A Methodology for Fast FPGA Floor planning *

John M. Emmert and Dinesh Bhatiaf
Design Automation Laboratory
ECECS Department
P.O. Box 210030
University of Cincinnati
Cincinnati, OH 45221-0030

{jemmert,dinesh} @ececs.uc.edu

Abstract

Floorplanning is an important problemin FPGA circuit mapping.
As FPGA capacity grows, new innovative approacheswill be re-
quired for efficiently mapping circuits to FPGAs. In this paper
we present a macro based floor planning methodology suitable for
mapping large circuits to large, high density FPGAs. Our method
uses clustering techniques to combine macros into clusters, and
then uses a tabu search based approach to place clusters while
enhancing both circuit routability and performance. Our method
is capable of handling both hard (fixed size and shape) macros
and soft (fixed size and variable shape) macros. We demonstrate
our methodology on several macro based circuit designsand com-
pare the execution speed and quality of results with commercially
available CAE tools. Our approach shows a dramatic speedup in
execution time without any negative impact on quality.

Key Words: Floorplanning, Placement, FPGA, Clustering, Tabu
Search

1 Introduction

Placement and floorplanning are extensively studied topics. How-
ever, the importance of placement and floorplanning cannot ever
be ignored due to changing design complexities and requirements.
Onetechnology that is evolving very rapidly isfield programmable
gate array (FPGA). Currently, commercially available devices can
map up to one million gate equivalent designg[19] (and some of
the newly announced products like Altera’s APEX serieswill map
over two million gate equivalent designs[1]). Such complex design
densities also demand tools that can efficiently and quickly make
use of available gates.

Improvements in CAD tools for FPGAs have not kept pace
with hardware improvements. The available toolstypically require
from minutes to hoursto map! designs (or circuits) with just afew
thousand gates, and as design sizesincreasethe execution time will
increase. Oneway to addressthe problem of long mapping times is

*this work is partially supported by Air Force Research Laboratory of the US Air
Force under contract number F33615-97-C-1043

T corresponding author

Ltypical mapping steps include technology mapping, placement, and routing

create designsthat use premapped macros? to create larger designs
(macro based circuits). Then we floorplan and route these macro
based circuits. In general, floorplanning is an NP-hard problem
[14]. For FPGAs, it is more difficult dueto fixed logic resources.

To addressthe problem of mapping large designsto large FPGA
circuits, we have taken amacro based approach [18]. We floorplan
interconnected macro based circuits. At thelowest level amacrois
composed of one or moreinterconnected and relatively placedlogic
blocks. In this paper we present amethod (based on clustering and
tabu search (TS) optimization) to quickly floorplan macro based
circuits while attempting to minimize throughput delay and meet
area and routability constraints.

The basic flow of our method is summarized as follows. We
start with a set of macros (M) interconnected by a set of signals
(S). We then group (cluster) macros together to form clusters.
Each cluster in the set of clusters (B) is smaller in area than some
predefined limit®. We then use TS optimization to perform two-
dimensional placement on the set of clusters B. Then, for each
cluster that is composed of more than one macro, we perform in-
tracluster placement®. Finally, for any macro whose shape was
changed during the intracluster placement process, we perform in-
tramacro placement®.

2 Floorplanning Problem

Given aset of macros M = {m1, mo, ..., m, } and aset of signals
S = {s1, s2, ..., 84}, We associatewith eachmacrom; € M, asize
a; (number of logic blocksin m;); awidth w; (maximum width
of m; in number of logic blocks); a height &; (maximum height
of m; in number of logic blocks); aflexibility f; (O for hard/fixed
macros or 1 for soft/flexible macros); and a set of interconnecting
Signals S, (Sm, C S). For hard macros (macros with fixed size,
shape, and internal placement), w; and k; are both fixed and f; =
0. For soft macros (macros with fixed size and variable shape), w;
and h; are considered flexible (both w; and k; can take on arange
of values typically between 1 and «;) and f; = 1. Additionaly,
with each signal s; € .S we associate a set of macros M, where
M., ={m; | s € Smj}. M., issaid to be a signal net. We
can divide M into two distinct sets, M .S and M H (subset of soft
macros and subset of hard macros), where M = { MH U M S |

2macros are predefined circuit components like adders, shifters, decoders, multi-
pliers, signal processors, CPUs, etc.

3predefined limit implies the total area of each cluster (sum of the areas of the
macroswithin the cluster) is less than some maximum

“4intracluster placement is the task of assigning the macrosthat make up the cluster
aphysical location and reshaping any macro whose shape must be altered to meet area
constraints

Sintramacro placement is the process of relatively placing the logic blocks that
make up amacro component

‘(174): (2.4 | ’(:?,4" (44
| | |
deo 0 e s e
4LogicBIock
1 (1,3) 1(2,3) [(3,3) ! | (4,3)
| | | |
| | |
oo e e e
[(1,2) ! (2,2 1(3,2) [(4,2)
| | | |
:IS I lle I :|7 I :IB I

Figure 1: Example two-dimensional array I = {i1, 12, ..., 116} of
physical logic block locations (W = 4 and H;, = 4). One logic
block can be assigned to each physical locationi; € L.

MHNMS=¢,fi=0YVm; € MH,and f; =1Ym; € MS
}. We are dlso given atarget set L = {i1, Iz, ..., I, } of locations
where | L |> Zlfll a;. For the case of mapping m; € M to
a regular two-dimensional array, each I; € L is represented by
aunique (z;, y,) location® on the surface of the two-dimensional
array wheres ; and y; areintegers. Additionally, we definethe two-
dimensional array . by the width of physical logic block locations,
W1, and the height of physical logic block locations, H;. The
floorplanning problem then becomeshow to assign each soft macro
m; € MS ashapeandeachmacrom; ¢ M = MH U MS a
unique location in L such that an objective function is optimized.
Here uniquenessimplies no macro overlaps. Figure 1 showsthe 16
element set L for an example 4 x 4 two-dimensional array (Wi =
4 and H; = 4). Our god is to optimize the floorplanned circuit's
performance while meeting area and routing constraints.

