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Abstract

Test application time is an important factor in the
overall cost of VLSI chip testing. We present a new
ATPG approach for generating compact test sequences
for sequential circuits. Our approach combines a con-
ventional ATPG algorithm, a technique based on the
frozen clock testing strategy, and a dynamic compaction
method based on a genetic algorithm. The frozen clock
strategy temporarily suspends the sequential behavior of
the circuit by stopping its clock and applying several
vectors to increase the number of faults detected with-
out changing the circuit state. Results show that test
sets generated using the new approach are more com-
pact than those generated by previous approaches for
many circuits.

1 Introduction

Automatic test equipment is expensive, and there-
fore it is desirable to minimize the time required to test
a VLSI chip. Of course, the quality of a test must be
maintained while test application time is reduced. Var-
ious approaches have been used in the past to reduce
test application time. Test set compaction is the most
common approach, and both static and dynamic com-
paction approaches have been used. With static com-
paction, a test set is first generated, and attempts are
then made to shorten it without reducing fault cover-
age. Greater reductions in test set length have been ob-
tained using dynamic compaction [1] [2] [3] [4] [5]. With
this approach, compaction is performed while tests are
being generated.

In this paper, we use the frozen clock testing strat-
egy to reduce the length of the test sequences. This
approach, first proposed by Abramovici et al. [6], tem-
porarily suspends the sequential behavior of the circuit
by stopping its clock and applying several combina-
tional vectors to primary inputs (PIs) without changing
the circuit state. This enables several additional faults
to be detected in each clock cycle that would otherwise
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not be detected until much later in the test. Fault ef-
fects that may be present at several different flip-flops
can be propagated to the primary outputs (POs) with
additional vectors applied while the clock is frozen. We
will refer to these additional vectors as unclocked vec-
tors. We will use the term clocked vector to refer to a
normal sequential vector, for which the clock is strobed
at the end of the cycle after the vector is applied.

Our new package for maximal test compaction,
FreezeFrame, optimizes test sequences generated by the
HITEC deterministic test generator [7]. HITEC gen-
erates test sequences for sequential circuits by target-
ing each fault individually. Not all bits in a sequence
are necessarily specified, and each partially specified
sequence is optimized by FreezeFrame using the pro-
cedures developed for the Squeeze dynamic compactor
[6]. After an optimized sequence is obtained, Freeze-
Frame generates unclocked vectors using a genetic al-
gorithm (GA) to detect additional faults if possible.
Finally, after a complete test set is generated, Freeze-
Frame performs static compaction using a new tool
called IcePick to remove any redundant unclocked vec-
tors.

The rest of this paper is organized as follows. The
GA used to evolve test sequences and unclocked vectors
is explained in Section 2. Section 3 gives an overview
of FreezeFrame, and details of the approach are given
in Section 4. Results for ISCAS89 sequential bench-
mark circuits are presented in Section 5, and Section 6
concludes the paper.

2 Genetic Algorithms

A simple GA is used to solve the test sequence and
unclocked vector optimization problems. The simple
GA contains a population of strings, or individuals [8],
and in our application, each individual represents a test
sequence or unclocked vector. Each string has an asso-
ciated fitness, which indicates the number of faults de-
tected by the corresponding test sequence or unclocked
vector. For test sequence compaction, the initial popu-
lation is seeded with the test sequence generated by the
deterministic test generator, and unspecified bits are



filled randomly [5]. For unclocked vector generation,
the first half of the initial population is seeded with a
test vector generated using PODEM while the second
half is seeded randomly, as will be described in Section
4. A highly fit population is evolved through several
generations by selecting two individuals, crossing the
two individuals, and mutating characters in the result-
ing individuals with a given probability. Tournament
selection without replacement and uniform crossover
[9] are used. Distinct generations are evolved, and the
processes of selection, crossover, and mutation are re-
peated until all entries in a new generation are filled.
Then the old generation is discarded. Since selection is
biased towards more highly fit individuals, the fitness
of the overall population is expected to improve in suc-
cessive generations. However the best individual may
appear in any generation, and this best individual is
returned as the solution.

