Exploiting State Equivalence on the Fly while Applying
Code Motion and Speculation

Luiz C. V. dos Santos* and Jochen A. G. Jess
Design Automation Section, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{luiz, jess}@ics.ele.tue.nl

Abstract source of global scheduling overhead) would be uselessly

Emerging design probiems are prompting the use of Cod@erformed many times. Therefore, we devise a method to
motion and speculation in high—level synthesis to shorterPrevent scheduling redundant states.
schedules and meet tight time—constraints. Unfortunately, In this paper, we propose a new technique phedicts
they may increase the number of states to an extent ndttate equivalence while the finite state machine (FSM) is
always affordable for embedded systems. We propose a nellilt on the fly It guarantees a minimal number of states,
technique that not only leads to less states, but also speedven an arbitrary priority encoding. If it is predicted that a
up scheduling. Equivalent states are predicted and merge@tate is equivalent to an already scheduled state, it is not
while building the finite state machine. Experiments indicateScheduled, but merged. The technique works not only as a
that flexible code motions can be used, since our techniquéechanism for restraining code expansion (as less states are
restrains state expansion. obtained), but it also speeds up scheduling (as less states are

actually scheduled). This is the advantage of our technique
over methods exploiting state equivaleaierwards since
1. Introduction and Related Work they spend time on scheduling many redundant states.

A survey of ILP techniques, like Trace Scheduling and
Percolation Scheduling, can be found in [2]. Code motion is
captured by recent scheduling methods [1] [10] [11]. Some
HLS methods [7] [13] cope with conditional code.

Emerging applications combine intensive data—flow,
complex control-flow and tight time constraints [8], creating
challenging problems whose solution requires multiple) L .
functional units and exploitation of parallelism. Tradition- Path—ba_sed Scheduling [:’.’] opt|m|zes execution paths as f"’.‘St
ally, the scope of such exploitation is thesic blockBB), as possible, but speculation is not allowed. Speculation is

a straight—line code sequence with no branches, except at i‘résuzl!y addreszed for (jpeed'ﬂg lip execution [6] [9]. Little
entry and exit points. As the parallelism in a BB is limited, WOrK Is reported on code motion for worst-case execution.

A survey of state equivalence techniques for sequential
synthesis is given in [4]. The criterion for pipelining

detection in [1] relies on equivalence classes, yet state
operations across BB boundaries, which is catiede equivalence is not addressed. To our knowledge, no other

motion Some code motions place instructions ahead of€thod actually checks state equivalence, while applying
branches, leading &peculation Code motion may require c0d€ motion and speculation during scheduling. Usually,
the insertion of copies of operations to preserve semanticér‘fqrm"’.‘t'on on condltlpr_lal execution is not properly

This is known asompensation cod®n the one hand, code maintained as to be efficiently recovered on the fly. In our

motion and speculation may be vital for meeting a tight_methOd' this is encoded in Boqlean for_m at_tr_]e beginn_ing, it
updated after each code motion and is efficiently retrieved.

time—constraint. On the other hand, compensation code maegi bl heduler heuristi ke | .
increase the number of states. Such increase may represdnp?: Pullt=in scheduler heuristics make it expensive to

just the price to pay for a shorter schedule, but it can also bRredict future scheduler decisions. Our approachis free from
due to redundant states. Although redundant states could t¥!ilt=in heuristics, as explained in Section 3. .
removed later on (e.g. during sequential synthesis), their This paper is organized as follows. Section 2 explains our

scheduling implies that code motion bookkeeping (a mainModéling and Section 3 summarizes our approach. Section
4 formulates our criterion for on—-the—fly detection of state

* On leave from Federal University of Santa Catarina, Florianopolis, equivalence, whose implementation is discussed in Section

Brazil, Computer Science Department (INE). Partially supported by 5. Experimental results are shown in Section 6 and our
CNPq (Brazil) under fellowship award n. 200283/94—4. conclusions in Section 7.

the multiple functional units are poorly utilized. This
prompts the use of instruction—level parallelism (ILP)
techniques [2] in high—level synthesis (HLS), by moving

