
Exploiting State Equivalence on the Fly while Applying
Code Motion and Speculation

Luiz C. V. dos Santos* and Jochen A. G. Jess
Design Automation Section, Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{luiz, jess}@ics.ele.tue.nl

Abstract
Emerging design problems are prompting the use of code

motion and speculation in high–level synthesis to shorten
schedules and meet tight time–constraints. Unfortunately,
they may increase the number of states to an extent not
always affordable for embedded systems. We propose a new
technique that not only leads to less states, but also speeds
up scheduling. Equivalent states are predicted and merged
while building the finite state machine. Experiments indicate
that flexible code motions can be used, since our technique
restrains state expansion.

1. Introduction and Related Work

Emerging applications combine intensive data–flow,
complex control–flow and tight time constraints [8], creating
challenging problems whose solution requires multiple
functional units and exploitation of parallelism. Tradition-
ally, the scope of such exploitation is the basic block (BB),
a straight–line code sequence with no branches, except at its
entry and exit points. As the parallelism in a BB is limited,
the multiple functional units are poorly utilized. This
prompts the use of instruction–level parallelism (ILP)
techniques [2] in high–level synthesis (HLS), by moving
operations across BB boundaries, which is called code
motion. Some code motions place instructions ahead of
branches, leading to speculation. Code motion may require
the insertion of copies of operations to preserve semantics.
This is known as compensation code. On the one hand, code
motion and speculation may be vital for meeting a tight
time–constraint. On the other hand, compensation code may
increase the number of states. Such increase may represent
just the price to pay for a shorter schedule, but it can also be
due to redundant states. Although redundant states could be
removed later on (e.g. during sequential synthesis), their
scheduling implies that code motion bookkeeping (a main

* On leave from Federal University of Santa Catarina, Florianópolis,
Brazil, Computer Science Department (INE). Partially supported by
CNPq (Brazil) under fellowship award n. 200283/94–4.

source of global scheduling overhead) would be uselessly
performed many times. Therefore, we devise a method to
prevent scheduling redundant states.

In this paper, we propose a new technique that predicts
state equivalence while the finite state machine (FSM) is
built on the fly. It guarantees a minimal number of states,
given an arbitrary priority encoding. If it is predicted that a
state is equivalent to an already scheduled state, it is not
scheduled, but merged. The technique works not only as a
mechanism for restraining code expansion (as less states are
obtained), but it also speeds up scheduling (as less states are
actually scheduled). This is the advantage of our technique
over methods exploiting state equivalence afterwards, since
they spend time on scheduling many redundant states.

A survey of ILP techniques, like Trace Scheduling and
Percolation Scheduling, can be found in [2]. Code motion is
captured by recent scheduling methods [1] [10] [11]. Some
HLS methods [7] [13] cope with conditional code.
Path–based Scheduling [3] optimizes execution paths as fast
as possible, but speculation is not allowed. Speculation is
usually addressed for speeding up execution [6] [9]. Little
work is reported on code motion for worst–case execution.
A survey of state equivalence techniques for sequential
synthesis is given in [4]. The criterion for pipelining
detection in [1] relies on equivalence classes, yet state
equivalence is not addressed. To our knowledge, no other
method actually checks state equivalence, while applying
code motion and speculation during scheduling. Usually,
information on conditional execution is not properly
maintained as to be efficiently recovered on the fly. In our
method, this is encoded in Boolean form at the beginning, it
is updated after each code motion and is efficiently retrieved.
Also, built–in scheduler heuristics make it expensive to
predict future scheduler decisions. Our approach is free from
built–in heuristics, as explained in Section 3.

This paper is organized as follows. Section 2 explains our
modeling and Section 3 summarizes our approach. Section
4 formulates our criterion for on–the–fly detection of state
equivalence, whose implementation is discussed in Section
5. Experimental results are shown in Section 6 and our
conclusions in Section 7.

2. Background

Definition 1 . A data flow graph DFG� (V, E) is a
directed graph, where V is the set of nodes, representing
operations, and E � V � V is the set of edges, representing
dependences between operations.

An example of DFG is shown in Figure 1b for the
description in Figure 1a. Circles represent operations. Penta-
gons denote either branch (B) or merge (M) nodes controlled
by a a conditional (c1). See [5] for an explanation on DFG
semantics. To keep track of code motion, we use a
condensation of the DFG, as follows.