Compaction and test generation are different from
other applications of GAs in that execution time is a
critical factor. The GA is used repeatedly on a number
of similar problems, and the time to evaluate the fitness
of an individual can be long. Therefore, instead of using
a large population and allowing the GA to run for a
large number of generations to ensure that an optimal
solution is found, we use a small population of size 32
and limit the number of generations to 8 to reduce the
execution time. The test sequence evolved may not
be the best possible, but results will show that very
compact tests are indeed obtained.

3 Overview

FreezeFrame produces a test set containing se-
quences of clocked vectors and unclocked vectors, as
illustrated in Figure 1. Unclocked vectors are shown
in an italic font, and clocked vectors are shown in a
regular font. Each clocked sequential test is delineated
by heavy black bars, and the unclocked vectors to be
applied before a clocked vector are shown to the left
on the same line. After each clocked vector is applied,
transitions propagate through the combinational logic
of the circuit, and at the end of the clock cycle, the
flip-flops are clocked to update the circuit state. How-
ever, after an unclocked vector is applied, the clock is
not strobed. Therefore, no new fault effects are stored
in the flip-flops. This allows these test vectors to prop-
agate faults to the POs without changing the state of
the circuit. Thus, fault effects present at the flip-flops
after application of a previous clocked vector may be
detected by a number of different unclocked vectors.

FreezeFrame uses HITEC [7] to produce each test se-
quence. HITEC is a deterministic test generator, and it
targets one fault at a time by trying to activate the fault
and propagate the fault effects to a PO. HITEC makes
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Figure 1: Test Set Before and After Compaction.

several passes through the fault list, with increasing
time limits per fault for successive passes. The next
fault in the fault list is selected as the target fault, and
test generation is attempted. If HITEC is successful,
the partially specified test sequence is sent to Freeze-
Frame, as shown in Figure 2. FreezeFrame uses the
procedures developed for the Squeeze dynamic com-
pactor [5] to produce a fully specified test sequence.
Any unnecessary vectors at the beginning and end of
the sequence are first trimmed using a fault simulator.
HITEC assumes the circuit starts from an unknown
state for every fault targeted. However, the fault sim-
ulator may have some information about what state
the circuit is in after the previously applied sequences.
Once the unnecessary vectors are removed, a GA is
used to evolve the remaining vectors into a sequence
that maximizes fault detection. The GA will randomly
fill all unspecified bits with 1’s and 0’s in the first gen-
eration and optimize the sequence over a number of
generations. Because the specified bits are allowed to
change values, the original target fault may no longer
be detected by the optimized sequence. However, it
is likely that the fault will be detected in a later pass
through the fault list, if it is not covered by a sequence
generated for a different target fault.

Once a fully specified sequence is obtained, un-
clocked vectors are generated to propagate as many
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Figure 2: Test generation with dynamic compaction.

fault effects on the state lines to the POs as possible.
For each clocked vector, each state line is considered in-
dividually, and an attempt is made to generate an un-
clocked vector that will propagate any fault effects on
that state line. Unclocked vectors are applied when the
clock is frozen, taking advantage of the internal state
from the previous clocked vector to detect additional
faults. Faults may be detected by later test vectors
specifically generated to detect them, but by using the
unclocked vectors, they can be detected sooner with
fewer vectors. The earlier the fault is detected, the
shorter the test generation time will be. Some of the
unclocked vectors generated are redundant and can be
removed, as shown in Figure 1. The redundant vec-
tors detect faults that are detected by later clocked
vectors or unclocked vectors. After test generation is
completed, the IcePick tool performs fault simulation
and set covering to generate the final optimized test
set.

4 FreezeFrame

Figure 3 depicts the basic idea behind testing using
a frozen clock strategy. Note that state lines that con-
tain fault effects are shown on the left with the value
1/0 or 0/1. In this example, if the clocked test vector
is applied by itself (Figure 3a), only one fault effect
can be propagated to the PO. At this point, the cir-
cuit is clocked, and the state lines are changed; thus,
the opportunity to detect the 0/1 fault effect is lost. If
unclocked vectors can be applied to the Pls before the
clocked test vector is applied (Figures 3b and 3c), two
additional fault effects can be propagated to the POs.
This way, the fault effects propagated to state lines are
observed and faults are detected earlier. In the follow-
ing subsections, test generation and static compaction
of unclocked vectors will be described.
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Figure 3: Unclocked vectors propagate fault effects to
POs.

