the CAD flow we use to
evaluate architectures employs a combined global and detailed
(one-step) router, while Brown et al and Chow et al performed glo-
bal and detailed routing in two steps.  Since the global router in a
two-step routing is unaware of the distribution of wire segment
lengths, and hence not attempting to optimize for it, long wires
may not be used as effectively as possible.  Finally, the router we
use in this study is fully timing-driven (uses timing analysis to
determine which connections need high speed routing) allowing it
to more fully exploit the intrinsic speed of different routing archi-
tectures, and hence improving the accuracy of our architecture
comparisons.

The organization of this paper is as follows.  The next section
describes the portions of the FPGA architecture which are held
constant throughout the experiments of this paper.  Section 3 then
outlines the experimental framework we use to compare different
FPGA routing architectures.   In Section 4, we perform experi-
ments to determine which length of wire segment results in the
best speed and area-efficiency when all the routing wires in an
FPGA have the same length, and all routing switches are tri-state
buffers.  In Section 5 we investigate more complex routing archi-
tectures that contain wire segments of two different lengths, and a
mix of pass transistor and tri-state buffer routing switches.  Section
6 compares some of the best architectures we have found to a rout-
ing architecture similar to that of the Xilinx 4000X series FPGAs.
Finally, we summarize our results and conclusions.

2 FPGA Architecture and Circuit Design
Parameters Held Constant
In this paper we are investigating different routing architec-

tures, so we hold the other architectural parameters, such as the
logic block used, constant throughout the experiments.  In all our
experiments, each channel in an FPGA contains the same number
of tracks and has the same segmentation distribution.

The logic block of all the FPGAs studied in this work is a
logic cluster [19] of four 4-input look-up tables (4-LUTs) and reg-

isters, with ten inputs, four outputs, and one clock.  This logic
block includes local routing that allows each of the LUT inputs to
be connected to any of the 10 logic block inputs or any of the four
outputs generated within the logic block.1  This logic block is more
typical of the size of current commercial FPGA logic blocks than
the single 4-LUT logic block assumed by most prior routing archi-
tecture research, and prior research has shown that this logic block
leads to an area-efficient FPGA [19].  The input and output pins
are evenly distributed around the perimeter of the logic block,
since [20] showed that this pin positioning is best.

The number of I/O pads that fit into the height or width of a
logic block is set to four, in line with the relative sizes of pads and
4-LUTs of current FPGAs [3, 4, 5, 21].  With this assumption three
of the twenty benchmark circuits we use (bigkey, des and dsip) are
pad-limited.  We always map each circuit to the smallest square
logic block array that has enough logic blocks and pads to accom-
modate it.  Since commercial FPGAs normally distribute the cir-
cuit clock through a special, dedicated routing resource, we do not
route the clock net in sequential circuits.

The switch block topology [8] (which defines which routing
wire segments can connect via routing switches at the intersection
of a horizontal and vertical channel) used throughout this paper is
thedisjoint switch block topology used in the original Xilinx 4000
series FPGAs [22].  In this switch block, a wire in track numberi
can connect only to other wires in tracki.  Note that with this
switch block wires of a given length can only connect to other
wires of the same length.  Interestingly, while the disjoint switch
block topology is not as routable as the Wilton switch block topol-
ogy in FPGAs where all routing wire segments have length 1 [11],
we have found that it results in better speed and area-efficiency
than a straightforward generalization of the Wilton switch block in
FPGAs that contain longer wires [6, 7].  Previous switch block
research has focused exclusively on FPGAs containing only length
1 wire segments; clearly future research should investigate the
interplay between segmentation distribution and switch block
topology.

We set the number of routing tracks to which each logic block
pin can connect, Fc [8], to 0.5W, where W is the number of routing
tracks in a channel.  Our experiments have shown that this is a
good value for a wide range of routing architectures.

The size of the transistors used in the routing switches is a key
architectural issue.  The metal capacitance of a routing wire seg-
ment is quite large, so significant speed improvements can be
achieved by increasing the size of the transistors forming pass tran-
sistor or tri-state buffer routing switches.  At some point, however,
one achieves diminishing speed returns as the size of the switch
transistors is increased, since the parasitic capacitance added by
these switches becomes comparable to the metal capacitance.  As
well, increasing the size of the routing switch transistors requires
more layout area.  Essentially we want to choose the transistor size
that achieves the best trade-off between the speed of the routing
and the area required.  We believe that the best trade-off occurs
when the transistor sizes are chosen to minimize the area-delay
product of the resulting routing resources.  We evaluated the speed
of FPGA routing structures using different transistor sizes in
TSMC’s 0.35µm, three-level metal CMOS process [23], and we
used the area model described in Section 3.3 to evaluate the area
required.  We found that for a very wide range of wire segment