Definition 2 . A basic–block control flow graph
BBCG� (U, F) is a directed graph where U is the set of
nodes, representing BBs or junctions, and F � U � U is
the set of edges, representing the flow of control.

In building the BBCG, all operations in the DFG enclosed
by a pair of branch, merge, input or output nodes are
condensed into a BB in the BBCG. All branch (merge) nodes
in the DFG controlled by the same conditional become a
single branch (merge) node. All inputs are contracted to a
single source node; all outputs, to a sink node. Given the DFG
in Figure 1b, its BBCG appears in Figure 1c, where circles
represent BBs. A pentagon denotes a junction: either a
branch (B) or a merge (M).

The relation between a DFG and its BBCG is kept by
means of so–called links. A link connects an operation on in
the DFG with a basic block BBi in the BBCG. To denote that
operation on is connected to basic block BBi by means of

link �, we write on
�

➳ BBi. For instance, in Figure 1c, each

arrow represents a link.

Definition 3 . A state machine graph SMG� (S, T) is a
directed graph, where S is set of states, and T � S� S is
the set of transitions.

The SMG is a prototype for the state transition diagram of
the actual FSM [4]. Given a DFG and a set of resource
constraints, different SMGs can be derived. Figures 1d
and 1e show alternative SMGs for the DFG in Figure 1b,
assuming 1 adder, 1 subtracter and 1 comparator. In deriving
the SMG in Figure 1d, exploitation of ILP is limited to BBs,
whereas code motion is used for the SMG in Figure 1e. Note
that if a time constraint of 4 cycles is specified, the former
SMG has to be ruled out.

We say that node vi reaches vj via p, written vi
p
� vj, if

there is a path p from vi to vj. To mean that there is some path

from vi to vj, we write vi
�
� vj.

In this paper, we assume a set of resource constraints for
the data path. Our goal is to obtain a SMG for the control unit
that complies with the design constraints.

3. Our constructive approach

Our approach is sketched in Figure 2. Solutions are
encoded by priority encodings � of the operations in the
DFG. An explorer creates priority encodings and a construc-
tor builds a solution for each � and evaluates its cost. The
explorer uses a local search algorithm to select the solution
with lowest cost. While building a solution, the constructor
checks properties of conditional execution, which are
modeled as Boolean queries and are directed to a so–called
Boolean oracle.

The constructor consists of a scheduler and a so–called
parallelizer. The parallelizer manages code motion and
speculation and assigns operations to states while the SMG
is generated on the fly. It appoints a current state sk to be
scheduled. The parallelizer keeps in the set Ak all the
available operations [1] for scheduling in state sk (ready
operations). From Ak, the scheduler selects an operation vi

for executing in state sk. Then, the parallelizer updates the set
Ak accordingly. It also updates the set of free resources at
state sk, written as Rk. This interaction proceeds until
Rk � � or Ak � �. After scheduling sk, next states are

x = i1 – i2;

y = i3 – i4;

if (x > i5)

z = x + i6;

else

z = x – y;

o1 = z + i7;

o2 = i8 + i9;

I

J

K

L

[k]

[l]
[t 1]
[m]

[n]
[p]

[q]
(a) (b)

10 10

kl

mn

p

q

t1

B B B

M
0 1

c1

I

K J

L

B

M

0 1

0 1

k

l

mn

q

t1

p

(c) (d) (e)

s0

s1

s3s2

s4

s5

s0

s1
s2

s3

m,l,t1

k

l,t1

n m

p

q

k,q

n

p

Figure 1. A behavioral description, its DFG, BBCG and resulting SMGs

determined and scheduled. The BBCG is used as a frame for
building a SMG. During construction, it is as if each BB is
split on the fly into a sequence of successive states. As
opposed to most global schedulers [1], our approach
removes heuristics out of the scheduler (and places them in
the explorer). This grants the scheduler a predictability that
can be used for state optimization. Every set Ak is ordered by
the same priority encoding �. Given a state sk and an
ordered set Ak, the scheduler selects the first operation
vi � Ak satisfying resource constraints.

scheduler

parallelizer

cost

Akvi

CONSTRUCTOR

�

B
O

O
LE

A
N

E
X

P
LO

R
E

R

O
R

A
C

LE

Figure 2. An outline of the approach

4. Exploiting state equivalence

Let’s illustrate some notions with Figure 3. To predict
state equivalence, we use a Boolean encoding for conditional
execution. The key idea is to associate a Boolean variable
with each conditional, which is called a guard [10], and to
define Boolean expressions, which are called predicates. For
instance, the execution condition of the operations enclosed
by a basic block BBi is represented by a predicate G(BBi),
as illustrated in Figure 3a. Predicates can be efficiently
obtained as explained in [12].