4.1 Test generation

Fault effects, simply put, are incorrect values on
state lines due to one or more faults in the circuit.
It is possible for several faults to propagate fault ef-
fects to the same state line, and the effects of a single
fault may propagate to multiple state lines. To simplify
unclocked vector generation, the faults themselves are
not considered individually, but rather each state line
that holds fault effects is considered. A deterministic
algorithm is used to generate an unclocked vector to
propagate fault effects from a given state line to the
POs. However, the fault effects may be due to a sin-
gle fault only, and fault effects for this fault may have
propagated to another state line. These fault effects on
the second state line could mask the fault effects from
the first state line so that the fault is not detected.
Therefore, we use a fault simulator combined with a
GA to guarantee that the unclocked vector generated
does in fact detect at least one fault. The purpose of
the GA is to try to detect other faults in addition to
the faults whose effects have propagated to the targeted
state line.

After each clocked test vector sequence is generated
by HITEC and compacted by the Squeeze algorithms,
the faults detected by that sequence are eliminated



from the collapsed list of undetected faults. The modi-
fied fault list is then used to generate unclocked vectors
for every vector in the original clocked sequence.

Unclocked vector generation requires that the state
lines accurately represent the circuit’s state after all
clocked test vectors have been applied. This way, the
state lines correctly hold the fault effects, and un-
clocked vectors can be produced to propagate these
fault effects. To facilitate unclocked vector generation,
a list of state lines that contain fault effects is built.
Each flip-flop in that list is processed one-by-one. At
each flip-flop, there is only one faulty value that may
occur, unless the good value is undefined. When the
good value is undefined, the fault effects propagated to
that flip-flop are not put into the list, since observing
the fault effects would not result in a detection. The
9-valued logic is used to specify completely the exact
value of each node at each step.

For each state line in the list, FreezeFrame uses X-
path check [10] to determine the feasibility of gener-
ating an unclocked vector. X-path check determines
whether fault-effect propagation to at least one PO is
possible. If X-path check does not fail, the PODEM
algorithm [11] is used in an attempt to generate a par-
tially specified vector that propagates fault effects from
a particular flip-flop to the POs.

Next, a GA is used to generate a fully specified un-
clocked vector. The partially specified vector generated
by PODEM is used as a seed for the first half of the
initial GA population, while the second half is initial-
ized randomly. If the X-path check fails or if PODEM
fails, the entire GA population is initialized randomly.
In order for the GA to work effectively, a variety of
bit patterns is necessary for the unspecified bits in the
unclocked vector. Therefore, each unspecified bit in
each copy of the unclocked vector is filled at random
with a 1 or 0. The fitness value for an unclocked vector
was chosen to be the number of faults detected by the
vector for a given fault sample. A small fault sample
could be used to speed up the computation of the fit-
ness value, since the entire fault list may be very large.
Faults associated with the fault effects on the targeted
state line should then be included in the fault sample.
However, we have used the entire undetected fault list
to simplify the implementation.

Once the population has evolved over 8 generations,
the vector with the highest fitness value is added to the
existing unclocked vectors for the particular clocked
vector if it detects any additional faults, and the de-
tected faults are dropped from the fault list. Unclocked
vector generation continues for the next state line that
contains fault effects. After all state lines that contain
fault effects are processed, the clocked vector is applied,

which propagates a new set of fault effects to the state
lines, and the unclocked vector generation process be-
gins again. Once all clocked vectors in the sequence
have been processed in this manner, HITEC is called
to generate a new clocked sequence to detect a fault in
the remaining fault list. The test generation processes
employed by FreezeFrame are described in the form of
pseudocode in Figure 4.

For each test sequence s Do
Compact and optimize s;
Drop faults detected by s from fault list;
For each vector v in s Do
For each state line f with fault effects Do
Reset GA;
Run PODEM to produce unclocked
vector seed;
Run GA;
If the most-fit unclocked vector, fv,
detects at least 1 fault Then
Add fuv to the test set;
Drop faults detected by fo;

Figure 4: Unclocked vector generation

4.2 Static compaction

Unclocked vectors are generated without the knowl-
edge of the test sequences that are produced afterward.
Therefore, there may be redundant unclocked vectors
in the test set, and test compaction is needed. An un-
clocked vector will become redundant if all of the faults
it propagates to POs are incidentally detected by other
necessary clocked vectors.