3 Related Work

Many recent papers have addressed placement and floorplanning
for regular arrays. Roseet. a. use simulated annealing asthe basis
of their placement tool[2]. Saucier et. al. developed a floorplanner
that matches the hierarchy of the circuit to the hierarchy of the tar-
get FPGA [9]. Mathur et. al. studied the placement problem and
presented methods for re-engineering of regular architectures[13].
Togawa et. al. combined technology mapping, placement, and
global routing[17]. Yamanouchi et. a. used partia clustering
for macro based floorplanning of standard cells [18]. Callahan et.
al. developed a module placement tool for mapping of data paths
to FPGA devices [3]. Shi and Bhatia developed a force directed
optimization based floorplanning tool for fast, high-performance
floorplanning of FPGA mapped designs [15]. Krupnova et. al.
combined the mapping and floorplanning stages to create a new
method for mapping large, hierarchal designsto FPGAs[9]. In ad-
dition, over the past several yearsmany non-deterministic, random
move based solutions have also been considered [7][8]. Theseran-
dom move based methods typically achieve high quality results at
the cost of long executiontimes. Ascircuit size increases, the time

Sfor our application, the location represents a physical logic block location on the
FPGA

required for executing such random move methods becomes exor-
bitant. In most search based methods, there is a tradeoff between
the execution time and the quality of the resullts.

Song and Vannelli developed a TS based placement algorithm
for minimizing total wire length [16]. Their cost function is based
on total wire length using the half-perimeter net model, and there-
fore, designed to enhance routability and not necessarily perfor-
mance. They sum the total estimated length of all nets. Their cost
function is based on allowing moves within a predefined window
to define local neighborhoods. Their tabu list is composed of the
most recently executed moves. Their method uses no aspiration
criteria and no long term search strategy; and therefore, does not
fully exploit the advantages of a TS based approach. They use
their method to generate aninitial placement for further refinement
by other algorithms. Lim, Chee, and Wu have developed a place-
ment with global routing strategy for placement of standard cells
[11][12]. Their algorithm uses a hierarchical, divide and conquer,
quad-partitioning approach. They use TSin their quad-partitioning
routine. Their algorithm usesthe concept of proximity of regionsto
approximate interconnection delays during the placement process.

4 FPGA Floorplanning

In this section we give an overview of our method, andin following
subsectionswe describe each stepin detail. First, some preliminary
definitions are required. As stated earlier, a macro is a set of one
or more interconnected and relatively placed logic blocks. We are
given a set M of interconnected macros in our circuit or design
netlist. When necessary we group macros in M together to form
clusters. Therefore, we define a cluster as a set of one or more
macros, and B = {b1, by, ..., by} asthe set of al clusters. (For
initialization, there is a one to one mapping of the elements of
the set M to the elements of the set B, and therefore, initially
| B |=| M |) Asstated earlier we are floorplanning the set
of macros M on the two-dimensional array I of physical logic
block locations. Once macros are grouped to form clusters, our
approach is to perform two-dimensional placement of clusters on
L. To performthis placement wedivide our target two-dimensional
array L into atwo-dimensional array of bucketswhere each bucket
(of physical logic block locations) has the same size and shape.
(We define the bucket size by a width of W logic blocks and a
height of H logic blocks) We define the set of buckets as the
set {4, &, ..., I},} = L', where the number of buckets m equals
| L' |. (Thetwo-dimensional array ' is defined by awidth of W,
bucketsand aheight of H ./ buckets.) Then, instead of performing
two-dimensional placement of clusters directly on L, we perform
two-dimensional placement of clustersonthesmaller set L’. Figure
2 showsthe example L divided into four equally sized buckets of
physical logic block locations where each bucket is 2 logic blocks
x 2 logic blocks.

Figure 3 shows aflow chart of our floorplanning methodology.
In figure 3, we read in the sets M, S, and L. Next, we initialize
the set of clusters B. Initialy, each element of B contains one
element from M, so there is a one to one mapping of the elements
of M to the elementsof B. After initialization of B, we initialize
the bucket width, Wz, and bucket height, H , using the Procedure
Create_Buckets(M). Details for Create_Buckets(M) are found in
subsection 4.1. After bucket size initialization, we create the set of
buckets, L', as outlined in subsection 4.2. Next, we check the fit
of B on L'. (It should be noted that we create and maintain the
bucket width W and bucket height H 5 so any singlemacroin M
will fitin any bucketin L' 7. This allows us to skip the clustering
step if | B | isless than or equal to | L’ |. This usualy occurs
when low device utilization is sufficient and allows for very fast

"Theinitial bucket size is based on the dimensions of the largest elements of M .

Rff: RZI: Rif: RII:
[[[[
\Ils,,‘ \I,”,,‘ \Ils,,‘ \I,“L,‘
gLogicBIock
Rifl Rifl Rifl lel
[[[[
\If,,‘ \Ilo,,‘ \I,n,,‘ \Ilz,,‘
@Bucket
Rifl Rifl Rifl RIE:
:Is I :Ie I :|7 I :Is I
Rff: Rif: Rif: Rif:
I I I I
RER 2 3 R

Figure 2. Example L divided into a set L’ of 4 buckets. The
dimensionsof L' are W, = 2 bucketsand H ;. = 2 buckets. The
dimensions of the example bucket are Wz = 2 logic blocks and
Hp = 2logic blocks.

floorplanning.) If thereis afit, we proceed to the placement phase
if thereis not afit we proceed to the clustering phase.

