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Abstract

Floorplanning is an important problem in FPGA circuit mapping.
As FPGA capacity grows, new innovative approaches will be re-
quired for efficiently mapping circuits to FPGAs. In this paper
we present a macro based floorplanning methodology suitable for
mapping large circuits to large, high density FPGAs. Our method
uses clustering techniques to combine macros into clusters, and
then uses a tabu search based approach to place clusters while
enhancing both circuit routability and performance. Our method
is capable of handling both hard (fixed size and shape) macros
and soft (fixed size and variable shape) macros. We demonstrate
our methodology on several macro based circuit designs and com-
pare the execution speed and quality of results with commercially
available CAE tools. Our approach shows a dramatic speedup in
execution time without any negative impact on quality.
Key Words: Floorplanning, Placement, FPGA, Clustering, Tabu
Search

1 Introduction

Placement and floorplanning are extensively studied topics. How-
ever, the importance of placement and floorplanning cannot ever
be ignored due to changing design complexities and requirements.
One technology that is evolving very rapidly is field programmable
gate array (FPGA). Currently, commercially available devices can
map up to one million gate equivalent designs[19] (and some of
the newly announced products like Altera’s APEX series will map
over two million gate equivalent designs[1]). Such complex design
densities also demand tools that can efficiently and quickly make
use of available gates.

Improvements in CAD tools for FPGAs have not kept pace
with hardware improvements. The available tools typically require
from minutes to hours to map1 designs (or circuits) with just a few
thousand gates, and as design sizes increase the execution time will
increase. One way to address the problem of long mapping times is
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1typical mapping steps include technology mapping, placement, and routing

create designs that use premapped macros2 to create larger designs
(macro based circuits). Then we floorplan and route these macro
based circuits. In general, floorplanning is an NP-hard problem
[14]. For FPGAs, it is more difficult due to fixed logic resources.

To address the problem of mapping large designs to large FPGA
circuits, we have taken a macro based approach [18]. We floorplan
interconnected macro based circuits. At the lowest level a macro is
composed of one or more interconnected and relatively placed logic
blocks. In this paper we present a method (based on clustering and
tabu search (TS) optimization) to quickly floorplan macro based
circuits while attempting to minimize throughput delay and meet
area and routability constraints.

The basic flow of our method is summarized as follows. We
start with a set of macros (M ) interconnected by a set of signals
(S). We then group (cluster) macros together to form clusters.
Each cluster in the set of clusters (B) is smaller in area than some
predefined limit3 . We then use TS optimization to perform two-
dimensional placement on the set of clusters B. Then, for each
cluster that is composed of more than one macro, we perform in-
tracluster placement4. Finally, for any macro whose shape was
changed during the intracluster placement process, we perform in-
tramacro placement5.

2 Floorplanning Problem

Given a set of macros M = fm1, m2, :::, mng and a set of signals
S = fs1, s2, :::, sqg, we associate with each macro mi 2M , a size
ai (number of logic blocks in mi); a width wi (maximum width
of mi in number of logic blocks); a height hi (maximum height
of mi in number of logic blocks); a flexibility fi (0 for hard/fixed
macros or 1 for soft/flexible macros); and a set of interconnecting
signals Smi (Smi � S). For hard macros (macros with fixed size,
shape, and internal placement), wi and hi are both fixed and fi =
0. For soft macros (macros with fixed size and variable shape), wi
and hi are considered flexible (both wi and hi can take on a range
of values typically between 1 and ai) and fi = 1. Additionally,
with each signal si 2 S we associate a set of macros Msi where
Msi = fmj j si 2 Smj g. Msi is said to be a signal net. We
can divide M into two distinct sets, MS and MH (subset of soft
macros and subset of hard macros), where M = f MH [MS j

2macros are predefined circuit components like adders, shifters, decoders, multi-
pliers, signal processors, CPUs, etc.

3predefined limit implies the total area of each cluster (sum of the areas of the
macros within the cluster) is less than some maximum

4intracluster placement is the task of assigning the macros that make up the cluster
a physical location and reshaping any macro whose shape must be altered to meet area
constraints

5intramacro placement is the process of relatively placing the logic blocks that
make up a macro component
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Figure 1: Example two-dimensional array L = fl1; l2; :::; l16g of
physical logic block locations (WL = 4 and HL = 4). One logic
block can be assigned to each physical location li 2 L.

MH \MS = �, fi = 0 8 mi 2 MH , and fi = 1 8 mi 2 MS

g. We are also given a target set L = fl1, l2, :::, lpg of locations
where j L j� PjM j

i=1 ai. For the case of mapping mi 2 M to
a regular two-dimensional array, each lj 2 L is represented by
a unique (xj; yj) location6 on the surface of the two-dimensional
array wherexj and yj are integers. Additionally, we define the two-
dimensional array L by the width of physical logic block locations,
WL , and the height of physical logic block locations, HL. The
floorplanning problem then becomes how to assign each soft macro
mi 2 MS a shape and each macro mj 2 M = MH [MS a
unique location in L such that an objective function is optimized.
Here uniqueness implies no macro overlaps. Figure 1 shows the 16
element setL for an example 4� 4 two-dimensional array (WL =
4 and HL = 4). Our goal is to optimize the floorplanned circuit’s
performance while meeting area and routing constraints.