Let �i � {c 1, c2, ��� , cn} be the set of conditionals sched-
uled in a state si (as pointed out by the arrows in the
Figure 3b). During execution, a truth assignment to the
conditionals in � i determines their Boolean–valued out-
come and is represented by a predicate. Every transition
(si, sj) owns an enabling predicate G((si, sj)), whose value is
determined at execution time by a truth assignment to the
conditionals in �i. For instance, G(s1, s4) � c1 � c2 in
Figure 3b. If � i � �, there is a single transition leaving si

and G((si, sj)) � 1. For simplicity, we omit constant predi-
cates in the figures.

4.1. A reformulation for the notion of state equivalence

Classical state equivalence relies on a FSM model. Two
states, say sn and sm, are equivalent if the output sequences
of two instances of the FSM, one initialized in sn and the
other in sm, match for any input sequence [4]. However, the
HLS model for the control unit is more abstract, typically a
symbolic description of a FSM. In this model, an output
pattern is associated with the set of operations executing in
a given state, which is called a bundle. An input pattern of the
FSM is associated with the predicate representing a truth
assignment to the conditionals scheduled in the previously

executed state. Hence, this model requires a more abstract
notion of state equivalence. Let OPn be the bundle of
operations in state sn. Given a path in the SMG, say
p � �sn, sn�1, ��� , sn�k	, let �OPn, OPn�1, ��� , OPn�k	 be the
sequence of bundles associated with p.

Definition 4 . Let �(sn, sn�1), ��� , (sn�k–1, sn�k)	 be a sequence
of k transitions starting at state sn. Given a sequence of pred-
icates � � �G1, G2, ���, Gk	 with Gi � G((sn, sn�i)) and
1 � i � k, the sequence of bundles induced by �, written
OP(sn, G1, G2, ���, Gk), is �OPn, OPn�1, ��� OPn�k	.

In Figure 3b, for instance, the sequence �c1.c2, 1, c3	

induces the sequence of bundles �OP1, OP2, OP5, OP8	.

Definition 5 . States sn and sm are schedule equivalent,
written sn

�
� sm, if and only if the equality

OP(sn, G1, G2, ��� , Gk) � OP(sm, G1, G2, ��� , Gk) holds
for every possible sequence �G1, G2, ���, Gk	.

For equivalence, not only the bundles of operations
scheduled in states sn and sm must coincide, but also the
bundles of every state reachable from them under a same
sequence of enabling predicates. This is illustrated in
Figures 4a and 4b. Note that duplication of conditionals has
occurred, as a result of code motion. Many states in
Figure 4a are equivalent. For instance, note that not only
OP(s6, c3, 1, 1, 1)� OP(s13, c3, 1, 1, 1) holds, but also
OP(s6, c3, 1, 1, 1)� OP(s13, c3, 1, 1, 1), i.e. s6

�
� s13. Each

shaded state in Figure 4a is redundant and can be merged
with its equivalent, as shown in Figure 4b. Our goal is to
avoid building a solution like the one in Figure 4a, without
restricting code motion and speculation. The formulation of
state equivalence assumes a completely defined SMG.
However, in the course of scheduling some states and
transitions are not yet defined (after scheduling the current
state, the next states are still unscheduled). Therefore, we
have to predict state equivalence while building the SMG.

(a) (b)

s3

s5

s7

s8

s1

s4s2

c1 c2

c3
c3

c1
c1c2 c1c2

c3

G(BB1) � 1

G(BB3) � c1 � c2

G(BB5) � c1

G(BB4) � c1 � c2

G(BB6) � c1

G(BB8) � c3

G(BB9) � c3

G(BB7) � 1
G(BB10) � 1
G(BB2) � c1

Figure 3. The relation between BBCG and SMG

4.2. On–the–fly detection of state equivalence

Though incompletely defined, a sequence of transitions
can be captured by a predicate. In Figures 4c and 4d, let sn

be a state within a basic block BBi. Suppose that an operation
oz is to be executed in some state, say sx, reachable from sn.