In figure 3, if | B | is not less than or equal to | L' |, we
proceed to the clustering phase. To ensure fit, our methodology
requires| B |islessthanorequal to | L' |, and therefore, the goal
of the clustering phase is to group smaller macros together thereby
reducing| B | until | B |islessthanorequalto| Z' |. Additionally,
it isrequired that each cluster b; € B hassize lessthan or equal to
the bucket size. Thisensureseach cluster will fitin any bucket. The
details of clustering are found in subsection 4.3. After clustering if
| B |islessthanorequalto| L’ | then we proceed to the placement
phase else we iteratively increase the bucket size (as described in
subsection 4.4) and continue clustering until | B | is less than or
equal to | L' | or the bucket size exceedsthe dimensionsof L.

Infigure 3, if | B |islessthanor equal to | L’ |, we proceed
to the placement phase. In the placement phase we use TS based
placement to assign each b; € B to abucket (see subsection 4.5).
Then in intracluster placement, we assign each macro within each
cluster a physical location and shape (see subsection 4.6). Finaly
in intramacro placement, we place the logic blocks within any soft
macro whose shape has been altered during intracluster placement
(see subsection 4.7). After this phase, every logic block making
up the circuit or design netlist will have a physical location on the
two-dimensional array L. Thefloorplanning processis summarized
in Algorithm TS_FP() ,S,L).

Infigure3, if thecircuit or design netlist will not fit we havefour
options. We can reduce the size of the macro set M by partitioning
the design spatially or temporally. We can increase the size of the
target two-dimensional array L. This assumesa larger FPGA part
is available. We can flatten the netlist and attempt to use standard
placement techniques. This will become more difficult as design
sizesget larger. Finaly, if possible we can soften some of the hard
macrosto allow better space utilization.

4.1 |Initializing Bucket Size

In this subsection, we describe the method for determining the
initial bucket sizewhich subsequently defines| L’ |. Themain goal
of our floorplanning method was fast execution time. Therefore,
we quickly initialize the width of the bucket, W, to the width of

Initialization
ase;

Initialize B

Initialize Bucket | |
Sze,WBand HB
Create Bucket
List, L’

Increment Bucket
Size, WB and I-b

TS Place D

Floorplan

Figure 3: Floorplanner execution flow.

Algorithm TS_FP(M ,S,L)
begin

(* initialize the buckets*)
Vm; € Mletb; = {m;};
(* determineinitial bucket size, Hg and W *)
Create_Buckets(M);
create ' where W, = | 7k | and Hpr = [75];
success= checkfit(B,L’);
while(NOT successAND Wz < Wi, AND Hgp < Hy)
B = Cluster(M,S,HB,WB);
success = checkfit(B,L’);
if NOT successthen
increment bucket size (H 5 and/or W g);
update L' s0 Wy = | = | and Hpo = [5= ;
end if;
end while;
if successthen
TS_place(B,S,L");
Vb € B{
intracluster_place(b;,H5,W5);
¥ m; € b; intramacro_place(m; b: . H5,W5);

SE
return “ERROR: circuit not floorplanned”;
end if;

end;

Procedure Create_Buckets(M/):
begin
initializeWp = Hp = 0;
fori=1to| M |
if Ws < W(m;) then
Wg = W(m;);
end if;
if Hg < H(m;) then
Hp = H(ml),
end if;
end for;
return Wp and Hps;
end;

Logic Block

Bucket

Figure 4: Example L' made up of three 6 x 2 buckets.

the widest macro cell (hard or soft®). Similarly we initialize the
height of the bucket, H g, to the height of the tallest macro cell
(hard or soft). This guarantees that any macro m; € M will fit
in any bucket. The procedure used to determine the initial W
and H 5 is shown in Procedure Create_Buckets(M). In procedure
Create_Buckets(M), H(m;) returns the height of macro m; and
W (m;) returns the width of macro m;.

4.2 Bucket List, I’

The set of buckets®, I’, is created by dividing the set I, into rect-
angles of equal size. The width of L’ (in number of buckets) is
definedas W = LVV[Z—JLBJ and the height of Z' (in number of buck-
ets) is defined as Hy, = L%J. (Note, W and H define the
width and the height (in number of logic blocks) respectively of the
two-dimensional array L.) Therefore| L' | = H;: x W,. Figure
4 showsan example L’ for a7 logic block x 6 logic block L (W7,
=6and H; = 7)andaé6 logic block x 2 logic block bucket (W5
=2and Hp = 6).

4.3 Clustering

As stated earlier, the set B is created or initialized by assigning
eachm; € M tob;, € B, andinitidly, | B |=| M |. When
necessary, the size of set B isreduced by clustering elements of M

8This assumes soft macros are supplied with some initial shape. Effort is made to
maintainthe shapeof soft macros. The shape of soft macrosisonly changedif required
to makethe circuit fit the given area.

Sabucket is a set or group of physical logic block locationsfrom L such that each
bucket hasthe same sizeand shape (Hgs x Wg)

ProcedureCluster(M ,S,Hg ,Wg5,L'):
begin
VYm; € Mleth;, = {mz},
calculatec;; Vb; andb; € B;
while| B|>| L' | AND 3¢;; > 0
choose m; and m; with highest connectivity, ¢;;;
let b; = m; U my;
letb; = ¢;
update connectivity between clusters;
end while;
return B;
end;

so more than one element of M isin someb; € B. Thereisno
limit placed on the maximum number of macrosin each b; aslong
assize constraints are satisfied. Size restrictions (described below)
limit the macros used to form each cluster, b; € B.

Each cluster b; € B isdivided into two parts, a hard macro part
and a soft macro part. The size restriction on b; requires the total
area of the hard macro part plusthe total area of the soft macro part
be less than or equal to the size of the bucket (Hs x Wg). We
definethe width of the hard macro part of each cluster b; asthe sum
of the width of the hard macrosin b;,

HMW (b)) = >

ijeb,|mj ts hard

W(m;),

where W (m;) is the width of macro m; in cluster b;. We define
the area for the hard macro part for each cluster b; as the width of
the hard macro part times the height of the bucket

HMA(b) = HMW (b)) x Hp .