3 Related Work

Many recent papers have addressed placement and floorplanning
for regular arrays. Rose et. al. use simulated annealing as the basis
of their placement tool[2]. Saucier et. al. developed a floorplanner
that matches the hierarchy of the circuit to the hierarchy of the tar-
get FPGA [9]. Mathur et. al. studied the placement problem and
presented methods for re-engineering of regular architectures[13].
Togawa et. al. combined technology mapping, placement, and
global routing[17]. Yamanouchi et. al. used partial clustering
for macro based floorplanning of standard cells [18]. Callahan et.
al. developed a module placement tool for mapping of data paths
to FPGA devices [3]. Shi and Bhatia developed a force directed
optimization based floorplanning tool for fast, high-performance
floorplanning of FPGA mapped designs [15]. Krupnova et. al.
combined the mapping and floorplanning stages to create a new
method for mapping large, hierarchal designs to FPGAs [9]. In ad-
dition, over the past several years many non-deterministic, random
move based solutions have also been considered [7][8]. These ran-
dom move based methods typically achieve high quality results at
the cost of long execution times. As circuit size increases, the time

6for our application, the location represents a physical logic block location on the
FPGA

required for executing such random move methods becomes exor-
bitant. In most search based methods, there is a tradeoff between
the execution time and the quality of the results.

Song and Vannelli developed a TS based placement algorithm
for minimizing total wire length [16]. Their cost function is based
on total wire length using the half-perimeter net model, and there-
fore, designed to enhance routability and not necessarily perfor-
mance. They sum the total estimated length of all nets. Their cost
function is based on allowing moves within a predefined window
to define local neighborhoods. Their tabu list is composed of the
most recently executed moves. Their method uses no aspiration
criteria and no long term search strategy; and therefore, does not
fully exploit the advantages of a TS based approach. They use
their method to generate an initial placement for further refinement
by other algorithms. Lim, Chee, and Wu have developed a place-
ment with global routing strategy for placement of standard cells
[11][12]. Their algorithm uses a hierarchical, divide and conquer,
quad-partitioning approach. They use TS in their quad-partitioning
routine. Their algorithm uses the concept of proximity of regions to
approximate interconnection delays during the placement process.

4 FPGA Floorplanning

In this section we give an overview of our method, and in following
subsections we describe each step in detail. First, some preliminary
definitions are required. As stated earlier, a macro is a set of one
or more interconnected and relatively placed logic blocks. We are
given a set M of interconnected macros in our circuit or design
netlist. When necessary we group macros in M together to form
clusters. Therefore, we define a cluster as a set of one or more
macros, and B = fb1 , b2, :::, bpg as the set of all clusters. (For
initialization, there is a one to one mapping of the elements of
the set M to the elements of the set B, and therefore, initially
j B j = j M j.) As stated earlier we are floorplanning the set
of macros M on the two-dimensional array L of physical logic
block locations. Once macros are grouped to form clusters, our
approach is to perform two-dimensional placement of clusters on
L. To perform this placement we divide our target two-dimensional
array L into a two-dimensional array of buckets where each bucket
(of physical logic block locations) has the same size and shape.
(We define the bucket size by a width of WB logic blocks and a
height of HB logic blocks.) We define the set of buckets as the
set fl01, l02, :::, l0mg = L0, where the number of buckets m equals
j L0 j. (The two-dimensional array L0 is defined by a width of WL0

buckets and a height of HL0 buckets.) Then, instead of performing
two-dimensional placement of clusters directly on L, we perform
two-dimensional placementof clusters on the smaller setL0 . Figure
2 shows the example L divided into four equally sized buckets of
physical logic block locations where each bucket is 2 logic blocks
� 2 logic blocks.

Figure 3 shows a flow chart of our floorplanning methodology.
In figure 3, we read in the sets M , S, and L. Next, we initialize
the set of clusters B. Initially, each element of B contains one
element from M , so there is a one to one mapping of the elements
of M to the elements of B. After initialization of B, we initialize
the bucket width, WB , and bucket height,HB , using the Procedure
Create Buckets(M ). Details for Create Buckets(M ) are found in
subsection 4.1. After bucket size initialization, we create the set of
buckets, L0, as outlined in subsection 4.2. Next, we check the fit
of B on L0. (It should be noted that we create and maintain the
bucket width WB and bucket heightHB so any single macro in M
will fit in any bucket in L0 7. This allows us to skip the clustering
step if j B j is less than or equal to j L0 j. This usually occurs
when low device utilization is sufficient and allows for very fast

7The initial bucket size is based on the dimensions of the largest elements ofM .
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Figure 2: Example L divided into a set L0 of 4 buckets. The
dimensions of L0 are WL0 = 2 buckets and HL0 = 2 buckets. The
dimensions of the example bucket are WB = 2 logic blocks and
HB = 2 logic blocks.

floorplanning.) If there is a fit, we proceed to the placement phase
if there is not a fit we proceed to the clustering phase.