1. Since this local routing is part of the logic block, and not part of
the “general” FPGA routing, we count its area as part of the
logic block area, rather than as part of the FPGA routing area, in
the later sections.



lengths, pass transistor routing switches achieve the best area-
delay product when they are ten times as wide as the minimum
contactable transistor width.  Similarly, we found that for a wide
range of wire segment lengths the tri-state routing buffer with the
best area-delay product is the two-stage buffer shown in Figure 2;
its output stage has five times the minimum drive strength.  Note
that the transistor widths in Figure 2 are all in “times minimum
contactable width” rather than in microns.  For details on the
experiments we performed to determine these best routing transis-
tor sizes, see [6, 7].

Finally, we have to choose the metal width, spacing and layer
in which routing wires are laid out.  Throughout this paper we
assume routing wires are laid out in metal 3; we have found that
our results do not change significantly if routing wires are laid out
in metal 1 or 2, however.  We also use minimum-width metal for
all routing wires.  While increasing the metal width reduces the
metal resistance, it also increases the metal capacitance.  Since the
resistance of a routing switch is considerably larger than the metal
resistance of even fairly long routing wire segments, we have
found that the net effect of wider metal wires is to increase the
routing delay.  Throughout this paper we also assume routing wires
use the minimum metal spacing; this results in the highest wiring
density during layout, at the cost of higher metal capacitance than
wider metal spacings would yield.  We have also run many of the
experiments in this paper with wider metal spacings, however.
While this increases the speed ofevery FPGA architecture (by
about 15%), it does not change any of our architectural conclu-
sions.

3 Experimental Methodology
We explore different architectures by implementing the

twenty largest MCNC benchmark circuits [24] into each FPGA
architecture of interest.  These circuits range in size from 1064 to
8381 4-LUTs.  We implement each circuit with an automatic CAD
flow similar to that used by FPGA users:  technology-independent
logic optimization, technology-mapping, placement and routing.
We then compare the circuit delay achieved and the area required
by each architecture.

3.1 CAD Flow
Figure 3 illustrates the CAD flow we use to evaluate routing

architectures.  First, SIS [25] is used to optimize the logic of each
circuit.  Next, we use Flowmap [26] to technology map each cir-
cuit into 4-LUTs and registers, and Flowpack [26] to optimize the
mapping and reduce the number of LUTs required.  VPack [27]
then groups these 4-LUTs and registers into logic blocks of the
desired size (clusters of at most four LUTs, using no more than 10
distinct inputs).  Versatile Place and Route (VPR) then places the
circuit [28], and the VPR timing-driven router [6, 7] is repeatedly
invoked with different channel capacities to determine the mini-
mum number of tracks per channel, Wmin, required to route the cir-

cuit.  FPGA manufacturers normally build enough routing into
their FPGAs that “average” circuits have some spare routing avail-
able.  We model this by performing a final “low-stress” routing of
each circuit with the number of tracks per channel set to 1.2⋅Wmin.
Our delay model then estimates the circuit critical path, and our
area model estimates the total transistor area needed to lay out all
the routing in this FPGA.  At the end of this CAD flow, then, we
have enough information to compare both the speed and the area-
efficiency of one architecture to another.

3.1.1 Overview of Timing-Driven Routing Algorithm

Since we are comparing the speed and area of different FPGA
routing architectures, the most important tool in the CAD flow
above is the router.  To allow fair comparisons of different routing
architectures, we created a new router that optimizes well for both
speed and routability, and can fully exploit the features of each
FPGA architecture we study.

Like its purely routability-driven predecessor [28], the VPR
timing-driven router [6, 7] uses many ideas from the Pathfinder
routing algorithm [29].  It repeatedly rips-up and re-routes every
net in the circuit, and gradually resolves routing congestion by
gradually increasing the cost of overused routing resources.  Like
Pathfinder, it also performs timing analysis repeatedly during rout-
ing, and uses the slack of each connection to determine the conges-
tion avoidance / delay minimization trade-off to use for that
connection.  The VPR timing-driven router contains some signifi-
cant new features, however.  The most important enhancement is
that this router directly optimizes the Elmore delay [30] as it routes
each connection.  The router uses the Elmore delay to guide it as it
selects the net topology, wire segment lengths, and the type of
switch (pass transistor or tri-state buffer) used to connect two wire
segments.  Note also that it makes all these decisions in one unified
step, since the limited flexibility of FPGA routing means that
topology, wire segment length and switch type decisions are all
coupled.  Previous academic FPGA routers have optimized either
only wirelength or the linear delay model, in which each routing
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switch has a fixed delay.1  The delay of a pass transistor is highly
dependent on the topology of the net containing it, however, so by
optimizing the Elmore delay our router is able to make better net
topology choices and determine when using a buffered routing
switch is preferable to using a pass transistor.