The SMG is a prototype for the state transition diagram of

2. Background the actual FSM [4]. Given a DFG and a set of resource
constraints, different SMGs can be derived. Figures 1d

o] and le show alternative SMGs for the DFG in Figure 1b,
Definition 1 . A data flow graph DFG = (V,E) is @& 455uming 1 adder, 1 subtracter and 1 comparator. In deriving

directed graph, wher¥ is the set of nodes, representing the SMG in Figure 1d, exploitation of ILP is limited to BBs,

operations, an& C V x V isthe setof edges, representing \yhereas code motion is used for the SMG in Figure 1e. Note
dependences between operations. that if a time constraint of 4 cycles is specified, the former

An example of DFG is shown in Figure 1b for the SMG has to be ruled out. _ . b
description in Figure 1a. Circles represent operations. Penta- Ve say that node; reachesv; via p, written v; = v, if
gons denote eithéranch(B) ormerge(M) nodes controlled there is a patp from v, to v;. To mean that there is some path
by a aconditional(C,). See [5] for an explanation on DFG from v; to v;, we write v v;.
semantics. To keep track of code motion, we use a |n this paper, we assume a set of resource constraints for
condensation of the DFG, as follows. the data path. Our goal is to obtain a SMG for the control unit

Definition 2 . A basic-block control flow graph that complies with the design constraints.

BBCG = (U, F) is a directed graph wheté is the set of .
nodes, representing BBs or junctions, & U x Uis 3. Our constructive approach

the set of edges, representing the flow of control.) o)
Our approach is sketched in Figure 2. Solutions are

In buiIQingthe BBCG, all ope(ations inthe DFG enclosed gncoded by priority encodingd of the operations in the
by a pair of branch, merge, input or output nodes areprG. Anexplorercreates priority encodings andanstruc-
condensed into a BB in the BBCG. All branch (merge) nodesior huilds a solution for eacH and evaluates its cost. The
in the DFG controlled by the same conditional become aexplorer uses a local search algorithm to select the solution
single branch (merge) node. All inputs are contracted to &jth lowest cost. While building a solution, the constructor
singlesourcenode; all outputs, tosinknode. Giventhe DFG checks properties of conditional execution, which are
in Figure 1b, its BBCG appears in Figure 1c, where circlesmodeled as Boolean queries and are directed to a so—called
represent BBs. A pentagon denotegi@ctionn either a Bgglean oracle
branch(B) or amerge(M). . _ The constructor consists of sahedulerand a so—called
The relation between a DFG and its BBCG is kept by parallelizer The parallelizer manages code motion and
means of so—calldhks. A link connects an operati@hin gpeculation and assigns operations to states while the SMG
the DFG with a basic blodRB; in the BBCG. To denote that g generated on the fly. It appointsarent states, to be

operationop, is connected to basic blo®8; by means of gcheduled. The parallelizer keeps in the Agtall the

link %, we writeo,,] BB.. For instance, in Figure 1c, each available operationd1] for scheduling in stats, (ready
arrow represents a link. operations). Fronf, the scheduler selects an operatipn

for executing in stats,. Then, the parallelizer updates the set
Definition 3 . A state machine graplsMG = (S, T)is a A, accordingly. It also updates tket of free resourcest
directed graph, wher8 is set of states, and C S X Sis state s, written asR,. This interaction proceeds until
the set of transitions. R = 0 or A, = (0. After schedulings,, next statesare

\VARVARR VARV
K x=illi3; K éj
M ly=i3—i4; ! | Q
[ta] 1if (x> 5)__
m 2 iNiiE B (B 1B
0@

| J
Ml zEx-y K
Pl [SLEZ T \

(&) (b) v v

Figure 1. A behavioral description, its DFG, BBCG and resulting SMGs

determined and scheduled. The BBCG is used as a frame faxecuted state. Hence, this model requires a more abstract
building a SMG. During construction, it is as if each BB is notion of state equivalence. L&P, be the bundle of
split on the fly into a sequence of successive states. Asperations in states,. Given a path in the SMG, say
opposed to most global schedulers [1], our approachp = (S, S,+1, s Sh+k), 1€t (OP,OR,,4,...,OP,,) be the
removes heuristiosut of the scheduldand places them in sequence of bundles associated with
the explorer). This grants the scheduler a predictability thabefinition 4 .Let((s

o) : 1 She1)s s (Sieken Sosi)) DE @ SEQUENCE
can be used_ fo_r state optimization. Everysgs ordered by ¢y yransitions startinng at statg Given a sequence of pred-
the samepriority encodingIl. Given a states, and an icates G = (G, Gy,..., Gy with G, = G((S, S,)) and