Hence, oz must be linked to some BBk such that BBi
p
�BBk.

Assume that G(BBi) � c1.c2 and G(BBk) � c1.c2.c3.c4.
Since BBi precedes BBk on path p, the guards c3 and c4 are
due to branches occurring after BBi on path p. This shows
that a predicate determining a sequence of transitions from
sn to sx can be obtained by removing from G(BBk) the
guards in G(BBi). This is implemented by the smoothing
operator [4]. The smoothing of a predicate G with respect to
guard c, written �c(G), is obtained by omitting all the
occurrences of c in G. For instance, in Figure 4c, the
predicate � � c3.c4 is derived by smoothing the guards c1

and c2 in G(BBk). Note that � determines the sequence of
transitions highlighted in Figure 4d, as formalized below.

Definition 6 . A predicate � induces a sequence of transi-
tions 	�1,�2, ���,�k
, with � i � T, iff � � G(�i) is satisfi-
able for every transition � i in the sequence.

Given an already scheduled state sn within BBi, an
unscheduled state sm within BBj, and the pairs (An, Rn) and
(Am, Rm), we want to predict if the process of scheduling,
starting at sn and sm, will result on equivalent sequences of
bundles. Our detection of state equivalence relies on the
following three properties:

i. Scheduler predictability
The operations scheduled in state sn depend only on the

resource occupation Rn, on the available operations An and

on a given priority encoding �. Therefore, if
(An, Rn) � (Am, Rm) holds, then OPn � OPm.

ii. Reachability from available operations
Let �(oy) denote the set of operations reachable from

operation oy in the DFG excluding branch and merge nodes.
Given a state sn within BBi, let’s find the set of all operations
executed on some path from BBi to the sink. This set, written
as � i(An), can be found by applying the concept of
reachability above to each operation available at state sn, as
follows:

�i(An)={oz � �
oy�An

�(oy) | oz
�
➳ BBk � BBi

�
� BBk} .

As a consequence, if it is known that � i(An) � �j(Am),
we conclude that the same set of operations is bound to be
executed in states reachable either from sn or sm. However,
this does not guarantee that a given operation is executed on
different paths under exactly the same condition, which
motivates the ensuing analysis.

iii. Execution under a same sequence of predicates
An operation oz may be linked to many BBs reachable

from BBi, due to compensation code. To capture the joint
effect of all “copies” of oz, we first find the set of all links
emanating from oz, written �(oz), and we select those linked
to BBs reachable from BBi. This subset, written as �i(oz), is
obtained as follows:

�i(oz) � { � � �(oz) | oz
�
➳ BBk � BBi

�
� BBk } .

The joint execution predicate of operation oz on all paths
starting at BBi, written Gi(oz), is expressed as:

Gi(oz) � �
���i(oz)

G(�).

s1 u s3

s0

s11

w

i

s13

s14 s15

s16

e

b d

f

g

s4

s12 a

y z

s17h

s6

s7 s8

s9

e

b d

f

g

s2

s5 a

v x

s10 h

s0

s3s1

s5 s6

s3s1

s4s2

s10

s11

s3s7 s8

s9

c1 c1c1 c1

c2 c2 c2c2

c3c3c3 c3

c2

c2c2
c2

c3c3

c1

c2

c3

c2

c3

oz

1 0

B1

0 1

B2

0 1

B3

1 0

B4

sn

sx

c3

c4

c2c2

c3

c4

BBCG SMG

BBi

BBk

(a) (b) (c) (d)

s5
�
� s12

s6
�
� s13

s7
�
� s14

s8
�
� s15

s9
�
� s16

s10
�
� s17

Figure 4. Illustrative examples for state equivalence

Assume that operation oz will be scheduled in a state sx

reachable from sn (recall example in Figures 4c and 4d). The
predicate inducing a sequence of transitions to sx, written
�i(oz), is obtained by Algorithm 1.