This new router requires only slightly (6% on average) more
tracks than the VPR routability-driven router to successfully route
circuits.  Since the VPR routability-driven router requires fewer
tracks to successfully route a set of standard benchmarks than any
other router for which results are available [28], this implies the
new timing-driven router optimizes for routability very well.  In
addition, the VPR timing-driven router produces circuits which are
2.6 times faster, on average, than those produced by the VPR
routability-driven router.  Clearly timing-driven routing is essential
to obtain good circuit speed.

3.2 Delay Model
Our delay values are all based on the delays in TSMC’s 0.35

µm, 3.3 V CMOS process.  To determine the critical path of a cir-
cuit, we must:

1. Determine the delay of every connection internal to a logic
block,

2. Determine the delay of every connection between logic
blocks, and

3. Perform a path-based timing analysis of the circuit using
these delay values.

We found the delay of the connections within logic blocks by
performing SPICE simulations of every structure in a logic block.
See [6, 7] for transistor-level schematics of the logic block we use,
and a listing of various important delays.

After a routing is complete, we can determine the delay of
every routed connection.  We model pass transistors and buffers by
equivalent circuits composed of resistors, capacitors, and ideal-
ized, constant delay elements.  The values of the various equivalent
resistances, capacitances and buffer intrinsic delays were deter-
mined from SPICE simulations with the TSMC 0.35µm process.
After a routing is complete, VPR uses these simplified models of
pass transistors and buffers, as well as metal capacitance and resis-
tance data,  to build an equivalent RC-tree for each net.  It then
computes the Elmore delay from the source to each of the sinks.
We have found the accuracy of this delay model to be quite good
— the connection delays it predicts are almost always within 9%
of SPICE [6, 7].

Finally, VPR performs a path-based timing-analysis [32]
using these connection delay values to determine the circuit critical
path.

3.3 Area Model
Since the area of typical commercial FPGAs is dominated by

transistor area,2 the most accurate way to assess the area of an
FPGA architecture, short of actually laying out each FPGA archi-
tecture studied, is to estimate the total transistor area required by
its layout.  Our area model is based on counting the number of
minimum-width transistor areas required to implement each

1. The Xilinx commercial FPGA router optimizes a more
advanced (Penfield-Rubinstein) delay model [31].

2. FPGA architects at both Xilinx and Altera have confirmed to us
that transistor area determines the die size of their current
FPGAs.

FPGA architecture.  A minimum-width transistor area is simply
the layout area occupied by the smallest transistor that can be con-
tacted in a process, plus the minimum spacing to another transistor
above it and to its right.  By counting the number of minimum-
width transistor areas required to implement an FPGA, rather than
the number of square microns which these transistors would
occupy, we obtain a process-independent estimate of the FPGA
area.  Transistors larger than minimum-width are counted as sev-
eral minimum-width transistor areas.  VPR computes the routing
area of an FPGA by “building” every structure required by the
FPGA’s routing, and summing the number of minimum-width
transistor areas required by each.  For details of the transistor level
schematics VPR assumes when “building” various FPGA struc-
tures, see [6, 7].

To allow averaging of results from circuits of different sizes,
we use a normalized area metric:  the number of minimum-width
transistor areas per tile (i.e. per logic block).  All the results in this
paper list only the area of an FPGA’s routing, since the logic block
is held constant throughout all the experiments.  The logic block
used in this paper occupies 1678 minimum-width transistor areas,
and hence the addition of 1678 to any of the routing area results
presented in this paper yields the total area per tile.

Prior researchers have evaluated routing area either by count-
ing the number of tracks per channel required to successfully
route, or by counting the number of programmable switches in the
routing.  Counting the number of tracks required to route a circuit
is not a good area metric for architecture studies (such as this
study) in which the number of switches per track segment can vary,
since the area required by each routing track is then variable.
Counting the number of programmable switches in the routing is a
better area metric, but is still not sufficiently accurate for our pur-
poses.  Modern FPGAs use three different types of programmable
switch, and the different switches require considerably different
layout areas.  The connection blocks from routing tracks to logic
block input pins are implemented with multiplexers; the connec-
tion blocks from logic block output pins to routing tracks, and
some of the routing switches, are implemented via pass transistors;
and some routing switches are tri-state buffers.  Table 1 lists the
area required by each of these switch types, including any area
required by SRAM bits to control each switch.  The area per
switch varies by a factor of 6.8 from the most area-efficient switch
to the least area-efficient.  Clearly, simply counting the number of
programmable switches in a routing architecture does not provide
a good area estimate.