The size for the soft macro part for b; is defined asthe width of the
bucket minus the width of the hard macro part times the height of
the bucket

SMA(b:) = (Ws — HMW (b)) x Hp .

The sum of the areas of all soft macrosin b; must be less than or
equal to SM A(b;).

With these area constraints in mind, the set 3 is clustered to
form the set B. The clustering method is derived from the connec-
tivity work done in [18]. The connectivity cost function includes
area constraints. Our connectivity cost function is summarized
below.

cij = feas(1,g) Z

$1€5m; NS ;

1 Atot

(Ise1-1) ai+a; maz(ai,a;)

min(a;, a;)

where a; and a; are areas of macro m; and m; respectively, Ao
isthe total area of all macros, | s | is the number of pinson signal
55 which connects macros m; and m;, Sm, N Sm; isthe set of all
signals that connect macros m; and m;, and feas(¢, j) returnsthe
feasibility of clustering m; and m ; under size constraints described
above. feas(i,j) returnsal if it is possible to combine m; with
m; elseit returnsaO.

The clustering algorithm combines clusters with the highest
connectivity to form larger clusters. In order to enhanceroutability,
once area constraints have been met (ie. | B | < | L' |) the
algorithm stops and returns the set B. The clustering algorithm is
summarized in Procedure Cluster(M ,S,Hg ,Wg5,L'").

After clustering is complete, it returns the set B. The empty
elements of B are removed, and each b; € B consists of a unique
list of elementsfrom M. Here uniquenessimpliesb; Nb; = ¢ V b;
Ab; € Bli#j.

Macro Statistics
m; [wi [A [fi
m1 3 3 0
mo 3 3 0
m3 2 3 1
ma 2 3 1
ms 2 3 1

Table 1: Macro statistics for example floorplan.

A T e I R I [l
T I A
T

REREREEEREE i
e
T

Figure 5: Example L' made up of four 3 x 3 buckets converted to
two 3 x 6 buckets.

4.4 Increment Bucket Size

In the event that the first pass of clustering does not lead to a valid
solution, thebucket sizeisincreased to allow moreflexibility during
clustering. Thisincreasesthe complexity of intracluster placement
but allows more macros to fit in the same area. For example,
consider floorplanning the 5 macros described in table 1 so they fit
onan L withWy = H; =6and| L |= 36. For theset M, both
Wpg and Hp will be set to 3 since these values reflect the largest
macro width and height respectively. Figure 5 shows the buckets
on L. Therefore L’ will initially have 4 buckets and M will not fit
since| B | >| L' |. However, by doubling the width of the bucket,
we can cluster i1 and m into one cluster and ma, ma, and ms into
asecond cluster that will fitin L.

4.5 Cluster Placement

Once the circuit is guaranteed to fit (| B |<| L’ |) then the clus-
ters b; € B are placed using a two-step tabu search'® (TS) based
two-dimensional placement algorithm [5]. The first step of the
placement strategy minimizes the circuit’s total wire length (see
TS_TWL in section 4.5.1) thereby enhancing the routability of the
circuit. The second step attempts to average the circuit's edge
lengths by weighting graph edges and minimizing the maximum
weighted edge lengths (see TS_EDGE in section 4.5.2).

For our TSapproach, we convert each multi-terminal netto aset
of edgeswhere each edge consists of the driving terminal and one
driven terminal. We usethis model to keep net sourcesand sinksin
close proximity thereby enhancing circuit performance. We create
the set of edges by converting the hyper-graph input circuit model
describedearliertoagraph G = (V, E) whereV = {v1, vo, ...vn},
|V |=n, E={e1, e ...}, and| E |= m. Eachvertexv; € V
correspondsto acluster b; € B (if pad IO locations are available,
we also include preplaced pseudo-elements of V' representing the
pad locations to help guide the placement). Each edgee; € F
connectsa pair of vertices (v, vx) | v, vx € V. The elements of
FE arecreated by consideringeachsignal, s; € S. If welet m.ource
(where m source € Ms, and m.curce € b;) be the source macro
for signal s; then an edge (v;, v;) is added to E for each sink on
s; such that msinky € Ms,, Mmsink € bg, and y # k. (In other
words, an edge is added for each source/sink combination that are
not in the same cluster.) At any given time, each element of V' is
mapped to a unique element of L', and the minimum requirement
for mappingis| V |<| L' |.

The two-dimensional placement stage basically assigns each
cluster to a unique bucket. After placement of each b; € B, each
b: € B will have associated with it a unique bucket I; € L’. The
physical location (on L) of each; € B in bucket {; can be found
from the following equations:

X(bi) = X(I) x Wg
and
V(b)) = Y(I)) x Hs.

where X (I}) returns the X-axis coordinate of Z; on L and Y (1})
returnsthe Y-axis coordinate of I; on L'. After eachcluster b; € B
is assigned a unique location on L, intracluster placement takes
place to assign each m; € b; € B a physical location on L.
Intracluster placement also reshapessoft elementsmy, € M S € B
that require further modification.

451 TS_TwWL

For thefirst step of our TS based placement strategy, TS_TWL, we
seek to enhance routability by minimizing total wire length (TWL).
We conservatively estimate TWL using the Manhattan length of
eachedgee; € F, andwe seek to minimize thefollowing function:

TWL =Y MLength(e;)
Ve, EE

where M Length(e;) isthe Manhattan length of edgee;.

tabu search is a meta-heuristic approach to solving optimization problems that
(when used properly) approaches near optimal solutionsin a relatively short amount
of time compared to non-deterministic r an dom move based methods[6]. Unlike
approacheslike simulated annealing or genetic algorithmsthat rely on a good random
choice, TS exploits both good and bad strategic choices to guide the search process.
As ameta-heuristic, TS guideslocal heuristic search proceduresbeyond local optima.
InTS, alist of possible movesis created. In the short term, as movesin the list are
executed, tabu, or regtrictions, are placed on the executed movesin order to avoid
local optima. This tabu is typically in the form of a time limit, and unless certain
conditions are met (e.g. aspiration criteria), the move will not be performed again
until thetime limit has expired.