In figure 3, if j B j is not less than or equal to j L0 j, we
proceed to the clustering phase. To ensure fit, our methodology
requires j B j is less than or equal to j L0 j, and therefore, the goal
of the clustering phase is to group smaller macros together thereby
reducing j B j until j B j is less than or equal to j L0 j. Additionally,
it is required that each cluster bi 2 B has size less than or equal to
the bucket size. This ensures each cluster will fit in any bucket. The
details of clustering are found in subsection 4.3. After clustering if
j B j is less than or equal to j L0 j then we proceed to the placement
phase else we iteratively increase the bucket size (as described in
subsection 4.4) and continue clustering until j B j is less than or
equal to j L0 j or the bucket size exceeds the dimensions of L.

In figure 3, if j B j is less than or equal to j L0 j, we proceed
to the placement phase. In the placement phase we use TS based
placement to assign each bi 2 B to a bucket (see subsection 4.5).
Then in intracluster placement, we assign each macro within each
cluster a physical location and shape (see subsection 4.6). Finally
in intramacro placement, we place the logic blocks within any soft
macro whose shape has been altered during intracluster placement
(see subsection 4.7). After this phase, every logic block making
up the circuit or design netlist will have a physical location on the
two-dimensional arrayL. The floorplanning process is summarized
in Algorithm TS FP(M ,S,L).

In figure 3, if the circuit or design netlist will not fit we have four
options. We can reduce the size of the macro setM by partitioning
the design spatially or temporally. We can increase the size of the
target two-dimensional array L. This assumes a larger FPGA part
is available. We can flatten the netlist and attempt to use standard
placement techniques. This will become more difficult as design
sizes get larger. Finally, if possible we can soften some of the hard
macros to allow better space utilization.

4.1 Initializing Bucket Size

In this subsection, we describe the method for determining the
initial bucket size which subsequently defines j L0 j. The main goal
of our floorplanning method was fast execution time. Therefore,
we quickly initialize the width of the bucket, WB , to the width of
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Figure 3: Floorplanner execution flow.

Algorithm TS FP(M ,S,L)
begin

(* initialize the buckets *)
8mi 2M let bi = fmig;
(* determine initial bucket size, HB and WB *)
Create Buckets(M );
create L0 where WL0 = bWL

WB
c and HL0 = bHL

HB
c;

success = checkfit(B,L0);
while(NOT success AND WB < WL AND HB <HL)
B = cluster(M ,S,HB ,WB );
success = checkfit(B,L0);
if NOT success then

increment bucket size (HB and/or WB);
update L0 so WL0 = bWL

WB
c and HL0 = bHLHB c;

end if;
end while;
if success then

TS place(B,S,L0);
8 bi 2 Bf

intracluster place(bi,HB ,WB );
8mj 2 bi intramacro place(mj,bi ,HB ,WB );

g
else;

return “ERROR: circuit not floorplanned”;
end if;

end;



Procedure Create Buckets(M ):
begin

initialize WB =HB = 0;
for i = 1 to jM j

if WB <W (mi) then
WB =W (mi);

end if;
if HB <H(mi) then
HB = H(mi);

end if;
end for;
return WB and HB;

end;

Logic Block

Bucket

Figure 4: Example L0 made up of three 6 � 2 buckets.

the widest macro cell (hard or soft8). Similarly we initialize the
height of the bucket, HB , to the height of the tallest macro cell
(hard or soft). This guarantees that any macro mi 2 M will fit
in any bucket. The procedure used to determine the initial WB

and HB is shown in Procedure Create Buckets(M ). In procedure
Create Buckets(M ), H(mi) returns the height of macro mi and
W (mi) returns the width of macro mi.

4.2 Bucket List, L0

The set of buckets9, L0, is created by dividing the set L into rect-
angles of equal size. The width of L0 (in number of buckets) is
defined as WL0 = bWL

WB
c and the height of L0 (in number of buck-

ets) is defined as HL0 = bHL
HB

c. (Note, WL and HL define the
width and the height (in number of logic blocks) respectively of the
two-dimensional array L.) Therefore j L0 j=HL0 �WL0 . Figure
4 shows an example L0 for a 7 logic block � 6 logic block L (WL

= 6 and HL = 7) and a 6 logic block � 2 logic block bucket (WB

= 2 and HB = 6).

4.3 Clustering

As stated earlier, the set B is created or initialized by assigning
each mi 2 M to bi 2 B, and initially, j B j = j M j. When
necessary, the size of setB is reduced by clustering elements ofM

8This assumes soft macros are supplied with some initial shape. Effort is made to
maintain the shape of soft macros. The shape of soft macros is only changed if required
to make the circuit fit the given area.