4 Experimental Results:  Single Wire
Segment Length Architectures
In this section we evaluate architectures in which every rout-

ing wire segment has the same length, and in which all the routing
switches in switch blocks are tri-state buffers.  We ran the twenty
largest MCNC benchmarks through the flow of Figure 3 and deter-

Table 1:  Comparison of programmable switch areas.

Switch Description Minimum-Width Transistor Areas

Multiplexer (32 inputs) 2.88 per switch  (92 / 32 inputs)

Multiplexer (4 inputs) 4.5 per switch   (18 / 4 inputs)

Pass transistor
(10x minimum drive) 11.5

Tri-state buffer
(5x minimum drive) 19.7
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Figure 4:  Speed and area of FPGAs vs. routing wire segment length.

Critical path

Routing area

mined the routing area required and the critical path delay achieved
by each circuit in each architecture of interest.   Throughout this
paper we compare architectures on the basis of their average per-
formance across the 20 benchmark circuits; the individual circuit
results track the overall average quite well, however.

The solid curve in Figure 4 is the average (over the twenty cir-
cuits) of the critical path delay for each architecture, while the
dashed curve is the average routing area required in each architec-
ture.   The horizontal axis in both Figures 4 is the length (in logic
blocks) of the routing wire segments; the “Long” point refers to an
architecture in which each routing wire spans the entire chip (a
long line in Xilinx’s terminology).  Recall that each architecture in
Figure 4 potentially contains a different number of tracks per chan-
nel — each circuit is routed in an FPGA with 20% more routing
tracks than the minimum the circuit needs to route in an FPGA
with the given architecture.

From Figure 4, one can see that the fastest FPGA which uses
only one length of wire uses wires of length 4 or length 8.  Shorter
wires lead to poor speed because long connections must pass
through too many buffers.  Very long wires degrade speed in two
ways.  First, short connections are forced to use long wires, which
are slower than short wires due to their larger capacitance.  Second,
even connections that travel the entire length of a long wire become
slow when the wire is too long because the metal resistance of the
wire becomes large, and eventually reduces speed below that of a
larger number of short wires connected by buffers.

Figure 4 also shows that wire segments of length 4 lead to the
most area-efficient FPGA architecture.  As we increase the length
of the routing wires two competing factors determine the resulting
architecture’s area-efficiency.  First, longer wires are less “flexi-
ble”; they cannot be split in the middle, so short connections will
waste part of a wire segment.  This means the number of tracks per
channel required to successfully route a circuit increases as the
wire segment length increases.  On the other hand, longer wires
pass through more switch blocks before terminating, so the fraction
of “internal” switch points in switch blocks increases.  As Figure 5
shows, these internal switch points require fewer programmable
switches, resulting in decreased area.  When the disjoint switch
block is employed, each internal switch point requires only one
programmable switch, while “end” switch points require six pro-
grammable switches.

Length 4 wire segments achieve the best combination of low
delay and high area-efficiency.  An architecture using all length 8
wires can achieve slightly (1.3%) better speed, but requires 7.4%
more routing area.  While real FPGA architectures can of course

use more than one wire length, this result is evocative.  It leads one
to expect that the best FPGA architectures will either include sig-
nificant numbers of length 4 or length 8 wires, or will include some
wires shorter and some wires longer than length 4 or 8.

4.1 Area Model Revisited
Recall that our area-efficiency metric throughout this paper is

transistor area, since current commercial FPGAs are dominated by
transistor area.  To confirm that the FPGAs we evaluate in this
paper are all transistor-area limited, we also monitored the average
number of tracks per routing channel (Wmin) required by each
architecture to route the benchmark circuits, since this indicates the
amount of routing metal area required by the FPGA.  We found that
the architectures that were efficient in terms of transistor area gen-
erally had average Wmin values (and hence metal routing area)
within a±20% range, and all these architectures are clearly transis-
tor-area limited.  An FPGA employing all length 1 wires, for exam-
ple, requires 17.6% fewer tracks per channel than an FPGA
employing length 4 wires, while a length 8 FPGA requires 20.9%
more tracks per channel than a length 4 FPGA.

A few architectures with very poor area-efficiency according
to our transistor-based area metric had much greater Wmin values,
however.  An FPGA employing all long lines, for example, requires
3.2x as many tracks per channel as an FPGA employing length 4
wires.  Depending on the number of metal layers available then,
such an architecture may become metal (rather than transistor) lim-
ited.  If such poor architectures are in fact metal-limited, rather
than transistor-limited, they are simply even worse choices than the
results presented here indicate.