N
A \ U A
\//
Z ’
Bucket
v

Figure 6: Example Horizontal and Vertical Moves.

Key tothe developmentof aTSisasearchlist. For TS_TWL our
search list U consists of all possible swaps of vertices occupying
adjacent locations in L. This implies two basic swap moves:
horizontal (swap of adjacent vertices with the same y coordinate)
and vertical (swap of adjacent verticeswith the samez coordinate).
Given atwo-dimensional array L’ of width W units and height
Hy: units, thereare | U |~ 2(Hy x W) possible swaps or
moves in U. Figure 6 shows an example horizontal swap move
u; and vertical swap move w;. In figure 6, move u; represents
the horizontal swap of vertices v1 and v, or moving vy to v2’s
bucket and v, to v1’s bucket. For TS_.TWL, given arandom initial
placement in L’ (by selecting an appropriate sequence of moves
from U), we seek to optimize our objective function, minimization
of TWL.

INTS_TWL, eachu; € U hasanassociated attractiveness, A F;,
or sum of the adjacent forces pulling on the vertices v; and v, that
make up «;. U isordered sothe most attractive movesarefirst. For
vertical moves

AF; = M(v;) x PE(vj) + M(vi) x PW(vx)
and for horizontal moves
AF; = M(vj) x PN(v;) + M(v) x PS(vg)

Each vertex »; € V' has one multiplication factor M (v;) (dis-
cussed later) and four associated pullsor forces: PN (v;), PE(v;),
PS(v;), and PW (v;). The pulls are determined by summing the
Manhattan lengths of the edges connecting v»; to verticesin the di-
rection of thepulls. If weused U in atypical greedy search strategy
(i.e. givenaninitial placement, find amovethat would improve the
minimum 7'W L) wewould quickly reachalocal optima. However,
by applying the conceptsof TS (i.e. accepting strategic movesthat
may not improve the current minimum 7T'W L), we climb out of
local optima. After executing move u; € U we set atabu tenure
for u;. Move u; will not be executed again until the tabu tenure
has expired or our aspiration criteria is satisfied. Initialy, V v;
€V, M(v;) issetto 1. For diversification, we penalize moves
that are executed with high frequency in order to take the search
into unexplored areas. We do this by increasing M (v;) for low
frequency moves, thereby making them more attractive.

4.5.2 TS_EDGE

The second step of our TS based placement strategy, TS_EDGE,
seeks to enhance circuit performance by minimizing the length of
critical circuit edges. To accomplish this, we traverse G and apply
aweight w; to each edgee; € E. Edgesin critical paths receive
a higher weight. For TS_.EDGE, we use a two part optimization
function. First we minimize the weighted length of the longest
edge. Second, since some configurationsmay havethesamelongest
weighted edge length, we add together N of the longest edges
(NLFE)andminimize NLE.

N
NLE =" MLength(e;) x w,

=1

For TS_EDGE, we use the edge list £ as our search list. We
order F in descending order by weighted Manhattan length. Then,
we search £ looking at each of the two vertices attached to each
edge as possible candidates for a move. The vertices attached to
the edgeswith the longest weighted Manhattan lengths are the most
attractive candidates for moving closer together. By moving these
vertices closer together, the longest edges are shortened thereby en-
hancing circuit performance and reducing the longest paths. Once
an edge is selected from the search list, we look at only one of the
edge’s two vertices as a possible move candidate. For simplicity
we pick one of two possible movesfor the vertex selected: vertical
swap or horizontal swap (discussed earlier relativeto TS_.TWL). In
TS_EDGE, given aninitial placementin L’ (by selecting an appro-
priate sequence of movesfrom £), we seek to optimize our objec-
tive function, minimization of thelongest weighted edgelength and
minimization of N L F.

After executing a move for a vertex on edgee; € F, we set
a tabu tenure (number of iterations a vertex’ position is locked)
for the moved vertex. This vertex on edge e; will not be moved
again until the tabu tenure has expired or our aspiration criteria
is satisfied. In this way we climb out of local minima and accept
the current best move even if it does not improve the current best
solution.

4.6 Intracluster Placement

Once each cluster is assigned a location on L, the macros making
up each cluster must be placed. Each macro m; € M has asso-
ciated with it a reference coordinate used to describe its physical
location on the FPGA. Each logic block within each m; also hasa
reference coordinate that describesits physical location relative to
the reference coordinate for m ;. Intracluster placement is the task
of assigning a reference coordinate from the set L to each macro
my € b;, Vb; € B, and, for any soft macro in M whose shape has
changed, the task of assigning a set of reference coordinatesfor the
logic blocks within the soft macro™.

Intracluster or intrabucket placement for each b; € B takes
place in three steps. First, we place al hard macros by assigning
each onean X,Y reference coordinate corresponding to some; €
L. Second, we place all soft macros by assigning each onean X,Y
reference coordinate from L. Third, we change the shape of any
soft macro that requires modification by assigning it a set of logic
block coordinates relative to the reference coordinate of the soft
macro. Figure 7 shows an example set of macros to be placed in
the 9 x 12 Bucket 6 located at coordinates X = 12and Y = 18. In
figure 7 each hard macroislabeled with f = 0 and each soft macro
islabeled with f = 1. In this subsection we will describe each of
the stepsfor intracluster placement.

Our feasibility check during clustering guarantees the hard
macros in each b; will fit by ordering them in the horizontal di-
rection. Thereforefor each b; € B, we place hard macrosin arow,
each with the same Y-axis coordinate. The Y-axis coordinate of
each hard m; € b; isfound from the following equation:

Y(my) =Y (b)

where Y'(b;) returns the Y-axis coordinate (from the set L) of the
bucket where cluster b; was placed. To compute the X-axis co-
ordinate of each hard m; € b; a sort key is computed for each
hard m; € b; by averaging the X-axis coordinates of al b, € B
connectedto m; (this includes|O position information). Then the
hard macrosin b; are reverse ordered according to the sort key and
stored in an ordered list {q1, ¢2, ..., gn } = Q. After ordering each
hard macro in b;, the X-axis coordinate of each hard macroin b; is

" Note: hereonly aset of referencecoordinatesisassigned for the set of logicblocks
inthe soft macro. The specific coordinatesfor each logic block in an altered soft macro
are found during intramacro placement.