. : ’ LA i 1 Sh+i

ordered se.tAk,_ the scheduler sele_cts the first operation 1 _ j = k, thesequence of bundles induceddywritten
v; € Asatisfying resource constraints. OP(s, Gy, Gy, ..., Gy), is (OP, OPy. 1, ... OP,,).

In Figure 3b, for instance, the sequencec,, 1,c,)

cos{ CONSTRUCTOR induces the sequence of bund|@®,, OP,, OP;, OF;).

Definition 5 , Statess, and s, are schedule equivalent
written s, s, if and only if the equality
OP(5.G.G,, ... ,G) = OP(5,,G, Gy, ... ,G) holds

for every possible sequen@®,, G,, ..., Gy).

For equivalence, not only the bundles of operations
Figure 2. An outline of the approach scheduled in states, and s,, must coincide, but alsthe
bundles of every state reachable from them under a same
sequence of enabling predicatethis is illustrated in
Figures 4a and 4b. Note that duplication of conditionals has

Let’s illustrate some notions with Figure 3. To predict o_ccurred, as a re_sult of code_ motion. Many states in
gure 4a are equivalent. For instance, note that not only

state equivalence, we use a Boolean encoding for condition§
)) i . : P(s,T31,1,1)= OP(35C;, 1,1,1) holds, but also
execution. The key idea is to associate a Boolean variabl Pl 11)= OP(sacal.1.1) Pe. s ¢ s... Each

with each conditional, which is calledyaard[10], and to - .
define Boolean expressions, which are cgledlicatesFor shad_ed statg In Figure 4a is rgdundant and can be merged
' Wlth its equivalent, as shown in Figure 4b. Our goal is to

instan he execution condition of th rations encl . S Do i .
stance, the execution condition of the operations Coseav0|d building a solution like the one in Figure déhout

by a basic bloclBB, is represented by a predicaiB8,), estricting code motion and speculatiofhe formulation of

as illustrated in Figure 3a. Predicates can be efficientl)/ . i
obtained as explained in [12]. state equivalence assumes a completely defined SMG.

LetC, = {c,.c, G} be the set of conditionals sched- However, in the course of scheduling some states and
uled in la statléa (as Bointed out by the arrows in the transitions areot yet definedafter scheduling the current
Figure 3b). During execution, auth assignmento the state, the next states are still unscheduled). Therefore, we

conditionalsin C; determines their Boolean—valued out- have topredictstate equivalence while building the SMG

come and is represented by a predicate. Every transition
(s, §) owns arenabling predicatés((s, s)), whose value is .
determined at execution time by a truth assignment to the
conditionals inC;. For instance,G(s;,S) = C, * C, in
Figure 3b. IfC; = 0, there is a single transition leavisg <=~®

o
L
2
@]
-
o
x
Ll

BOOLEAN
ORACLE

11 parallelize

4. Exploiting state equivalence

1

andG((s, s)) = 1. For simplicity, we omit constant predi- (G;Egglg f i
>) ;) =

cates in the figures. O G(BB) = 1
. . . G(BB,) =

4.1. A reformulation for the notion of state equivalence (BB,) _ e

G(BB;) =T,

G(BBg) = ¢,

Classical state equivalence relies on a FSM model. Two
states, sag, ands,, are equivalent if the output sequences
of two instances of the FSM, one initializedspand the

GBB;) =T, - T,
GBB, =T, ¢C,

other ins,, match for any input sequence [4]. However, the 25223 _ 2:
HLS model for the control unit is more abstract, typically a

symbolic description of a FSM. In this model, an output

pattern is associated with the sebpérations executing in

agiven stateyhich is called dundle An input pattern of the (@)

FSM is associated with th@redicaterepresenting a truth

assignment to the conditionals scheduled in the previously Figure 3. The relation between BBCG and SMG

4.2. On-the—fly detection of state equivalence on a given priority encodingIl. Therefore, if
(A, R) = (Amn Ry holds, therOP, = OP,,.