1 switch required
 by  bold wire

(a) “End” switch point (b) “Internal” switch point

Figure 5:  Switches required by a disjoint switch block at
(a) end and (b) interior of wires.

6 switches required
by bold wires



5 Experimental Results:  Two Types of Wire
Segment Architectures
In this section we examine somewhat more complex architec-

tures:  those that contain two types of wire segments.  Two wire
segments are of different types if their lengths are different, or if
they use different types of routing switches to connect to other
wires (e.g. pass transistors vs. tri-state buffers).

5.1 Tri-State Buffer Routing Switches Only
We investigated a large number of architectures that con-

tained two different lengths of routing wires, and in which all the
switch block routing switches were tri-state buffers [6].  We found
that we could achieve only small improvements compared to the
best single wire length architecture (length = 4).  Table 2 compares
the performance of the two best architectures explored in this sec-
tion to the best single wire length architecture.  Both these archi-
tectures are fairly similar to an architecture in which all wires have
length 4 — one has 25% length 2 wires and 75% length 8 wires,
while the other has 75% length 4 wires and 25% length 8 wires.
The average speedup vs. a length 4 architecture is only 4.2% for
the first architecture, and 4.9% for the second.  Both of these archi-
tectures are slightlyless dense than an architecture that contains
only length 4 wires.  Clearly length 4 wires provide an efficient
way to make both short and long connections!

5.2 Length 4 Buffered Wires Plus Pass-
Transistor-Switched Wires

Since a routing architecture composed solely of length 4
wires that use tri-state buffers as their routing switches performs so
well, in this section we investigate architectures in which some
routing tracks contain wires of this type.  The other routing tracks
contain wires that connect to each other with pass transistor rout-
ing switches.  We will investigate different lengths of these “pass-
transistor-switched” wires, and different proportions of the two
types of wires.

The solid line in Figure 6 shows the speed achieved by FPGA
architectures in which 50% of the routing tracks use length 4 wires
connected by buffered switches, and the other 50% consist of some
other length of wires connected with pass transistors.  The dashed
line in Figure 6 shows the routing area required by each architec-
ture.  The horizontal axis in Figure 6 is the length of the pass-tran-
sistor-switched wires used.  The best area-efficiency occurs when
the pass-transistor-switched wires are length 2, but length 4 and
length 8 wires also have reasonable area-efficiency, and they lead
to superior speed.

Figures 7 and 8 investigate the performance of length 4 buff-
ered wires combined with either length 1, 2, 4, or 8 pass-transistor-
switched wires in different proportions, (i.e. not just 50 / 50).  The
horizontal axis in these figures is the fraction of routing tracks
composed of the pass-transistor-switched wires; the remainder of
the routing tracks are composed of length 4 buffered wires.  The
“0” point on the horizontal axis corresponds to an architecture
composed solely of length 4 buffered wires, while the “1” point
corresponds to architectures composed solely of wires that connect
to each other via pass transistors.  Figure 7 shows the speed of the
various architectures, while Figure 8 shows their routing area.
Clearly, adding length 1 wires to an architecture is not a good idea.
If 33% of the routing tracks are length 1 pass-transistor-switched
wires, then area-efficiency improves by 8% (vs. all tracks being
length 4 buffered wires), but speed degrades by 7%.  Larger frac-
tions of length 1 wires degrade both area and speed — these wires
are simply too short to be of much use.  Many commercial archi-
tectures make heavy use of length 1 wires [3, 4, 33], but our results
suggest they could improve both their speed and area-efficiency by
using longer wires instead.  Note that the most widely studied
architecture in academic research, an architecture composed
entirely of length 1 wires connected by pass transistors, has
extremely poor speed — it is 2.8 times slower than the fastest
architecture in Figure 7.

Table 2:  Best buffered, two different length architectures vs. best
single-length architecture (20 circuit average).

Architecture

Critical
Path

Delay
(ns)

Speedup
vs. Length
4, Buffered

FPGA

Routing
Area

(Minimum-
Width

Transistor
Areas)

Routing
Area vs.
Length 4,
Buffered
FPGA

All length 4,
buffered

45.57 — 5901 —

25% length 2,
75% length 8 43.74 +4.2% 6034 +2.3%

75% length 4,
25% length 8 43.44 +4.9% 5948 +0.8%

Lengthof Pass-Transistor-SwitchedWire Segments

RoutingArea
(Min.-Width
Transistor

Areas)
(20 Circuit

Arithmetic Average)

Critical Path
(ns)

(20 Circuit
GeometricAverage)