ProcedureFind_Soft_X(b; ,r):
begin
if X(b:) + X (rx—1) iseventhen
if laStY(Tk_l) ;é Y(bz) 4+ Hp — 1then
X(Tk) = X(Tk_l);

else
X(Tk) = X(Tk_l) +1;
end elseif;

else
if lastY (rx—1) # Othen
o X(re) = X(re—1);

se
X(Tk) = X(Tk_l) +1;
end elseif;
end elseif
end;

determined by the following. If welet ¢ denotethe kth elementin
the reverse ordered list of hard macrosin b;, then

X(gr) = X(qp—1) = Wi(gr) V k> 1

where W (g) is the width of macro ¢x, X(gx—1) is the X-axis
coordinate of macro gx—1, and X (q1) = X (b:) + Bw — W(q1).
For our example macrosiin figure 7, since the Y-axis coordinate of
the bucket is 18, the Y-axis coordinate for each hard macro(m s,
mag, my7, and may) 1S 18. If we assume the key for mis is 3, mig
is 14, my7 1513, and ma: is 43 then the X-axis coordinate for each
hard macro is X (m1s) = 16, X (m19) = 20, X (m27) = 18, and
X (ma1) = 22. Figure 8 showsthe hard macrosfromfigure 7 placed
in example Bucket 6.

We now describethe method for determining the X,Y reference
coordinates for each soft macro. Similar to the method of ordering
the list of hard macros for b;, a sorting key is determined for each
soft m; € b; by averaging the X-axis coordinates of all clusters
connectedto soft macro m ; (thisincludes|O position information).
Then the soft macrosin b; are ordered according to the sort key and
stored in an ordered list {r1, 72, ..., rn } = R. After ordering each
soft macro in b; the X,Y reference coordinate of each soft macro
in b; is determined. If we let r; denote the kth element in the
ordered list of soft macrosin b; then the X-axis reference location
of ri isfound from the procedure Find_Soft_X(). In Find_Soft_X(),
lastY (ri) returnsthe Y-axiscoordinateof thelast elementinmacro
ri and X (ro) = X (b;). If it is required that the soft macro ri’s
shape be adjusted, then its Y-axis referencelocation is Y (b;), but if
the soft macro’s shape does not require adjustment, then r;.'s Y-axis
reference location is set relative to the Y-axis location of the last
logic block in rx—1 (lastY (rx—1)). If we assume r1 = ma, r2
= my7, r3 = mse, and r4 = ma3 for the soft macros in the example
shownin figure 7, then using the above methodol ogy figure 9 shows
the final placement and shape for the macros assigned to example
Bucket 6.

4.7 Intramacro Placement

After assigning the referencecoordinatesfor hard and soft macrosin
each cluster, thelogic blocksthat make up any reshaped soft macro
are placed usingintramacro_place(). Currently we usetwo methods
for intramacro_place(), and both are described below. Instead of
actually performing full placement on the logic blocks within the
soft macro, weincrementally reconfigurethe placement of thelogic
blocks using a transform that matches the X and Y coordinates of
the soft macro tothe X and Y coordinates of the available spaceon
L.

Thefirst method for incrementally reconfiguring the placement
is of O(n) complexity, where n is the number of logic blocks
within the reshaped soft macro. Starting from the leftmost-lowest
coordinate of the soft macro, the logic blockswithin the soft macro

m
s 2 m
f=1 4 f=1 3
4
m
13
f=1 2
3
m
m41 le%
f=0 m6
£=0
27
f=0
8 9
8
7
M1
f=1
4
2
2 2 5 2

RN ENEN NN EN NN
L (1218 L Bucket 6

Figure 7: Example set of hard and soft macros to be placed in
Bucket 6 located at coordinate (12,18).

Figure 8: Example hard macro placement for macros shown in
previousfigure.

Figure 9: Example placement of hard and soft macros.

grid point

|
random point —| f
matchingedge | ’Qx i

Figure 10: An instance of grid matching.

are matched to the leftmost-lowest coordinate available in the area
of the bucket set aside for the soft macro. This methodology,
though fast in execution, can substantially increase the length of
nets connecting logic blocks; however, since the delay of the logic
block is currently much greater than the interconnect delay, no
substantial degradation to performance was noted.

The second method (designed to counter any performancedegra-
dation due to increased interconnect length) uses aminimax match-
ing strategy to match locations of the logic blocks within the soft
macro to coordinatesavailablein the area of the bucket set aside for
the soft macro. We use general minimax grid matching to accom-
plish this match. The problem of grid matching is stated below:

Instance[10]: A sguarewith area NV in the plane that contains
N grid pointsarranged in aregularly spaced /N x +/N array and
N randompointslocated independently and randomly according to
a uniform distribution on the square as shown in figure 10.

Problem: Find the minimum length D such that there exists a
perfect matching between the N grid pointsand N random points
where the distance between matched pointsisat most D. D isalso
called the minimax matching length.

The problem of finding D for a given distribution of random
points is solvable in polynomial time since the length D has an
upper bound of O(v/N). An agorithm that solves this problem
constructs a bipartite graph between the grid points and random
points. Let SG be the set of grid points and SR be the set of
random points. The edges of the bipartite graph will be < 1,7 >
suchthat: € SG and j € SR, and :, j are at most distance DD
apart. Thealgorithm startswith the construction of abipartite graph
for someinitial D. It repetitively updates D, adding more edges,
until a perfect matching is found in the bipartite graph. The D
found by such an algorithm is also the minimax length. Leighton
and Shor have proved a bound on the expected length of D for a
random distribution of points which, with very high probability 2
is shown to be ©(log®/* N)[10]. We use this tight and small bound
to attain areconfiguration that resultsin minimal impact on circuit
performance.

