
Identification and Exploitation of Symmetries in DSP Algorithms

C.A.J. van Eijk1     E.T.A.F. Jacobs1     B. Mesman1,2     A.H. Timmer2

1 Design Automation Section, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2 Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

Abstract

In many algorithms, particularly those in the DSP domain,
certain forms of symmetry can be observed. To efficiently
implement such algorithms, it is often possible to exploit
these symmetries. However, current hardware and software
compilers show deficiencies, because they cannot identify
them. In this paper we, we propose two techniques to
automatically detect and utilize symmetry. Both techniques
introduce sequence edges between operations such that the
feasibility of the scheduling problem is preserved, while the
symmetry is broken. In combination with existing tech-
niques for constraint analysis, this enhances the quality of
compilers considerably, as is shown by benchmark results.

1. Introduction

For many applications, implementing algorithms efficiently
is of utmost importance. This is particularly true in the field
of digital signal processing (DSP), as DSP algorithms are
usually part of an embedded system and therefore severely
constrained with respect to timing, area and power. Despite
the existence of high-level hardware and software compil-
ers, the inner loops of such algorithms are often still opti-
mized by hand, in order to obtain a solution that is efficient
enough.

The main reason why compilers have a hard time to gen-
erate efficient code or hardware implementations is the
combination of tight timing and resource constraints for
DSP algorithms. Lately, research has therefore been focused
on constraint analysis techniques, to be able to handle com-
binations of timing and resource constraints efficiently [1]
[8][9][12][14]. Those analyses decrease the apparent sched-
uling freedom of a compiler, without removing any feasible
schedules. So, the solution space is left unaltered, but the
search space of a compiler is decreased. This is achieved by
generating additional sequence edges between operations in
a parallel representation of the application, and by narrow-
ing the execution intervals (that is, the range of feasible start
times) of the operations.

A major hurdle for the constraint analysis techniques
described above are symmetric structures in algorithms. To
illustrate what we mean by symmetry, some small examples

are shown in Figure 1. In the example of Figure 1a, the two
operations labeled with ‘rd’ are symmetric. Figure 1c shows
an example that also exhibits symmetry, but in this case, it is
clearly more difficult to express it. In the context of schedul-
ing, an important consequence of symmetric structures is
that they introduce a form of ‘redundancy’ in the search
space: Schedules that only differ in the order in which sym-
metric operations are executed, can effectively be consid-
ered to be identical. Existing constraint analysis techniques
do not utilize symmetry to decrease the apparent scheduling
freedom, because they lack a theoretical framework to do so.

��

rd

wr

rd rd rd rd

� �

wrwr wr

rd rd rd

�� �

wrwr wr

�� �

��� ��� ���
rd

wr

rd

wr

�

Figure 1. Examples of symmetry

In this paper we will show how one can use symmetry to
make partial sequencing (or scheduling) decisions while
preserving feasibility. We present a theoretical framework
for capturing and utilizing symmetry, with the following
advantages:
� It reduces the search space of a scheduler, without making

a problem instance infeasible. Both heuristic schedulers
and exact schedulers benefit from this. Heuristic schedul-
ers will find a solution more easily, while exact schedulers
will find a solution faster. For instance, a scheduler based
on integer programming will need fewer variables.

� The symmetry analysis is complementary to existing
constraint analysis techniques. It improves the search
space reduction by removing symmetric, that is, identical,
solutions. In contrast to the constraint analysis techniques,
this analysis reduces the solution space, but guarantees at
the same time that it does not make a problem instance
infeasible.

� For approaches that test the feasibility of a problem
instance or determine lower bounds for a schedule [2][10]
[14][15], the analysis provides improved accuracy. It will
be shown that the latency, throughput or resource
requirements do not change due to the analysis.

Within the field of high level synthesis, the utilization of
symmetry has received little attention. In practice, in many



cases the inner loops of DSP algorithms are still optimized
by hand. In [6], it is shown how knowledge of symmetry in
the datapath of a circuit can improve the efficiency of the
integrated scheduling, allocation and binding approach of
OSCAR. However, that work does not deal with symmetry
present in the data flow graph. Our notion of ‘symmetry’
should not be confused with the notion of ‘regularity’ as for
example used in [7]. Regularity refers to the repeated occur-
rence of patterns of operations, which is a more local proper-
ty than symmetry.