Though incompletely defined, a sequence of transitions; Reachability from available operations
can be captured by a predicate. In Figures 4c and 48, let | ot q,(0,) denote theset of operations reachable from
be a state within a basic bloBI;. Suppose thatan operation 5perationo, in the DFG excluding branch and merge nodes.
0,is to be executed in some state, sayeachable frons,. Gjyen a stats, within BB,, let’s find the set of all operations
Hence,0, must be linked to sonm&B, such thaBB; Ly BB,. executed on some path frddB; to the sink. This set, written
Assume that G(BB = ¢,.¢, and G(BR) = T;-C,-C5-T,. as ®(A,), can be found by applying the concept of
SinceBB; precede®8B, on pathp, the guards; andc, are reachability above to each operation available at states
due to branches occurring aft8B; on pathp. This shows follows:
that a predicate determining a sequence of transitions from _ *
s, to s, can be obtained by removing fro®(BB,) the ian={0z oyLEJAn%(Oy) l Ozﬁ BBy A\ BB; —BBy}.
guards inG(BB)). This is implemented by the smoothing As a consequence, if it is known tHai(A,) = F(A.)
operator [4]. Themoothingf a predicatds with respect to we conclude that the same set of operations is ljjound to be

guard ¢, written $(G), is obtained by omitting all the executed in states reachable either frgnor s,,. However,

occurrences ofc in G. For instance, in Figure 4c, the . . m
redicatel’ = c,.c, is derived by smoothing the guards th|s does not guarantee that a given operation is _execute_d on
b 3 different paths under exactly the same condition, which

andc, in G(BB,). Note thatl" determines the sequence of motivates the ensuing analvsis
transitions highlighted in Figure 4d, as formalized below. . g ysis. .
iii. Execution under a same sequence of predicates

Definition 6 . A predicatel” induces a sequence of transi- An operationo, may be linked to many BBs reachable

tions (I3, I, ..., T, _V_”th q_i ET, iff I - G(T)is satisfi- from BB, due to compensation code. To capture the joint

able for every transitiof’; in the sequence. effect of all “copies” ofo,, we first find the set of all links
Given an already scheduled statg within BB;, an emanating frono,, written A(0,), and we select those linked

unscheduled statg, within BB;, and the pair¢A,, R;) and to BBs reachable froBB,. This subset, written as,(0,), is

(Am Ry), we want to predict if the process of scheduling, obtained as follows:

starting ats, ands,, will result on equivalent sequences of "

bundles. Our detection of state equivalence relies on thé\i(OZ) ={rM € Al)| Ozﬁ BBy A BBj —> BBy }.

following three properties: Thejoint execution predicatef operationo, on all paths
i. Scheduler predictability starting atBB;, written G;(0,), is expressed as:

The operations scheduled in statelepend only on the G;(0;) = z G(Q\).
resource occupatioR,, on the available operatiors, and LEA;(07)

Figure 4. lllustrative examples for state equivalence

Assume that operation, will be scheduled in a sta& bounded by the depth of conditional nesting, typically a
reachable frons, (recall example in Figures 4c and 4d). The small fraction of the total number of tests. The technique is
predicate inducing a sequence of transitions,tonritten part of our constructive approach, which is implemented in
I'i(0,), is obtained by Algorithm 1. the so—called NEAT System. The Boolean oracle currently

relies on a BDD package.
Algorithm 1. Algorithm for determiningl’;(0,)
I.(0) = G,(0p); 6. Experimental results

foreach ¢ & support(G(BR) We performed experiments under largely unrestricted

[i(07) = $(T(07)); code motion and speculation. Arandom-generated sequence
. o of priority encodings was used to induce many solutions,
Therefore, given the statesands,, within BB;andBB;, from which statistics were derived. This allows us to

respectively, if[’(0,) = I'(0,) = I holds, theno, will be evaluate the impact of our technique foastitrary priority
executed, ordifferent paths starting froms, and s, but encodingTable 1 compares the quality of the solutiaith
under sequences of transitions induced bgraepredicate and without exploitation of state equivalence for several
I'. Now, we formalize our criterion for on—the—fly detection examp|esl_i denotes the mean value for the schedule |ength
of state equivalence. of the longest path in the SMG. Both the mean value and the