9a bucket is a set or group of physical logic block locations fromL such that each
bucket has the same size and shape (HB �WB )

Procedure Cluster(M ,S,HB ,WB ,L0):
begin
8mi 2M let bi = fmig;
calculate cij 8 bi and bj 2 B;
while j B j> j L0 j AND 9cij > 0

choose mi and mj with highest connectivity, cij;
let bi = mi [mj;
let bj = �;
update connectivity between clusters;

end while;
return B;

end;

so more than one element of M is in some bi 2 B. There is no
limit placed on the maximum number of macros in each bi as long
as size constraints are satisfied. Size restrictions (described below)
limit the macros used to form each cluster, bi 2 B.

Each cluster bi 2 B is divided into two parts, a hard macro part
and a soft macro part. The size restriction on bi requires the total
area of the hard macro part plus the total area of the soft macro part
be less than or equal to the size of the bucket (HB �WB ). We
define the width of the hard macro part of each cluster bi as the sum
of the width of the hard macros in bi,

HMW (bi) =
X

8mj2bijmj is hard

W (mj) ;

where W (mj) is the width of macro mj in cluster bi . We define
the area for the hard macro part for each cluster bi as the width of
the hard macro part times the height of the bucket

HMA(bi) = HMW (bi)�HB :

The size for the soft macro part for bi is defined as the width of the
bucket minus the width of the hard macro part times the height of
the bucket

SMA(bi) = (WB �HMW (bi))�HB :

The sum of the areas of all soft macros in bi must be less than or
equal to SMA(bi).

With these area constraints in mind, the set M is clustered to
form the setB. The clustering method is derived from the connec-
tivity work done in [18]. The connectivity cost function includes
area constraints. Our connectivity cost function is summarized
below.

cij = feas(i; j) �
X

sk2Smi\Smj

1
(j sk j �1)

� Atot

ai + aj
� min(ai; aj)
max(ai; aj)

where ai and aj are areas of macro mi and mj respectively, Atot

is the total area of all macros, j sk j is the number of pins on signal
sk which connects macros mi and mj , Smi \ Smj is the set of all
signals that connect macros mi and mj , and feas(i; j) returns the
feasibility of clusteringmi andmj under size constraints described
above. feas(i; j) returns a 1 if it is possible to combine mi with
mj else it returns a 0.

The clustering algorithm combines clusters with the highest
connectivity to form larger clusters. In order to enhance routability,
once area constraints have been met (i.e. j B j � j L0 j) the
algorithm stops and returns the set B. The clustering algorithm is
summarized in Procedure Cluster(M ,S,HB ,WB ,L0).

After clustering is complete, it returns the set B. The empty
elements of B are removed, and each bi 2 B consists of a unique
list of elements from M . Here uniqueness implies bi \ bj = � 8 bi
^ bj 2 B j i 6= j.



Macro Statistics
mi wi hi fi

m1 3 3 0
m2 3 3 0
m3 2 3 1
m4 2 3 1
m5 2 3 1

Table 1: Macro statistics for example floorplan.
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Figure 5: Example L0 made up of four 3 � 3 buckets converted to
two 3 � 6 buckets.

4.4 Increment Bucket Size

In the event that the first pass of clustering does not lead to a valid
solution, the bucket size is increased to allow more flexibility during
clustering. This increases the complexity of intracluster placement
but allows more macros to fit in the same area. For example,
consider floorplanning the 5 macros described in table 1 so they fit
on an L with WL = HL = 6 and j L j= 36. For the set M , both
WB and HB will be set to 3 since these values reflect the largest
macro width and height respectively. Figure 5 shows the buckets
on L. Therefore L0 will initially have 4 buckets and M will not fit
since j B j> j L0 j. However, by doubling the width of the bucket,
we can clusterm1 andm2 into one cluster andm3, m4, andm5 into
a second cluster that will fit in L.

4.5 Cluster Placement

Once the circuit is guaranteed to fit (j B j�j L0 j) then the clus-
ters bi 2 B are placed using a two-step tabu search10 (TS) based
two-dimensional placement algorithm [5]. The first step of the
placement strategy minimizes the circuit’s total wire length (see
TS TWL in section 4.5.1) thereby enhancing the routability of the
circuit. The second step attempts to average the circuit’s edge
lengths by weighting graph edges and minimizing the maximum
weighted edge lengths (see TS EDGE in section 4.5.2).

For our TS approach, we convert each multi-terminal net to a set
of edges where each edge consists of the driving terminal and one
driven terminal. We use this model to keep net sources and sinks in
close proximity thereby enhancing circuit performance. We create
the set of edges by converting the hyper-graph input circuit model
described earlier to a graphG = (V;E) whereV = fv1; v2; :::vng,
j V j= n, E = fe1; e2; :::emg, and j E j=m. Each vertex vi 2 V

corresponds to a cluster bi 2 B (if pad IO locations are available,
we also include preplaced pseudo-elements of V representing the
pad locations to help guide the placement). Each edge ei 2 E
connects a pair of vertices (vj; vk) j vj; vk 2 V . The elements of
E are created by considering each signal, si 2 S. If we letmsource

(where msource 2 Msi and msource 2 bj) be the source macro
for signal si then an edge (vj; vk) is added to E for each sink on
si such that msink 2 Msi , msink 2 bk , and j 6= k. (In other
words, an edge is added for each source/sink combination that are
not in the same cluster.) At any given time, each element of V is
mapped to a unique element of L0 , and the minimum requirement
for mapping is j V j�j L0 j.