Algorithm 1. Algorithm for determining �i(oz)
�i(oz) � Gi(oz);
foreach c � support(G(BBi))

�i(oz) � �c(�i(oz));

Therefore, given the states sn and sm within BBi and BBj,
respectively, if �i(oz) � �j(oz) � � holds, then oz will be
executed, on different paths starting from sn and sm, but
under sequences of transitions induced by a same predicate
�. Now, we formalize our criterion for on–the–fly detection
of state equivalence.

Theorem 1 . Let sn and sm denote states within basic blocks
BBi and BBj, respectively. Assume that all availability sets
are ordered according to a given priority encoding �. The
equivalence sn

�
� sm holds for a given �, iff all the following

conditions hold:

• An � Am and Rn � Rm, (1.1)
• �i(An) � �j(Am) � �, (1.2)
• �oz � � : �i(oz) � �j(oz). (1.3)

A proof for this theorem can be found in [12].

5. Implementation

Algorithm 2 illustrates an efficient implementation. The
pair (An, Rn) is stored in a table for every scheduled state sn.
For a given “empty” state sm about to be scheduled,
condition 1.1 is checked via hashing. Only if a hit occurs, the
other conditions are tested.

Algorithm 2. Exploiting state equivalence
procedure equivalent_state(sm)

if (�sn � S | (An, Rn) � (Am, Rm))
if (sn

�
� sm) /* Theorem 1 */

return (sn);
return (none);

procedure handle_current_state(sm)
sn = equivalent_state(sm);
if (sn � none)

merge sm with sn;
else

schedule sm;
Condition 1.2 is checked efficiently by keeping the sets

ordered by the priority encoding. Checking condition 1.3 is
fast, as it relies on predicates whose number of guards is

bounded by the depth of conditional nesting, typically a
small fraction of the total number of tests. The technique is
part of our constructive approach, which is implemented in
the so–called NEAT System. The Boolean oracle currently
relies on a BDD package.

6. Experimental results

We performed experiments under largely unrestricted
code motion and speculation. A random–generated sequence
of priority encodings was used to induce many solutions,
from which statistics were derived. This allows us to
evaluate the impact of our technique for an arbitrary priority
encoding. Table 1 compares the quality of the solutions with
and without exploitation of state equivalence for several
examples. L i denotes the mean value for the schedule length
of the longest path in the SMG. Both the mean value and the
standard deviation (�) are given for the number of states. The
average time (avg time) to build one SMG is given in seconds
on a HP9000/735 workstation.

The values of L i coincided in both cases and for every
example (i.e. without exploiting equivalence, we are paying
a higher price for the same schedule quality). The shaded
columns, indicate that, without exploiting equivalence, the
size of the SMG is unpractical for DFGs with complex
control flow. To overcome this, most methods either restrict
code motion (e.g. by disallowing duplication of tests) or rely
on heuristics to alleviate the problem [1]. The last column
shows the state expansion without state equivalence. It
indicates that restrictions usually imposed on code motion
can be relaxed when our technique is applied, since state
expansion is controlled by merging equivalent states. Note
that � grows when state equivalence is exploited. This shows
that the size of the SMG is actually more sensitive to the
priority encoding than we could tell if the technique was not
applied. This means that not merging equivalent states
during exploration hampers further phases of the design flow
(solutions apparently similar during exploration may end up
in very different SMG sizes after sequential synthesis). The
results also show that our technique accelerates the construc-
tion of solutions, since the time spent on equivalence
checking is less than the time to schedule all redundant states.

7. Conclusions

Unrestricted code motion may increase the number of
states, yet we have shown that it can be supported without
inserting redundant states. Results indicate that if a HLS tool
is required to make use of flexible code motions to face tight
time–constraints, the size of the SMG is unpractical without
on–the–fly exploitation of state equivalence. Besides, our
technique speeds up scheduling via an efficient state
equivalence checking.