1 2 4 8 16 Long

5000

5200

5400

5600

5800

6000

6200

6400

42

44

46

48

50

52

54

�

�


�

�

�

�

�

�
�

�

�

Figure 6:  Comparison of FPGAs with 50% length 4 buffered and 50% pass-transistor-switched wires.
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Adding longer pass-transistor-switched wires to an architec-
ture yields better results.   Figure 7 shows that making between
17% and 83% of the routing tracks pass-transistor-switched wires
of length 4 or 8 increases the FPGA speed.  Pass transistors do not
have the intrinsic delay of the multi-stage buffers used in buffered
routing switches, and they have higher drive strength than a tri-

state buffer for the same area, since they use only one transistor,
rather than several.  On the other hand, the delay through a series
chain of pass transistors grows quadratically with the number of
pass transistors.  The net effect is that pass transistor switches are
faster than buffers for connections that pass through a few series
switches, but buffers are faster for connections that pass through
many series switches.  If long wires are used, fewer series routing
switches are needed for long connections, making pass transistor
switches more competitive with buffers for longer connections.
Consequently a mix of moderate length buffered and moderate
length pass-transistor wires leads to better speed than using all
buffered routing switches or all pass transistor routing switches.

Figure 8 shows that increasing the fraction of routing tracks
using length 2, 4 or 8 pass-transistor wires improves the FPGA
area-efficiency until this fraction reaches approximately 83%; after
that area-efficiency degrades (or levels off, for length 4 wires).  A
pass transistor switch requires less area than a tri-state buffer, and
since pass transistors are bidirectional, one pass transistor can
replace two tri-state buffers in the routing.  On the other hand, pass
transistor switches are not well-suited to routing high-fanout nets.
To maintain reasonable speed, a high-fanout net routed using pass-
transistor switches tends to use a “star” topology.  This requires
more wiring, and hence more routing tracks, and hence more area.
Making all routing switches pass transistors forces even high-
fanout nets to be routed using pass transistors, degrading area-effi-
ciency.

Considering both area and speed, the best architectures use
50% - 83% pass-transistor switched wires of length 4 or 8.  Archi-
tectures with 50% pass-transistor-switched wires achieve the best
speed, while those with 83% pass-transistor-switched wires
achieve the best area-efficiency.  A major conclusion to be drawn
from these results is simply that the best routing architecture con-
tains a mix of pass transistors and tri-state buffers.  This fact is not
widely known.  Prior academic research has focused on FPGAs
that contain only pass transistors, while a new FPGA company has
made the fact that their FPGAs contain no pass transistors (all
routing switches are tri-state buffers) a marketing feature [34].

5.3 Length 8 Buffered Wires Plus Pass-
Transistor-Switched Wires

We have found that combining length 8 buffered wires with
some pass-transistor-switched wires also results in good FPGA
architectures.  Using length 8 buffered wires instead of length 4
buffered wires slightly increases the FPGA speed, at the cost of
slightly decreased area-efficiency.  Otherwise, the architectural
conclusions we found when combining pass-transistor-switched
wires with length 8 buffered wires are very similar to those of the
previous section:

1. The best combination of area and delay results when the
pass-transistor switched wires are of length 4 or 8.

2. The best architectures contain from 50% to 83% pass-tran-
sistor switched routing tracks, with the 50% pass-transistor
architectures giving the best speed, and the 83% pass-tran-
sistor architectures yielding the best area-efficiency.

6 Overall Architecture Comparison
In the previous sections we have examined FPGA routing

architectures of gradually increasing complexity and looked for
important architectural trends by varying the key architectural
parameters.  In this section we provide an overview by comparing
some of the best architectures we have found against each other
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and against a routing architecture that is similar to that of the pop-
ular Xilinx XC4000X series FPGAs [33, 35].  This “4000X-like”
architecture contains 25% length 1 wires, 12.5% length 2 wires,
37.5% length 4 wires, and 25% “one-quarter longs”, whose length
is one-fourth of the chip.  The length 1 and 2 wires connect via
pass transistors, while the longer wires connect via tri-state buff-
ers.  As well, pass transistor switches also allow the length 4 wires
to connect to the length 1 and 2 wires, and the one-quarter longs to
connect to length 1 wires.  While this routing architecture is very
similar to that of the Xilinx XC4000X, it simplifies a few features
[35].

Table 3 compares the speed and density of some of the best
architectures found in each of the preceding sections to those of
this 4000X-like architecture.  We also include the performance of
an FPGA composed entirely of length 1 wires connected by pass
transistors, since most prior FPGA research has focused on this
architecture.