Minimax matching attemptsto minimize the maximum distance
any logic block within thereshaped macro isdisplaced. More details
can befound in [4].

5 Test Methodology

We empirically tested the floorplanning methodology described
above using several macro based circuits (the circuits included both

2very high probability means probability exceeding 1— 1/N% where
a = Q(4/logN).

Macro Based Circuit Statistics

Circuit Total Num
Name Part | | M| | Area || B|| |S|]| I0s
BOOTH 4013 64 264 72 | 473 33
CLA 4025 128 736 | 100 | 1024 133
CPU 4020 183 | 654 16 | 1051 38

MEDIAN 4013 39| 295 15| 392 80
MATMULT | 4085 45 | 1998 35| 891 | 306
BTCOMP | 4036 97 | 403 81| 768 | 264

XP-RI8 4025 31 723 12| 417 | 170
XP-RI16 4085 18 | 2709 3| 736 | 320
DCT 4085 122 | 3095 7711089 | 113

Table 2: Circuit statistics.

hard and soft macros). The top level macro based circuits were de-
scribedusingtheXi | i nx Net | i st For mat (XNF). Themacros
were also described using XNF files; however, they also included
logic block placement information in the form of RLOCs so that all
hard and soft macros were preplaced. The designs were mapped
to the Xilinx X C4000E or X C4000XL family of FPGAs. Statistics
for the macro based circuits are shown in table 2.

For each circuit we obtained data for comparison in three ways.
The first way we obtained data was to place and route flattened
designs. We flattened each circuit netlist and removed all RLOC
information. Thenwe usedthe Xilinx toolsin the standard mapping
approach (placement of logic blocks then routing of logic blocks)
to map the circuit netlist. In following tables, the results of this
method are shown in columns labeled Xilinx Flat. The second
way we obtained datafor comparison wasto floorplan and route the
macro based circuits using the Xilinx tools. In following tables, the
results of this method are shown in columnslabeled Xilinx Macro.
The third way we obtained data was to floorplan the circuit with
our TS_FP tool and route the circuits using the Xilinx tools. In
following tables, the results of this method are shown in columns
labeled TS_FP Macro.

We used statistics available for the Xilinx toolsto compare the
three mapping methods. Specifically, we used static timing analysis
available from Xilinx tools to compare the quality of the mapped
circuits and report data from Xilinx tools to determine placement
and routing times for Xilinx tools. Table 3 shows the tool used to
place (flat designs only) or floorplan (macro based designs) each
of the circuits as well as the Xilinx tool suite used for routing
and static timing analysis. We used the uni x ¢ime function to
determine system floorplanning times for TS_FP.

6 Results and Analysis

Table 4 shows the execution times required to floorplan (or place
in the case of the flattened netlists) the circuits. Column TS_FP
Macro shows the execution times required by our methodology.
Columns Xilinx Flat® and Xilinx Macro™ show the execution
timesreguired by the Xi | i nx tools. ColumnTS_FP Macro shows
a 45X improvement in execution time for our methodology over
that of the commercial Xi | i nx tools. Table 4 also demonstrates
execution speedup for working with macro based circuits versus
flattened netlists. (It should be noted that the DCT design was not
floorplannedusingthe Xi | i nx tools. OnourSun Utra 2,we
experienced memory faults during thecircuit mapping processusing
the ML tool. For the same reason, we could not route or perform
static timing analysis on the DCT design after floorplanning with
our methodology; however, floorplanning execution time using our

13| attened netlist placed and routed by the Xi | i nx tools
Ymacro based netlist placed and routed by the Xi | i nx tools

tool isshown.) All circuits (that did not cause memory faults) were
100% routable.

Table 5 showsthe results of static timing analysisperformed on
the floorplanned circuits (Note: this data is taken from completely
routed circuits). The values shown indicate the worst case pad to
pad delay (in the caseof combinational circuits) or the minimum al-
lowable clock period (in the case of sequential circuits). From table
5 we see the circuits floorplanned with our floorplanning methodol -
ogy are similar in quality to those floorplanned by the commercial
tools. Table 5 also shows there is not a substantial difference be-
tween delays encountered for our circuits with flat versus macro
based netlists. This is probably due to the fact that logic block
delay (for short distances or routes with few pips) is substantially
greater than interconnect delay.

Table 6 gives the time taken for the Xilinx tools to route the
circuits. This table showsthe time taken to route our floorplanned
designsis similar to that of the Xilinx placed and routed designs.
It should be noted that this time could be significantly reduced
by using not just preplaced macros, but preplaced and prerouted
macros.

Figures 11, 12, 13, and 14 show example floorplans (from
TS_FP) for the CLA, CPU, MATMULT, and DCT circulits respec-
tively.

7 Conclusions

We havepresented aperformancedriven fast floorplanning method-
ology for floorplanning macro based circuits. The methodology
includes a clustering algorithm, placement algorithms, and a trans-
form algorithm to quickly floorplan large macro based circuits.
While flattening the netlist should provide better (relative to per-
formance) results during the placement phase of the circuit, ever
increasing circuit densities require an alternative method to han-
dle large circuits in a timely (relative to execution time) fashion.
Our approach shows dramatic improvement in the execution time
without significant impact on quality of the mapped design.

References

[1] Alteralnc. http:/mmw.altera.com.

[2] V. Betz and J. Rose. VPR: A New Packing, Placement, and
Routing Tool for FPGA Research. In Lecture Notes in Com+
puter Science, volume 1304, pages 213-222. Springer-Verlag,
1997.