Table 1. The impact of on–the fly exploitation of state equivalence

l d BB t i t L
without with

example nodes
DFG

BBs case resource constraints Li #states avg
ti

#states avg
ti

exp
DFG

alu add sub mul cmp mean �[%]

g
time mean �[%]

g
time

waka 46 10 A 0 1 1 0 1 7.8 14.5 4.5 0.06 11.6 7.6 0.06 1.2
[13] B 2 0 0 0 1 7.9 14.7 5.7 11.8 8.9 1.2
kim1 48 10 B 0 1 1 0 1 8.8 21.8 4.4 0.08 19.8 6.2 0.08 1.1
[7] C 0 2 1 0 1 6.9 15.7 5.8 14.9 5.2 1.1

rotor 66 10 A 1 0 0 0 0 11.0 35.0 0.0 0.09 21.4 8.5 0.08 1.6
[10] B 2 0 0 0 0 8.0 21.3 2.1 17.3 2.6 1.2

C 3 0 0 0 0 7.0 20.0 0.0 14.6 3.3 1.4
E 1 0 0 2 0 9.8 29.8 1.2 19.5 4.9 1.5
F 2 0 0 2 0 8.0 24.0 0.0 15.6 3.2 1.5
G 3 0 0 2 0 8.0 24.0 0.0 15.6 3.2 1.5

s2r 122 22 A 1 0 0 0 0 14.7 127.5 3.2 0.51 71.9 14 0.46 1.8
[10] B 2 0 0 0 0 9.5 77.0 4.4 59.2 6.9 1.3

C 3 0 0 0 0 8.9 73.2 4.3 54.2 8.0 1.3
E 1 0 0 2 0 13.1 95.5 3.8 73.0 6.9 1.3
F 2 0 0 2 0 10.0 78.9 5.1 58.0 8.9 1.4
G 3 0 0 2 0 9.4 75.8 5.1 56.9 7.1 1.3

kim2 464 52 A 0 1 1 1 1 59 2406 16 27 495 17 11 4.9

[7] C 0 1 2 1 1 59 2395 15 476 15 5.0[7]
D 0 1 1 2 1 58 2317 16 437 20 5.3

References

[1] A. Aiken et al., “Resource–Constrained Software Pipelining”,
IEEE Trans. Parallel and Distributed Syst., vol. 6(12), pp.
1248–1270, Dec. 1995.

[2] U. Banerjee et al., “Automatic Program Parallelization”, Proc.
of the IEEE, vol. 81(2), pp. 211–243, Feb. 1993.

[3] R. Bergamaschi et al., “Control–Flow Versus Data–Flow
Based Scheduling: Combinining Both Approaches in an
Adaptive Scheduling System”, IEEE Trans.VLSI Syst., vol.
5(1), pp.82–100, Mar. 1997.

[4] G. DeMicheli, “Synthesis and Optimization of Digital Cir-
cuits”, Mc Graw–Hill, 1994.

[5] J. Eijndhoven and L. Stok, “A Data Flow Exchange Standard”,
Proc. Europ. Conf. Design Automation, pp. 193–199, 1992.

[6] U. Holtmann and R. Ernst, “Combining MBP–Speculative
Computation and Loop Pipelining in High–Level Synthesis”,
Proc. European Design and Test Conf., pp.550–555, 1995.

[7] T. Kim et al., “A Scheduling Algorithm for Conditional
Resource Sharing, A Hierarchical Reduction Approach”,
IEEE Trans. CAD, vol. 13(4), pp. 425–438, 1994.

[8] R. P. Kleihorst et al., “MPEG2 Video Encoding in Consumer
Electronics”, J. VLSI Signal Proc., vol. 17, pp. 241–253, 1997.

[9] G. Lakshminarayana et al., “Incorporating Speculative
Execution into Scheduling of Control–flow Intensive Behav-
ioral Descriptions”, Proc. Design Automation Conf., 1998.

[10] I.Radivojevic and F.Brewer, “A New Symbolic Technique for
Control Dependent Scheduling”, IEEE Trans. CAD,
vol.15(1), pp. 45–57, 1996.

[11] M. Rim et al.,“Global Scheduling with Code–Motions for
High–Level Synthesis Applications”, IEEE Trans. VLSI Sys-
tems, vol. 3, n. 3, pp. 379–392, Sept. 1995.

[12] L.C.V. dos Santos, “Exploiting instruction–level parallelism :
a constructive approach”, PhD thesis, Eindhoven University
of Technology, Eindhoven, The Netherlands, Nov. 1998.

[13] K. Wakabayashi and H. Tanaka, “Global scheduling indepen-
dent of control dependencies based on condition vectors”,
Proc. Design Automation Conf., pp.112–115, 1992.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