In Section 2, we will start with some basic definitions.
Section 3 discusses how symmetry can be modeled. The two
subsequent sections describe our methods for exploiting
symmetry. Section 6 gives empirical results and Section 7
concludes.

2. Definitions

An algorithm can be represented by a data flow graph
(DFG). A DFG is a directed acyclic graph (V, E), where V is
the set of operations, and E� V � V is the set of edges
representing the data dependencies between the operations.
Each operation has a certain type (e.g. addition or multi-
plication). The set of all operation types is denoted TO. The
function � : V � TO assigns to each operation its operation
type. The function � : TO � �

+ associates a positive delay
with each operation type.

A schedule � is a function of type V� � that assigns to
each operation a start time. A schedule is called feasible if it
does not violate the data dependencies, or any other
constraint imposed on the schedule. In this paper we only
formalize the data dependencies, because it is easy to see
that many other important properties of a schedule are pre-
served by the transformations we use, such as the latency,
the initiation interval, and the resource usage.

Definition 1
A schedule � : V � � meets the data dependencies iff for
all edges (u, v)� E:

�(v) � �(u)� �(�(u)) .

3. Modeling symmetry

In general, the concept of symmetry is strongly related to the
property of an object that it does not change under a certain
transformation. The kind of transformation that is relevant
for capturing symmetry in a DFG is a relabeling of the op-
erations such that the operation types and the data dependen-
cies are preserved. Such a transformation is called an
automorphism [11].

Definition 2
An automorphism is a bijective function � : V � V such
that for all u, v� V:
� �(v) � �(�(v)) ,
� (u, v)� E � (�(u),�(v)) � E .

To illustrate this definition, a simple example is shown in
Figure 2. The symmetry that is clearly present in the shown
DFG is captured by the automorphism � that exchanges v2

and v3, and also v4 and v5.

v1

v2 v3

v4 v5

v6

�(v1) � v1

�(v6) � v6

�(v5) � v4

�(v4) � v5

�(v3) � v2

�(v2) � v3

�

� �

� �

�

Figure 2. An example of an automorphism

We call two operations u, v� V symmetric if there ex-
ists an automorphism that maps u to v. The existence of an
automorphism indicates the presence of symmetry. In fact,
an automorphism can be used to transform a feasible sched-
ule into another feasible schedule, as is shown in the follow-
ing theorem and illustrated in Figure 3. This important result
forms the basis for the technique presented in Section 4.

Theorem 1
Given a feasible schedule � and an automorphism �. The
schedule �� defined by:

��(v) � �(�(v))
is also a feasible schedule.

The proof is given in Appendix A.

�
�(v)v

v1

v2

v3

v4

v5

v6

0
2
1
3
4
5

��(v)v

v1

v2

v3

v4

v5

v6

0
1
2
4
3
5

Figure 3. Schedule transformation for Figure 2

A basic step in the methods described in the following
two sections is the determination of an automorphism. The
problem of deciding whether an automorphism exists for a
DFG (and determining one if it exists) is closely related to
the graph isomorphism problem for directed acyclic graphs.
In general this is a difficult problem. For our method we use
a well-known technique to iteratively partition the set of
operations into equivalence classes such that operations that
are not in the same equivalence class cannot be symmetric .
This technique is e.g. also used for netlist comparison [3]. In
our experience this technique is very efficient in practice for
DFGs. Globally, it works as follows. First all operations are
partitioned based on some local properties, such as the op-
eration type and the number of predecessors and successors.
Then this partition is iteratively refined by considering the
neighborhood of the operations. Two operations only re-
main in the same class of the partition if the distribution of
their direct predecessors over the equivalence classes is
identical, and similarly for the direct successors. If this re-



sults in a partition in which each class contains at most two
operations, an automorphism has been found. Otherwise,
several possibilities have to be evaluated, resulting in a
branch-and-bound approach in which the refinement pro-
cess is also continued. A more detailed description of this
technique is beyond the scope of the paper.