The two-dimensional placement stage basically assigns each
cluster to a unique bucket. After placement of each bi 2 B, each
bi 2 B will have associated with it a unique bucket l0j 2 L0. The
physical location (on L) of each bi 2 B in bucket l0j can be found
from the following equations:

X(bi) = X(l0j)�WB

and

Y (bi) = Y (l0j)�HB:

where X(l0j) returns the X-axis coordinate of l0j on L0 and Y (l0j)
returns the Y-axis coordinate of l0j on L0. After each cluster bi 2 B

is assigned a unique location on L, intracluster placement takes
place to assign each mj 2 bi 2 B a physical location on L.
Intracluster placement also reshapes soft elementsmk 2MS 2 B
that require further modification.

4.5.1 TS TWL

For the first step of our TS based placement strategy, TS TWL, we
seek to enhance routability by minimizing total wire length (TWL).
We conservatively estimate TWL using the Manhattan length of
each edge ei 2 E, and we seek to minimize the following function:

TWL =
X

8ei2E

MLength(ei)

where MLength(ei) is the Manhattan length of edge ei.

10tabu search is a meta-heuristic approach to solving optimization problems that
(when used properly) approaches near optimal solutions in a relatively short amount
of time compared to non-deterministic random move based methods [6]. Unlike
approaches like simulated annealing or genetic algorithms that rely on a good random
choice, TS exploits both good and bad strategic choices to guide the search process.
As a meta-heuristic, TS guides local heuristic search procedures beyond local optima.
In TS, a list of possible moves is created. In the short term, as moves in the list are
executed, tabu, or restrictions, are placed on the executed moves in order to avoid
local optima. This tabu is typically in the form of a time limit, and unless certain
conditions are met (e.g. aspiration criteria), the move will not be performed again
until the time limit has expired.
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Key to the developmentof a TS is a search list. For TS TWL our
search list U consists of all possible swaps of vertices occupying
adjacent locations in L0. This implies two basic swap moves:
horizontal (swap of adjacent vertices with the same y coordinate)
and vertical (swap of adjacent vertices with the samex coordinate).
Given a two-dimensional array L0 of width WL0 units and height
HL0 units, there are j U j� 2(HL0 � WL0 ) possible swaps or
moves in U . Figure 6 shows an example horizontal swap move
ui and vertical swap move uj . In figure 6, move ui represents
the horizontal swap of vertices v1 and v2, or moving v1 to v2’s
bucket and v2 to v1’s bucket. For TS TWL, given a random initial
placement in L0 (by selecting an appropriate sequence of moves
from U ), we seek to optimize our objective function, minimization
of TWL.

In TS TWL, eachui 2 U has an associated attractiveness,AFi,
or sum of the adjacent forces pulling on the vertices vj and vk that
make up ui. U is ordered so the most attractive moves are first. For
vertical moves

AFi =M(vj)� PE(vj) +M(vk)� PW (vk) ;

and for horizontal moves

AFi =M(vj)� PN(vj) +M(vk)� PS(vk) :

Each vertex vi 2 V has one multiplication factor M(vi) (dis-
cussed later) and four associated pulls or forces: PN(vi), PE(vi),
PS(vi), and PW (vi). The pulls are determined by summing the
Manhattan lengths of the edges connecting vi to vertices in the di-
rection of the pulls. If we usedU in a typical greedy search strategy
(i.e. given an initial placement, find a move that would improve the
minimum TWL) we would quickly reach a local optima. However,
by applying the concepts of TS (i.e. accepting strategic moves that
may not improve the current minimum TWL), we climb out of
local optima. After executing move ui 2 U we set a tabu tenure
for ui. Move ui will not be executed again until the tabu tenure
has expired or our aspiration criteria is satisfied. Initially, 8 vi
2 V , M(vi) is set to 1. For diversification, we penalize moves
that are executed with high frequency in order to take the search
into unexplored areas. We do this by increasing M(vi) for low
frequency moves, thereby making them more attractive.

4.5.2 TS EDGE

The second step of our TS based placement strategy, TS EDGE,
seeks to enhance circuit performance by minimizing the length of
critical circuit edges. To accomplish this, we traverse G and apply
a weight wi to each edge ei 2 E. Edges in critical paths receive
a higher weight. For TS EDGE, we use a two part optimization
function. First we minimize the weighted length of the longest
edge. Second, since some configurations may have the same longest
weighted edge length, we add together N of the longest edges
(NLE) and minimize NLE.

NLE =

NX

i=1

MLength(ei)� wi :

For TS EDGE, we use the edge list E as our search list. We
order E in descending order by weighted Manhattan length. Then,
we search E looking at each of the two vertices attached to each
edge as possible candidates for a move. The vertices attached to
the edges with the longest weighted Manhattan lengths are the most
attractive candidates for moving closer together. By moving these
vertices closer together, the longest edges are shortened thereby en-
hancing circuit performance and reducing the longest paths. Once
an edge is selected from the search list, we look at only one of the
edge’s two vertices as a possible move candidate. For simplicity
we pick one of two possible moves for the vertex selected: vertical
swap or horizontal swap (discussed earlier relative to TS TWL). In
TS EDGE, given an initial placement in L0 (by selecting an appro-
priate sequence of moves from E), we seek to optimize our objec-
tive function, minimization of the longest weighted edge length and
minimization of NLE.