Static compaction for unclocked vectors is done us-
ing a new tool called IcePick, as shown in Figure 1. The
first step taken to compact the unclocked vectors elimi-
nates unclocked vectors that detect only faults covered
by clocked vectors. From the remaining unclocked vec-
tors, the smallest set that covers the maximum number
of undetected faults is selected. In general, the set cover
problem is NP-complete. In practice, a greedy cover al-
gorithm is often used that effectively approximates the
NP-complete solution. Fault simulation is performed
to construct a list of faults detected by each unclocked
vector, and all essential unclocked vectors are chosen
first. An essential unclocked vector detects a fault that
no other unclocked vector detects. Those faults de-
tected by the essential vectors are then dropped from
the fault list. Finally, a greedy algorithm is employed
to select a subset of the remaining vectors. The un-
clocked vector that covers the most undetected faults
is chosen first, and those faults are dropped. The cycle
is repeated, choosing an unclocked vector that detects



Table 1: FreezeFrame vs. Squeeze

Total HITEC + Squeeze [5] HITEC + FreezeFrame
Circuit | PI | Faults | Unt Det | Vec | Time Det | Vec | uc vec | cuc vec | tot vec | Time
s298 3 308 26 265 133 16.7m 265 120 5 0 120 16.9m
s344 9 342 11 329 62 3.94m 329 58 12 0 58 4.53m
s349 9 350 13 334 53 3.67m 334 52 8 0 52 7.33m
s382 3 399 9 359 485 38.7m 354 342 0 0 342 52.8m
s386 7 384 70 314 128 22.2s 314 99 16 5 104 43.5s
s400 3 426 17 375 454 42.5m 373 356 0 0 356 52.7m
s444 3 474 24 418 598 43.0m 411 495 0 0 495 1.59h
$526 3 555 23 359 84 5.05h 358 97 8 0 97 5.17h
s641 35 467 63 404 72 32.3s 404 51 38 23 74 1.77Tm
s713 35 581 105 476 56 33.5s 476 41 27 15 56 1.33m
s820 18 850 36 814 462 4.63m 814 438 27 4 442 7.36m
5832 18 870 52 818 438 5.93m 818 416 15 2 418 8.74m
s1196 14 1242 3 1239 219 1.69m 1239 86 133 108 194 5.40m
s1238 14 1355 72 1283 232 1.84m 1283 95 142 109 204 5.48m
s1423 17 1515 14 1047 137 8.99h 993 136 5 1 137 9.30h
51488 8 1486 41 1444 408 17.7m 1444 378 14 2 380 19.9m
s1494 8 1506 52 1453 359 11.2m 1453 374 23 4 378 13.6m
s3271 26 3270 5 3253 521 33.9m 3248 554 0 0 554 1.33h
s3330 40 2870 123 2117 258 10.4h 2114 256 71 1 257 11.2h
s3384 43 3380 1 3066 118 5.29h 3046 91 7 2 93 6.15h
s4863 49 4764 22 4629 249 2.23h 4627 236 44 9 245 4.24h
sb378 35 4603 224 3245 198 18.2h 3233 212 53 3 215 19.8h
s6669 83 6684 0 6663 135 29.2m 6671 149 156 0 149 1.59h
s35932 35 39,094 | 3984 || 35,084 | 178 2.44h 35,023 176 14 1 177 11.4h

Most compact test set having maximal fault coverage is highlighted in bold font

uc vec: Original number of unclocked vectors

the most undetected faults, until there are no unclocked
vectors remaining that cover any undetected faults. In
general, essential selection followed by greedy selection
yields a very good approximation to the absolute small-
est set cover [12].