4. Breaking symmetry

In the previous section, it was shown how an automorphism
can be used to transform a schedule while preserving feasi-
bility (and also all properties involving latency, initiation
interval, and resource usage). We will now explain how this
transformation can be used to impose extra constraints on
the DFG without excluding all feasible schedules. These
constraints take the form of sequence edges between opera-
tions [8]. A sequence edge from an operation u to an opera-
tion v with integer weight w expresses the constraint that
operation u should start at least w cycles before operation v.
This means that any feasible schedule � has to satisfy:

�(v) � �(u)� w.
The techniques proposed in this paper break the symmetry in
a DFG by introducing sequence edges with weight zero
between symmetric operations. Note that this still allows
symmetric operations to be executed simultaneously, if suf-
ficient resources are available. The extra constraints can
significantly enhance the accuracy of existing constraint
analysis techniques, as will be shown in Section 6.

Given an operation v and a set of automorphisms A =
{�1, . . . ,�n} that map v to another operation, i.e., for each
�i � A, �i(v) � v. With abuse of notation, we denote the
set of operations to which v is mapped by A(v), i.e.,
A(v) � {�i(v) | � i � A}. The following DFG transforma-
tion describes the introduction of sequence edges to break
the symmetry.

Feasibility preserving transformation 1
Given an operation v, for each operation u� A(v), a
sequence edge is introduced from u to v with weight zero.

For the DFG of Figure 2, we have four different possibilities
to add a sequence edge. We can either introduce a sequence
edge from v2 to v3, or from v4 to v5, or from v3 to v2, or from
v5 to v4. The following theorem proves that Transformation
1 indeed preserves feasibility. It shows that if there exists a
feasible schedule for the original DFG, then there also exists
a feasible schedule that satisfies the additional sequence
edges.

Theorem 2
If there exists a feasible schedule �, then there also exists a
feasible schedule �� with the property that v is executed not
later than any operation in the set A(v), i.e., for all
u � A(v):

��(v) � ��(u) .

The proof is given in Appendix A.

We propose a method that applies Transformation 1 to all
operations in a DFG. For each operation v, we try to deter-
mine a set of symmetric operations by determining a set of
automorphisms. To guarantee that only consistent choices
are made when Transformation 1 is applied more than once,
we use the following technique. Once we have introduced
sequence edges for some operation v and continue with
another operation, we only allow automorphisms that map v
to v. For the example of Figure 2, this means e.g. that if first
v2 is considered, that, based on the automorphism shown in
this figure, a sequence edge is introduced from v2 to v3. If
subsequently operation v4 is considered, then this auto-
morphism is not used again, because it does not leave opera-
tion v2 fixed. The resulting algorithm is shown in Figure 4.

void breakSymmetry (U � V)
{

/* U is the set of operations that have not yet been
analyzed; initially U equals V. */

if  (U � �)
return ;

choose an operation v � U

forall  u � U\{ v}
if  (an automorphism � exists such that  �(v) � u and

 for all w � V\U : �(w) � w)
add a sequence edge from v to u with weight zero;

breakSymmetry(U\{ v} );
}

Figure 4. Algorithm for breaking symmetry

5. Scheduling isomorphic sub-graphs

In many practical algorithms that exhibit symmetry, the
symmetry is of a simple kind that can be characterized as
follows: The automorphism identifies two non-overlapping
isomorphic sub-graphs. The DFG in Figure 2 is an example
of this, where the operations in the two sub-graphs are
{v 2, v4} and {v3, v5}. For this type of symmetry we have an
additional method, which handles the entire sub-graphs
instead of individual operations. Therefore it can introduce
more sequence edges than the method described in the pre-
vious section. E.g. for the example of Figure 2, it introduces
a sequence edge from v2 to v3 as well as from v4 to v5 (the
method of the previous section will introduce only one of
these sequence edges). The method is based on the observa-
tion that when two isomorphic sub-graphs have to be sched-
uled, it is possible to order the execution of all their
operations, such that each operation of one of the sub-graphs
is executed not later than the corresponding operation in the
other sub-graph. Before we explain this in more detail, we
first give the conditions an automorphism has to satisfy for
this method.