After executing a move for a vertex on edge ei 2 E, we set
a tabu tenure (number of iterations a vertex’ position is locked)
for the moved vertex. This vertex on edge ei will not be moved
again until the tabu tenure has expired or our aspiration criteria
is satisfied. In this way we climb out of local minima and accept
the current best move even if it does not improve the current best
solution.

4.6 Intracluster Placement

Once each cluster is assigned a location on L, the macros making
up each cluster must be placed. Each macro mj 2 M has asso-
ciated with it a reference coordinate used to describe its physical
location on the FPGA. Each logic block within eachmj also has a
reference coordinate that describes its physical location relative to
the reference coordinate for mj . Intracluster placement is the task
of assigning a reference coordinate from the set L to each macro
mj 2 bi , 8bi 2 B, and, for any soft macro in M whose shape has
changed, the task of assigning a set of reference coordinates for the
logic blocks within the soft macro11.

Intracluster or intrabucket placement for each bi 2 B takes
place in three steps. First, we place all hard macros by assigning
each one an X,Y reference coordinate corresponding to some lj 2
L. Second, we place all soft macros by assigning each one an X,Y
reference coordinate from L. Third, we change the shape of any
soft macro that requires modification by assigning it a set of logic
block coordinates relative to the reference coordinate of the soft
macro. Figure 7 shows an example set of macros to be placed in
the 9� 12 Bucket 6 located at coordinatesX = 12 and Y = 18. In
figure 7 each hard macro is labeled with f = 0 and each soft macro
is labeled with f = 1. In this subsection we will describe each of
the steps for intracluster placement.

Our feasibility check during clustering guarantees the hard
macros in each bi will fit by ordering them in the horizontal di-
rection. Therefore for each bi 2 B, we place hard macros in a row,
each with the same Y-axis coordinate. The Y-axis coordinate of
each hard mj 2 bi is found from the following equation:

Y (mj) = Y (bi)

where Y (bi) returns the Y-axis coordinate (from the set L) of the
bucket where cluster bi was placed. To compute the X-axis co-
ordinate of each hard mj 2 bi a sort key is computed for each
hard mj 2 bi by averaging the X-axis coordinates of all bk 2 B

connected to mj (this includes IO position information). Then the
hard macros in bi are reverse ordered according to the sort key and
stored in an ordered list fq1; q2; :::; qng = Q. After ordering each
hard macro in bi , the X-axis coordinate of each hard macro in bi is

11Note: here only a set of reference coordinatesis assigned for the set of logic blocks
in the soft macro. The specific coordinates for each logic block in an altered soft macro
are found during intramacro placement.



Procedure Find Soft X(bi ,rk ):
begin

if X(bi) +X(rk�1) is even then
if lastY (rk�1) 6= Y (bi) +HB � 1 then
X(rk) =X(rk�1);

else
X(rk) =X(rk�1) + 1;

end else if;
else

if lastY (rk�1) 6= 0 then
X(rk) =X(rk�1);

else
X(rk) =X(rk�1) + 1;

end else if;
end else if

end;

determined by the following. If we let qk denote the kth element in
the reverse ordered list of hard macros in bi, then

X(qk) = X(qk�1)�W (qk) 8 k > 1

where W (qk) is the width of macro qk , X(qk�1) is the X-axis
coordinate of macro qk�1, and X(q1) = X(bi) + BW � W (q1).
For our example macros in figure 7, since the Y-axis coordinate of
the bucket is 18, the Y-axis coordinate for each hard macro( m16,
m19, m27, and m41) is 18. If we assume the key for m16 is 3, m19

is 14, m27 is 13, and m41 is 43 then the X-axis coordinate for each
hard macro is X(m16) = 16, X(m19) = 20, X(m27) = 18, and
X(m41)= 22. Figure 8 shows the hard macros from figure 7 placed
in example Bucket 6.

We now describe the method for determining the X,Y reference
coordinates for each soft macro. Similar to the method of ordering
the list of hard macros for bi, a sorting key is determined for each
soft mj 2 bi by averaging the X-axis coordinates of all clusters
connected to soft macromj (this includes IO position information).
Then the soft macros in bi are ordered according to the sort key and
stored in an ordered list fr1, r2, ::: , rng = R. After ordering each
soft macro in bi the X,Y reference coordinate of each soft macro
in bi is determined. If we let rk denote the kth element in the
ordered list of soft macros in bi then the X-axis reference location
of rk is found from the procedure Find Soft X(). In Find Soft X(),
lastY (rk) returns the Y-axis coordinate of the last element in macro
rk and X(r0) = X(bi). If it is required that the soft macro rk ’s
shape be adjusted, then its Y-axis reference location is Y (bi), but if
the soft macro’s shape does not require adjustment, then rk ’s Y-axis
reference location is set relative to the Y-axis location of the last
logic block in rk�1 (lastY (rk�1)). If we assume r1 = m21, r2

= m7, r3 = m6, and r4 = m13 for the soft macros in the example
shown in figure 7, then using the above methodology figure 9 shows
the final placement and shape for the macros assigned to example
Bucket 6.