5 Results

FreezeFrame was implemented, and experiments
were carried out on an HP-UX 9000/770/100 with
256MB RAM. Faults detected by the unclocked vec-
tors in the beginning of the test set are usually easy-
to-detect faults that will also be detected by the later
clocked vectors. Even if many unclocked vectors are
added near the beginning of the test set, most will be
eliminated after static compaction. When FreezeFrame
reaches test sequences later in the test set, there will
be fewer unclocked vectors generated because there are
fewer propagated fault effects due to the reduced fault
list and because most of the faults left are hard-to-
detect faults. In order to be efficient in both space and
time, we allowed only 8 unclocked vectors to be added
to each clocked vector. The starting population size for
the GA is 32, and the test generation runs in 3 passes
through the fault list. The time limits for the three
passes are 0.5, 5, and 50 seconds per fault.

cuc vec: Number of compacted unclocked vectors

Results for FreezeFrame are shown in Table 1 and
compared to Squeeze for ISCAS89 sequential bench-
mark circuits that are initializable using 3-valued logic.
The number of primary inputs (PI), total faults, and
untestable faults (Unt) are shown for each circuit, along
with the number of detected faults (Det), number of
clocked vectors (Vec), and execution time for both
Squeeze and FreezeFrame. In addition, the number
of original unclocked vectors (uc vec), compacted un-
clocked vectors (cuc vec), and total vectors (tot vec)
are shown for FreezeFrame. The most compact test set
having maximal fault coverage is highlighted in bold
font. The overall FreezeFrame execution time is longer
compared to that of Squeeze partly because of the addi-
tional unclocked vector test generation and static com-
paction.

In Table 2, FreezeFrame is compared to other previ-
ous approaches. Squeeze performs better in most cir-
cuits than other approaches. Therefore, it is justifiable
to compare FreezeFrame to Squeeze. FreezeFrame’s
shorter test set achieves a comparable fault coverage
for most of the circuits studied. In s641, s1494, s3271,
and s5378, Squeeze still produces a shorter test set.

Generally, the fault coverage using FreezeFrame is



Table 2: Comparison to Previous Approaches

SEQCOM [1] || COINS(*) [2] BRF(2) [4] || Squeeze [5] || FreezeFrame

Circuit || Det | Vec Det [ Vec Det | Vec || Det | Vec || Det | Vec || Det | Vec
s386 314 131 314 154 306 380 - - 314 128 314 104
s641 404 80 404 136 401 121 404 74 404 72 404 74
s713 - - - - 467 142 476 71 476 56 476 56
s820 - - 722 235 - - 409 87 814 462 814 442
s832 - - - - - - 494 101 818 438 818 418
s1196 1232 238 1235 307 1239 | 332 1239 228 1239 219 1239 194
s1238 - - - - 1283 | 348 1283 244 1283 232 1283 204
s1423 - - - - - - 1298 397 1047 137 993 137
s1488 1444 358 1444 566 - - 1182 88 1444 408 1444 380
s1494 - - - - - - 1075 84 1453 359 1453 378
s5378 - - - - - - 3368 294 3245 198 3233 215

equivalent to Squeeze’s. However, the fault coverage
is sometimes lower for FreezeFrame, due to the non-
determinism of the algorithms. In s6669, more faults
are detected by FreezeFrame than Squeeze. In 9 of the
ISCASS89 circuits, the test set is smaller compared to
Squeeze and gives the same fault coverage. This in-
dicates that FreezeFrame can reduce the test set size
to reduce test application time while maintaining the
same fault coverage. The FreezeFrame test set tends
to be smaller because with the addition of unclocked
vectors, more faults are detected earlier.

6 Conclusion

Since test application time is an important factor in
reducing the VLSI chip testing cost, shorter test sets
are preferred. Still, high fault coverage should be main-
tained. The traditional approach to producing shorter
test sets is through compaction. In our work, we de-
veloped a package called FreezeFrame that uses an ap-
proach introduced in [6], which involves freezing the
clock. In FreezeFrame, we use the HITEC test gen-
erator and Squeeze dynamic compaction procedures to
produce the initial test set, along with a new algorithm
to generate unclocked vectors to be applied while the
clock is frozen, and IcePick to statically compact the
unclocked vectors. FreezeFrame produces more com-
pact test sets than other approaches while maintaining
a comparable fault coverage for several of the ISCAS89
sequential benchmark circuits.
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