All the architectures in Table 3 allow each logic block input
pin to connect to 0.5⋅W routing tracks (i.e. Fc,input = 0.5⋅W) but
each logic block output pin can connect to only 0.25⋅W tracks (i.e.
Fc,output = 0.25⋅W).  Setting Fc,output to 0.25⋅W instead of the
0.5⋅W we used in the previous sections reduces the FPGA routing
area by 2% to 5%, depending on the exact architecture.  Recall that
the connection block between the routing tracks and a logic block
input pin consists of an Fc,input multiplexer, while the connection
block from a logic block output pin to the routing tracks consists of
Fc,output pass transistors controlled by Fc,output SRAM bits.  Conse-
quently, connections to logic block output pins require more area
than connections to input pins (see Table 1), and it is best to make
Fc,output smaller than Fc,input.

The architectures are listed (after the 4000X-like architecture)
in order of increasing complexity.  Notice the extremely poor per-
formance of an FPGA using only length 1 wires connected via
pass transistors — 150% slower (-60% speedup) and 33% percent
larger than the 4000X-like architecture.  The best architecture we
found using only pass transistors and one length of wire used

length 8 wires.  This architecture performs much better than a
length 1 architecture; it is 5.6% faster than the 4000X-like archi-
tecture, at a cost of 16% larger area than that of the 4000X-like
architecture.  Although the speed and area-efficiency of this length
8, all pass-transistor FPGA are reasonably competitive on average,
we consider FPGA architectures that contain no buffers dangerous.
As circuit size increases, the longest connections in an FPGA grow
longer, and pass through more series switches.  Since the delay of
pass-transistor switches grows quadratically with the number of
switches in series, it is difficult for an architecture that contains
only pass transistors to maintain good speed as the size of the logic
block array grows.  As well, larger circuits can contain nets with a
higher maximum fanout, and purely pass-transistor based routing
is inefficient for routing high-fanout nets.  For both these reasons,
architectures that contain only pass transistors do not scale as well
with increasing circuit size as architectures that contain some buff-
ers.

The best single-wire-type architecture we found, in which all
wires are length 4 and all switches are buffers, is 7.2%faster than
the Xilinx 4000X-like FPGA.  Its area is 30.9% larger, however.  It
is interesting that such a simple FPGA architecture is reasonably
competitive with the complex routing architecture of the 4000X-
like FPGA.  Simpler routing architectures make it easier to develop
CAD tools.  As well, they likely make it easier to implement intel-
lectual-property “cores.”  These cores are sometimes provided as
“hard” (placed-and-routed) macros.  If there is only one type of
routing resource in the FPGA, it is easier to map several of these
hard cores into one FPGA and ensure each gets the wires it needs.
These factors may make a simple FPGA architecture, in which all
the wires are essentially the same, attractive despite its suboptimal
speed and area performance.

Table 3 also lists four of the best two-wire-type architectures.
Each of these architectures combines some buffered wires with
some pass-transistor-switched wires.  Two of these architectures
use only length 4 wires, while the other two use some length 4 and
some length 8 wires.  Notice that these architectures are all signifi-
cantly (10.2% to 19%) faster than the 4000X-like architecture, but

Table 3:  Comparison of key architectures (20 circuit average).

Segmentation of Routing Tracks, and Switch Types Used Delay (ns)
Speedup vs.
4000X-like

FPGA

Routing Area (Min.
Width Transistor

Areas)

Routing Area vs.
4000X-like

FPGA

Xilinx 4000X-like:  25% L1, 12.5% L2, 37.5% L4, 25% one-quarter
longs; mix of buffers and pass transistor switches

48.83 — 4425 —

100% L1, pass-transistor-switched 120.7 -60% 5891 +33.1%

100% L8, pass-transistor-switched 46.22 +5.6% 5131 +16.0%

100% L4, buffer-switched 45.57 +7.2% 5792 +30.9%

67% L4, pass-transistor switched;
33% L4, buffer-switched

42.91 +13.8% 4771 +7.8%

83% L4, pass-transistor-switched
17% L4, buffer-switched 44.31 +10.2% 4569 +3.3%

50% L4, pass-transistor-switched
50% L8, buffer-switched 41.04 +19.0% 5039 +13.9%

83% L4, pass-transistor-switched
17% L8, buffer-switched 43.84 +11.4% 4539 +2.6%

50% L4, pass-transistor-switched; 50% L8, buffer-switched with
reduced “switch-block population”

41.23 +18.4% 4708 +6.4%

83% L4, pass-transistor-switched; 17% L8, buffer-switched with
reduced “switch-block population” 44.04 +10.9% 4426 0%



none of them is as area-efficient.  The area penalty for using an
architecture that is 19% faster than the 4000X-like architecture is
13.9%, while the area penalty for an architecture that is 11.4%
faster than the 4000X-like architecture is only 2.6%.  Both the
speed and the area of these architectures are significantly better
than the best single-wire-type architecture discussed above, show-
ing that a mix of pass transistors and buffers is very useful in
FPGA routing.