4.7 Intramacro Placement

After assigning the reference coordinates for hard and soft macros in
each cluster, the logic blocks that make up any reshaped soft macro
are placed using intramacro place(). Currently we use two methods
for intramacro place(), and both are described below. Instead of
actually performing full placement on the logic blocks within the
soft macro, we incrementally reconfigure the placement of the logic
blocks using a transform that matches the X and Y coordinates of
the soft macro to the X and Y coordinates of the available space on
L.

The first method for incrementally reconfiguring the placement
is of O(n) complexity, where n is the number of logic blocks
within the reshaped soft macro. Starting from the leftmost-lowest
coordinate of the soft macro, the logic blocks within the soft macro
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Figure 10: An instance of grid matching.

are matched to the leftmost-lowest coordinate available in the area
of the bucket set aside for the soft macro. This methodology,
though fast in execution, can substantially increase the length of
nets connecting logic blocks; however, since the delay of the logic
block is currently much greater than the interconnect delay, no
substantial degradation to performance was noted.

The second method (designed to counter any performance degra-
dation due to increased interconnect length) uses a minimax match-
ing strategy to match locations of the logic blocks within the soft
macro to coordinates available in the area of the bucket set aside for
the soft macro. We use general minimax grid matching to accom-
plish this match. The problem of grid matching is stated below:

Instance[10]: A square with area N in the plane that contains
N grid points arranged in a regularly spaced

p
N �

p
N array and

N random points located independently and randomly according to
a uniform distribution on the square as shown in figure 10.

Problem: Find the minimum length D such that there exists a
perfect matching between the N grid points and N random points
where the distance between matched points is at most D. D is also
called the minimax matching length.

The problem of finding D for a given distribution of random
points is solvable in polynomial time since the length D has an
upper bound of O(

p
N ). An algorithm that solves this problem

constructs a bipartite graph between the grid points and random
points. Let SG be the set of grid points and SR be the set of
random points. The edges of the bipartite graph will be < i; j >

such that i 2 SG and j 2 SR, and i, j are at most distance D
apart. The algorithm starts with the construction of a bipartite graph
for some initial D. It repetitively updates D, adding more edges,
until a perfect matching is found in the bipartite graph. The D
found by such an algorithm is also the minimax length. Leighton
and Shor have proved a bound on the expected length of D for a
random distribution of points which, with very high probability 12

is shown to be Θ(log3=4N)[10]. We use this tight and small bound
to attain a reconfiguration that results in minimal impact on circuit
performance.

Minimax matching attempts to minimize the maximum distance
any logic block within the reshaped macro is displaced. More details
can be found in [4].

5 Test Methodology

We empirically tested the floorplanning methodology described
above using several macro based circuits (the circuits included both

12very high probability means probability exceeding 1� 1=N� where

� = Ω(
p

logN ).

Macro Based Circuit Statistics
Circuit Total Num
Name Part jM j Area j B j j S j IOs
BOOTH 4013 64 264 72 473 33
CLA 4025 128 736 100 1024 133
CPU 4020 183 654 16 1051 38
MEDIAN 4013 39 295 15 392 80
MATMULT 4085 45 1998 35 891 306
BTCOMP 4036 97 403 81 768 264
XP-RI8 4025 31 723 12 417 170
XP-RI16 4085 18 2709 3 736 320
DCT 4085 122 3095 77 1089 113

Table 2: Circuit statistics.

hard and soft macros). The top level macro based circuits were de-
scribed using the Xilinx Netlist Format (XNF). The macros
were also described using XNF files; however, they also included
logic block placement information in the form of RLOCs so that all
hard and soft macros were preplaced. The designs were mapped
to the Xilinx XC4000E or XC4000XL family of FPGAs. Statistics
for the macro based circuits are shown in table 2.

For each circuit we obtained data for comparison in three ways.
The first way we obtained data was to place and route flattened
designs. We flattened each circuit netlist and removed all RLOC
information. Then we used the Xilinx tools in the standard mapping
approach (placement of logic blocks then routing of logic blocks)
to map the circuit netlist. In following tables, the results of this
method are shown in columns labeled Xilinx Flat. The second
way we obtained data for comparison was to floorplan and route the
macro based circuits using the Xilinx tools. In following tables, the
results of this method are shown in columns labeled Xilinx Macro.
The third way we obtained data was to floorplan the circuit with
our TS FP tool and route the circuits using the Xilinx tools. In
following tables, the results of this method are shown in columns
labeled TS FP Macro.