Definition 3
Given an automorphism � : V � V. Let Vfix  denote the set
of operations that are mapped to themselves, i.e., Vfix �

{ u � V | �(u) � u} . The automorphism � is said to induce
isomorphic sub-graphs if all operations not in Vfix  can be
partitioned into two sub-sets V1 and V2 that satisfy the
following two rules:
� for each operation v� Vfix, the operations v and �(v) are

not in the same sub-set;
� for each edge (u, v)� E with u, v� Vfix , the operations

u and v are in the same sub-set.

For a given automorphism �, it can be determined in a single
traversal of the DFG whether it induces isomorphic sub-
graphs and what the sets V1 and V2 are (by repeatedly as-
signing an arbitrary operation outside Vfix  to V1 and
propagating this assignment using the two rules given in
Definition 3). Note that Definition 3 is completely symmet-
ric in the sets V1 and V2: the decision which set is which
determines how the symmetry is broken.

Based on the sets V1 and V2, the following DFG trans-
formation is defined.

Feasibility preserving transformation 2
For each operation v� V1, a sequence edge with weight
zero is introduced from v to �(v).

The following theorem proves that the above transformation
indeed preserves feasibility. It shows that if there exists a
feasible schedule for the original DFG, then there also exists
a feasible schedule that satisfies the extra sequence edges
introduced by Transformation 2.

Theorem 3
Given an automorphism � : V � V that induces two
isomorphic sub-graphs with the sets of operations V1 and
V2. If a schedule � : V � � is feasible, then so is the
schedule �	 : V � � defined by:

�	(v) ��



�

�(�(v))

�(�(v))

�(v)

  if v � V1 � �(v) � �(�(v))

  if v � V2 � �(v) � �(�(v))
  otherwise

 .

The proof is given in Appendix A. The construction of �	 for
the example of Figure 2 is shown in Figure 5.

�(v)v

v1

v2

v3

v4

v5

v6

0
2
1
3
4
5

�	(v)v

v1

v2

v3

v4

v5

v6

0
1
2
3
4
5

Figure 5. Schedule �	 for the example of Figure 2

Using a similar approach as presented in the previous
section, Transformation 2 is applied as follows. For each
operation v in the DFG, we try to extract automorphisms

that map v to other operations. For each automorphism that
satisfies Definition 3, Transformation 2 is applied. To guar-
antee that no inconsistent choices are made when applying
the transformation multiple times, the sub-graphs of each
transformation are stored; a new sub-graph is excluded if it
has an overlap with an existing sub-graph without complete-
ly containing it. The resulting algorithm is similar to the
algorithm shown in Figure 4, except that the condition in the
if–statement also reflects the requirements stated in Defini-
tion 3, and that if this condition holds, for each operation
v1 � V1, a sequence edge is added to �(v1).

6. Experimental results

We have implemented the methods proposed in this paper in
the high level synthesis system FACTS under development at
the Eindhoven University of Technology. In this section we
report on the experiments we have performed with algo-
rithms incorporating various degrees of symmetry. All ex-
periments are run on a HP9000/879 workstation with a 180
Mhz PA-8000 processor.

The first experiment illustrates how the detection of sym-
metry can improve the accuracy of existing constraint analy-
sis techniques. In particular, we consider the operation
execution interval (OEI) analysis of [12][14]. The example
DFG is shown in Figure 6a. Both the methods described in
this paper have the same effect for this example, namely the
creation of a sequence edge from v1 to v2, and also one from
v5 to v6. To visualize the impact of these sequence edges, we
focus on the execution interval of each operation. Figure 6b
shows the intervals that are determined when our symmetry
analysis is not used. The grey and diagonally striped regions
together depict the ASAP-ALAP interval, and the grey re-
gion represents the execution interval after the OEI analysis.