The last two lines in Table 3 show the benefits of reducing the
switch-block population [6, 7] of these two-wire-type architectures
so that the buffered wires have a switch block only once every two
logic blocks.1  As Figure 9 (a) shows, ordinarily routing wires can
connect to at least one wire segment in every channel they cross.
We have found that the area-efficiency of an FPGA can be
improved by removing some routing switches from some of the
FPGA wire segments, however.  Figure 9 (b) shows a routing wire
which has programmable switches allowing it to connect to other
routing wires only in every second channel (or switch block) it
crosses.  Reducing the number of programmable switches connect-
ing to some of the wires reduces routing flexibility , and hence
more tracks per channel are required for successful routing.  The
area saved by reducing the average number of switches per wire
segment outweighs this cost, however, so the net result is a reduc-
tion in routing area.  As Table 3 shows, architectures in which the
buffered wires can connect to other wires only at every second
switch block are from 2.5% to 7% more area-efficient than those
that used a switch-block population of 100% for all wires.  The
exact amount of area improvement depends on the fraction of rout-
ing wires that use buffered switches.  Notice that one of these
architectures is 18.4% faster than the 4000X-like architecture and
only 6.4% larger, and another architecture is 10.9% faster and uses
the same area as the 4000X-like architecture.

From the results of Table 3 one can see that we have found
many architectures with speed superior to that of the 4000X-like
architecture, but none with superior density.  We believe the 4000X
contains too many short wire segments, and this reduces its speed
versus many of the architectures we have investigated.  The 4000X

1. Space limitations preclude a thorough discussion of theswitch-
block population issue in this paper.  For complete definitions
and experimental results showing why it is best to reduce the
switch-block population to one switch every two potential loca-
tions (rather than one switch every 3 potential locations, for
example) see [6, 7].

uses a more advanced switch block than the disjoint switch block
used by all the other architectures in Table 3, however.  The 4000X
switch block contains some switches that allow wires of different
lengths to connect, and that allow wires in different tracks to con-
nect.  These features make the 4000X switch block more routable
than the disjoint switch block, yet it contains only a few more
switches than the disjoint switch block.  Consequently, this switch
block tends to result in FPGAs with superior density.  We consider
the investigation of better switch block topologies for use with
FPGAs that contain some long wires to be a fertile area for future
research.  We expect that combining the segmentation distributions
of some of the architectures listed in Table 3 with a better switch
block would lead to significantly improved area-efficiency.

7 Summary
We have investigated a large number of different routing

architecture issues in this work.  First, we showed that it is most
important for FPGAs to contain wires of moderate length (4 to 8
logic blocks).  While most commercial FPGAs contain some very
short and some very long wires, we have found FPGAs that use
significant numbers of these types of wires to be inferior to those
that employ medium-length wires.

We also found that FPGAs that contain a mix of pass-transis-
tor and tri-state buffer routing switches are superior to FPGAs that
employ only one type of switch.  The fastest FPGAs tend to con-
tain about 50% pass-transistor switches and 50% tri-state buffer
switches, while the most area-efficient FPGAs contain about 80%
pass-transistor switches and only 20% tri-state buffer switches.

We also found that reducing the switch-block internal popula-
tion of routing wires that interconnect with tri-state buffers pro-
duces an area gain of 2.5% to 7.5% for typical architectures.  The
switch-block population of these buffered wires should be set so
that each wire connects to orthogonal wires at only every second
channel it crosses.

Finally, we showed that the best architectures examined in
this paper have significantly superior speed to a (slightly simpli-
fied) Xilinx XC4000X routing architecture; some architectures are
19% faster than the 4000X architecture.  This 4000X-like routing
architecture has better area-efficiency than all but one of the archi-
tectures we examined, however.  The best architectures in this
paper have a better area-delay product than the 4000X-like archi-
tecture, indicating that they have gained more in speed than they
have sacrificed in area.  They are also less complex than the
4000X.  This is a useful feature, as it simplifies both CAD tool
design and the implementation of pre-placed and pre-routed intel-
lectual property cores.

While prior researchers and this work have answered many
important questions about FPGA routing architecture, much
remains to be done.  We believe one of the most fertile areas for
future research concerns finding good switch block topologies for
use with FPGAs that contain wires longer than length 1.  Prior
research into this area has focused on switch blocks for use with
FPGAs that contain only length 1 wires, but we have found that the
best switch block for an architecture with only length 1 wires is not
necessarily the best switch block for an FPGA that contains longer
wires.
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