We used statistics available for the Xilinx tools to compare the
three mapping methods. Specifically, we used static timing analysis
available from Xilinx tools to compare the quality of the mapped
circuits and report data from Xilinx tools to determine placement
and routing times for Xilinx tools. Table 3 shows the tool used to
place (flat designs only) or floorplan (macro based designs) each
of the circuits as well as the Xilinx tool suite used for routing
and static timing analysis. We used the unix time function to
determine system floorplanning times for TS FP.

6 Results and Analysis

Table 4 shows the execution times required to floorplan (or place
in the case of the flattened netlists) the circuits. Column TS FP
Macro shows the execution times required by our methodology.
Columns Xilinx Flat13 and Xilinx Macro14 show the execution
times required by the Xilinx tools. Column TS FP Macro shows
a 45X improvement in execution time for our methodology over
that of the commercial Xilinx tools. Table 4 also demonstrates
execution speedup for working with macro based circuits versus
flattened netlists. (It should be noted that the DCT design was not
floorplanned using the Xilinx tools. On our Sun Ultra 2, we
experienced memory faults during the circuit mapping process using
the M1 tool. For the same reason, we could not route or perform
static timing analysis on the DCT design after floorplanning with
our methodology; however, floorplanning execution time using our

13flattened netlist placed and routed by the Xilinx tools
14macro based netlist placed and routed by the Xilinx tools



tool is shown.) All circuits (that did not cause memory faults) were
100% routable.

Table 5 shows the results of static timing analysis performed on
the floorplanned circuits (Note: this data is taken from completely
routed circuits). The values shown indicate the worst case pad to
pad delay (in the case of combinational circuits) or the minimum al-
lowable clock period (in the case of sequential circuits). From table
5 we see the circuits floorplanned with our floorplanning methodol-
ogy are similar in quality to those floorplanned by the commercial
tools. Table 5 also shows there is not a substantial difference be-
tween delays encountered for our circuits with flat versus macro
based netlists. This is probably due to the fact that logic block
delay (for short distances or routes with few pips) is substantially
greater than interconnect delay.

Table 6 gives the time taken for the Xilinx tools to route the
circuits. This table shows the time taken to route our floorplanned
designs is similar to that of the Xilinx placed and routed designs.
It should be noted that this time could be significantly reduced
by using not just preplaced macros, but preplaced and prerouted
macros.

Figures 11, 12, 13, and 14 show example floorplans (from
TS FP) for the CLA, CPU, MATMULT, and DCT circuits respec-
tively.

7 Conclusions

We have presented a performance driven fast floorplanning method-
ology for floorplanning macro based circuits. The methodology
includes a clustering algorithm, placement algorithms, and a trans-
form algorithm to quickly floorplan large macro based circuits.
While flattening the netlist should provide better (relative to per-
formance) results during the placement phase of the circuit, ever
increasing circuit densities require an alternative method to han-
dle large circuits in a timely (relative to execution time) fashion.
Our approach shows dramatic improvement in the execution time
without significant impact on quality of the mapped design.
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Placement or Floorplanning Tools
Circuit Xilinx Xilinx TS FP
Name Flat Macro Macro
BOOTH PPR PPR TS FP
CLA PPR PPR TS FP
CPU PPR PPR TS FP
MEDIAN PPR PPR TS FP
MATMULT M1 M1 TS FP
BTCOMP M1 M1 TS FP
XP-RI8 PPR PPR TS FP
XP-RI16 M1 M1 TS FP
DCT M1 M1 TS FP

Table 3: Tools used for placing (flat netlist) or floorplanning(macro
based netlist) test circuits. All circuit were routed using the cor-
responding Xilinx Router. All timing static timing analysis was
performed on routed circuits.

Execution times (cpu secs)
Circuit Xilinx Xilinx TS FP
Name Flat Macro Macro
BOOTH 131 36 3.1
CLA 87 61 5.5
CPU 210 101 6.9
MEDIAN 70 34 1.3
MATMULT 876 634 3.2
BTCOMP 107 87 1.2
XP-RI8 315 83 1.2
XP-RI16 698 92 2.6
DCT – – 3.2

Table 4: Floorplanning or placement execution times.

Static Timing Analysis (ns)
Circuit Xilinx Xilinx TS FP
Name Flat Macro Macro
BOOTH 49.5 46.8 50.0
CLA 97.2 105.1 124.4
CPU 95.6 106.9 103.3
MEDIAN 267.0 287.2 265.6
MATMULT 285.33 160.72 117.62
BTCOMP 124.09 150.74 127.58
XP-RI8 90.5 101.4 103.9
XP-RI16 296.86 283.70 289.21
DCT – – –

Table 5: Floorplanned/placed circuit (post route) static timing anal-
ysis results.

Routing Times (cpu secs)
Circuit Xilinx Xilinx TS FP
Name Flat Macro Macro
BOOTH 38 31 53
CLA 307 386 374
CPU 410 376 332
MEDIAN 30 116 44
MATMULT 358 271 295
BTCOMP 25 32 33
XP-RI8 552 776 1106
XP-RI16 192 507 596
DCT – – –

Table 6: Floorplanned/placed circuit routing times.
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Figure 11: Floorplan for CLA circuit.
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Figure 12: Floorplan for CPU circuit.
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