Theorem 1. Lets, ands,, denote states within basic blocks Standard deviatioro) are given for the number of states. The
BB, and BB;, respectively. Assume that all availability sets average time (avg time) to build one SMG is given in seconds
are ordered according to a given priority encodihgrhe ~ on a HP9000/735 workstation.

equiva|ence rsg Sm holds for agivem, iff all the fo”owing The values Oﬂ_i coincided in both cases and for every
conditions hold: example (i.e. without exploiting equivalence, we are paying
a higher price for the same schedule quality). The shaded

: %]A%”(:)Aj %Q?E”)Z_Rg“i’ 83 columns, indicate that, without exploiting equivalence, the
i n) — j m) — l . i i i i
. Yo, ®:Ty0) = I}(0). (1.3) size of the SMG is unpractical for DFGs with complex

control flow. To overcome this, most methods either restrict
code motion (e.g. by disallowing duplication of tests) or rely
on heuristics to alleviate the problem [1]. The last column
. shows the state expansion without state equivalence. It
5. Implementation indicates that restrictions usually imposed on code motion
)) o) can be relaxed when our technique is applied, since state
Algorithm 2 illustrates an efficient implementation. The expansion is controlled by merging equivalent states. Note
pair (An, Ry) is stored in a table for every scheduled state {hatg grows when state equivalence is exploited. This shows
For a given “empty” states, about to be scheduled, that the size of the SMG is actually more sensitive to the
condition 1.1 is checked via hashing. Only if a hit occurs, thepriority encoding than we could tell if the technique was not

A proof for this theorem can be found in [12].

other conditions are tested. applied. This means that not merging equivalent states
o] during exploration hampers further phases of the design flow
Algorithm 2. Exploiting state equivalence (solutions apparently similar during exploration may end up
procedure equivalent_state(s,) in very different SMG sizes after sequential synthesis). The

if 3s, € S|(A.R) = (Am Ry) results also show that our technique accelerates the construc-
if (502 s,) /* Theorem 1 */ tion of solutions, since the time spent on equivalence

return (s,); checking is less than the time to schedule all redundant states.

return (none);

procedure handle_current_state(s,)
S, = equivalent_state(s,);
if (s, # none)

7. Conclusions

Unrestricted code motion may increase the number of
states, yet we have shown that it can be supported without

merge s, with s;; inserting redundant states. Results indicate that if a HLS tool
else is required to make use of flexible code motions to face tight
schedule s, time—constraints, the size of the SMG is unpractical without

Condition 1.2 is checked efficiently by keeping the setson—the—fly exploitation of state equivalence. Besides, our
ordered by the priority encoding. Checking condition 1.3 istechnique speeds up scheduling via an efficient state
fast, as it relies on predicates whose number of guards isquivalence checking.

Table 1. The impact of on—the fly exploitation of state equivalence

. without with
exampe rboggs BBs | case resource coristiats Fstates avg Fstates | avg | P
alu | add | sub | mul | cmp mean |50 time Foean o[%] time

waka 46 10 A 0 1 1 0 1 7.8] 145| 45| 0.06]| 11.6] 7.6] 0.06]| 1.2
[13] B 2 0 0 0 1 79| 14.7] 5.7 11.8] 8.9 1.2
kiml 48 10 | B 0 1 1 0 1 8.8| 21.8]| 44| 0.08f 19.8] 6.2 0.08] 1.1
[7] C 0 2 1 0 1 6.9] 15.7] 5.8 14.9] 5.2 1.1
rotor 66 10| A 1 0 0 0 0 |11.0] 350f 00| 0.09| 21.4] 85| 0.08| 1.6
[10] B 2 0 0 0 0 8.0| 21.3] 21 17.3]| 2.6 1.2
Cc 3 0 0 0 0 7.0| 20.0] 0.0 14.6| 3.3 1.4