[3] T. J. Callahan, P. Chong, A. DeHon, and J. Wawrzynek.
Fast Module Mapping and Placement for Datapaths in FP-
GAs. In ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 123-132, Feburary 1998.

[4] J.M.EmmertandD. K. Bhatia. Reconfiguring FPGA Mapped
Designs with Applications to Fault Tolerance and Reconfig-
urable Computing. In Lecture Notes in Computer Science,
volume 1304, pages 141-150. Springer-Verlag, 1997.

[5] J. M. Emmert and D. K. Bhatia. University of Cincinnati
Technical Report Number: TR219/09/98/ECECS, 1998.

[6] F. Glover and M. Laguna. Tabu Search. Kluwer Academic
Publishers, 1997.

Placement or Floorplanning Tools
Circuit Xilinx | Xilinx | TS_.FP
Name Flat | Macro | Macro
BOOTH PPR PPR | TSFP
CLA PPR PPR | TSFP
CPU PPR PPR | TSFP
MEDIAN PPR PPR | TSFP
MATMULT M1 M1 | TSP
BTCOMP M1 M1 | TSP
XP-RI8 PPR PPR | TSFP
XP-RI16 M1 M1 | TSP
DCT M1 M1 | TSP

Table3: Toolsusedfor placing (flat netlist) or floor planning (macro
based netlist) test circuits. All circuit were routed using the cor-
responding Xilinx Router. All timing static timing analysis was
performed on routed circuits.

Execution times (cpu secs)

Circuit Xilinx | Xilinx | TS_.FP
Name Flat | Macro | Macro
BOOTH 131 36 31
CLA 87 61 55
CPU 210 101 6.9
MEDIAN 70 34 1.3
MATMULT 876 634 32
BTCOMP 107 87 12
XP-RI8 315 83 12
XP-RI16 698 92 2.6
DCT - - 3.2

Table 4: Floorplanning or placement execution times.

Static Timing Analysis (ns)

Circuit Xilinx | Xilinx | TS_.FP
Name Flat | Macro | Macro
BOOTH 495 46.8 50.0
CLA 97.2 105.1 124.4
CPU 95.6 106.9 103.3
MEDIAN 267.0 287.2 265.6
MATMULT | 285.33 | 160.72 | 117.62
BTCOMP 124.09 | 150.74 | 127.58
XP-RI8 90.5 101.4 103.9
XP-RI16 296.86 | 283.70 | 289.21
DCT - - -

Table5: Floorplanned/placed circuit (post route) static timing anal-
ysisresults.

Routing Times (cpu secs)

Circuit Xilinx | Xilinx | TS_.FP

Name Flat | Macro | Macro
BOOTH 38 31 53
CLA 307 386 374
CPU 410 376 332
MEDIAN 30 116 44
MATMULT 358 271 295
BTCOMP 25 32 33
XP-RI8 552 776 1106
XP-RI16 192 507 596
DCT - - -

Table 6: Floorplanned/placed circuit routing times.

N,"T

]

o
-1t

u

]

T Hee

t’—m
ajalmaaaEk

Figure 11: Floorplan for CLA circuit.

i
‘j:
E\E E
=

EEEEEE

FEFFFFE] I
I

FFFEEET

FEEEFF P
]
|
FFEEEE] I
£
]
E ;ﬂ‘
|

LT =

Sesmes
[1 0 [L
[0 1 [1
L
0 1
2 PR O 5 O R O
| I % { hﬂﬂL t
0 00 I

Figure 14: Floorplan for DCT circuit.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

D. E. Goldberg. Genetic Algorithmsin Search, Optimization,
and Machine Learning. Addison-Wesley Publishing Com-
pany, 1989.

S. Kirkpatrick, D. D. Gelatt, and M. P. Vecchi. Optimization
by Simulated Annealing. Science, 220:671-680, May 1983.

H. Krupnova, C. Rabedaoro, and G. Saucier. Synthesis and
Floorplanning for Large Hierarchical FPGAs. In ACM/SIGDA
International Symposium on Field-Programmable Gate Ar-
rays, pages 105-111, Feburary 1997.

F. T. Leighton and P. W. Shor. Tight Bounds for Minimax
Grid Matching with Applications to Average Case Analysis
of Algorithms. In Proceedings of the Symposium on Theory
of Computing, pages 91-103, May 1986.

A. Lim. Performance Driven Placement Using Tabu Search.
Informatica, 7(1), 1996.

A.Lim, Y. M. Chee, and C. T. Wu. Performance Driven Place-
ment with Global Routing for Macro Cells. In Proceedingsof
Second Great Lakes Symposiumon VLS, pages 3541, 1991.

A. Mathur, K. C. Chen, and C. L. Liu. Re-engineering of
Timing Constrained Placements for Regular Architectures.
In IEEE/ACM International Conference on Computer Aided
Design, pages 485-490, November 1995.

S. M. Saitand H. Youssef. VLS Physical Design Automation.
|EEE Press, 1995.

J. Shi and D. Bhatia. Performance Driven Floorplanning for
FPGA Based Designs. In ACM/SIGDA Inter national Sympo-
sium on Field-Programmable Gate Arrays, pages 112-118,
Feburary 1997.

L. Song and A. Vannelli. A VLS| Placement Method Using
Tabu Search. In Microelectronics Journal, number 3, pages
167-172, May 1992.

N. Togawa, M. Yanagisawa, and T. Ohtsuki. Maple-opt:
A Performance-Oriented Simultaneous Technology Mapping,
Placement, and Global Routing Algorithm for FPGA's. IEEE
Transactionson Compter-Aided Design of Integrated Circuits
and Systems, 17:803-823, September 1998.

T. Yamanouchi, K. Tamakashi, and T. Kambe. Hybrid Floor-
planning Based on Partial Clustering and Module Restructur-
ing. In Proceedingsof the IEEE International Conferenceon
Computer-Aided Design, pages 478-483, 1996.

Xilinx Inc. http:/Amwww.xilinx.com.

	Main Page
	FPGA'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