E 1 0 0 2 0 9.8| 29.8] 1.2 19.5| 4.9 1.5

F 2 0 0 2 0 8.0] 24.0] 0.0 15.6| 3.2 1.5

G 3 0 0 2 0 8.0] 24.0] 0.0 15.6] 3.2 1.5

s2r 122 1 22 | A 1 0 0 0 0 |14.7]|1275]| 3.2 051| 71.9| 14| 0.46| 1.8
[10] B 2 0 0 0 0 95| 77.0] 44 59.2] 6.9 1.3
Cc 3 0 0 0 0 89| 73.2] 43 54.2] 8.0 1.3

E 1 0 0 2 0 |13.1] 955] 3.8 73.0] 6.9 1.3

F 2 0 0 2 0 |10.0] 789] 51 58.0] 8.9 1.4

G 3 0 0 2 0 9.4] 75.8] 5.1 56.9] 7.1 1.3

kim2 464 | 52 | A 0 1 1 1 1 59| 2406| 16 27| 495| 17 11| 4.9
7] C 0 1 2 1 1 59| 2395| 15 476| 15 5.0
D 0 1 1 2 1 58| 2317] 16 437] 20 5.3

References [71 T. Kim et al., “A Scheduling Algorithm for Conditional

(1]

(2]
(3]

(4]
(5]
(6]

A. Aiken etal., “Resource—Constrained Software Pipelining”,
IEEE Trans. Parallel and Distributed Syst., vol. 6(12), pp.
1248-1270, Dec. 1995.

U. Banerjee et al., “Automatic Program Parallelization”, Proc.
of the IEEE, vol. 81(2), pp. 211-243, Feb. 1993.

R. Bergamaschi et al., “Control-Flow Versus Data—Flow [10]

Based Scheduling: Combinining Both Approaches in an
Adaptive Scheduling SystemIEEE Trans.VLSI Syst., vol.
5(1), pp.82—100, Mar. 1997.

G. DeMicheli, “Synthesis and Optimization of Digital Cir-
cuits”, Mc Graw—Hill, 1994.

(8]
[9]

Resource Sharing, A Hierarchical Reduction Approach”,
IEEE Trans. CAD, vol. 13(4), pp. 425-438, 1994.

R. P. Kleihorst et al., “MPEG2 Video Encoding in Consumer
Electronics”, J. VLSI Signal Proc.,vol. 17, pp. 241-253, 1997.
G. Lakshminarayana et al., “Incorporating Speculative
Execution into Scheduling of Control—flow Intensive Behav-
ioral Descriptions”, Proc. Design Automation Conf., 1998.
I.Radivojevic and F.Brewer, “A New Symbolic Technique for
Control Dependent Scheduling”]lEEE Trans. CAD,
vol.15(1), pp. 45-57, 1996.

11] M. Rim et al.,“Global Scheduling with Code—Motions for

High—Level Synthesis Applications”, IEEE Trans. VLSI Sys-
tems, vol. 3, n. 3, pp. 379-392, Sept. 1995.

J. Eijndhoven and L. Stok, “A Data Flow Exchange Standard”, [12] L.C.V. dos Santos, “Exploiting instruction—level parallelism :

Proc. Europ. Conf. Design Automation, pp. 193-199, 1992.
U. Holtmann and R. Ernst, “Combining MBP-Speculative

a constructive approach”, PhD thesis, Eindhoven University
of Technology, Eindhoven, The Netherlands, Nov. 1998.

Computation and Loop Pipelining in High—Level Synthesis”, [13] K.Wakabayashi and H. Tanaka, “Global scheduling indepen-

Proc. European Design and Test Conf., pp.550-555, 1995.

dent of control dependencies based on condition vectors”,
Proc. Design Automation Conf., pp.112-115, 1992.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