ÍÍÍÍÍÍ
ÍÍÍ

ÍÍÍ
ÍÍÍ

v1 v2

v3

v4

v5 v6

v7

v8

5 cycles, 
1 adder, 
1 multiplier, 
all delays are 1

v1

v2

v3

v4

v5

v6

v7

v8

0 1 2 3 4
clock cycles

op
er

at
io

ns

ÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍ
ÍÍÍ
ÍÍÍÍÍÍ
ÍÍÍ ÍÍÍÍÍÍ

ÍÍÍ

ÍÍÍ
ÍÍÍ

v1

v2

v3

v4

v5

v6

v7

v8

0 1 2 3 4
clock cycles

op
er

at
io

ns

ÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍ
ÍÍÍ
ÍÍÍÍÍÍ
ÍÍÍ

(a)

(b) (c)

�

�

� �

� �

�

�

Figure 6. An example: (a) the data flow graph, (b) the
results of constraint analysis, and (c) the results of
symmetry detection and constraint analysis



Figure 6c shows the results of this same analysis after the
introduction of the sequence edges. Note that as a result, the
execution interval of operation v3, which is not symmetric
with any other operation, is reduced as well.

In the second experiment, we evaluate the proposed
methods for utilizing symmetry on the well-known fast dis-
crete cosine transform (FDCT) benchmark. For this exam-
ple, the method for breaking symmetry as described in
Section 4 is able to introduce 10 sequence edges, whereas
the method for scheduling isomorphic sub-graphs creates 26
sequence edges.

The results are listed in Table 1 for various instances of
FDCT, each with a latency constraint denoted by the number
in the name of the instance, and a certain set of execution
units (the exact numbers can be found in [13][14]). The
postfix ‘nf’ denotes the instances where the combination of
the latency constraint and the set of execution units results in
infeasibility. The table shows the average freedom of the
operations, which equals the average length of the execution
interval minus one (as defined in [14]). The columns list the
average freedom as determined by respectively ASAP-
ALAP analysis, OEI analysis, and the method for schedul-
ing isomorphic sub-graphs followed by OEI analysis. The
last column shows the average improvement of the OEI
analysis that results from the symmetry detection algorithm.
In all instances except ’FDCT 9’, the detection of symmetry
results in a more accurate determination of the average free-
dom. For ‘FDCT 9nf’, the detection of symmetry allows the
OEI analysis to determine that this instance is infeasible.
The run-time for each instance (including all analyses) is
less than 0.2 (s).

Table 1. Constraint analysis results for FDCT

average freedom of operations
instance ASAP-

ALAP
OEI
anal.

symm. +
OEI an.

improv.

FDCT 8 1.43 0.57 0.43 25%

FDCT 9nf 2.43 1.57 infeas. 100%

FDCT 9 2.43 1.76 1.76 0%

FDCT 10nf 3.43 2.90 2.59 11%

FDCT 10 3.43 3.23 2.76 15%

FDCT 11 4.43 2.81 1.50 47%

FDCT 13 6.43 6.14 5.64 8%

FDCT 14 7.43 6.67 5.64 15%

FDCT 18 11.43 9.52 8.62 9%

FDCT 26 19.43 17.00 15.33 10%

FDCT 34 27.43 23.00 17.90 22%

Figure 7 shows a part of the FDCT example where iso-
morphic sub-graphs are found. It is interesting to observe
that our method is capable of detecting isomorphic sub-
graphs within isomorphic sub-graphs.

Figure 7. Some of the isomorphic sub-graphs found in
FDCT (when +’s and –’s have the same operation type)

wr

� �

� �

�

wr

� �

�

wr

� �

� �

�

wr

� �

�

For the FDCT example, the method of Section 5 is always
more effective than the method of Section 4, with average
improvements of respectively 24% and 17% over the OEI
analysis without symmetry detection. The average improve-
ment of OEI analysis and the method of Section 5 over
ASAP-ALAP analysis is 39%, which is very high consider-
ing the fact that in all feasible examples, the actual average
freedom is larger than zero.

In the third experiment, we consider the loop bodies from
an industrial example that combines a FFT with differential
modulation [4]. We also consider the inverse discrete cosine
transform with 11 multiplications from [5]. For each
example, we determine two numbers: the first one is the
average freedom of the operations. The second one is the
depth of the searchtree of a branch & bound scheduler [13]
[14] at the place where it finds a feasible schedule. The lower
this number, the easier it is to find a schedule. The results are
shown in Table 2. The first two columns list the name of the
example and then the number of operations, the latency and
the initiation interval. Then the average freedom and the
depth of the searchtree are given without and with the use of
the method from Section 5.

Table 2. Results for industrial examples

example #ops/lat/II
no symm. det. symm. det.

example #ops/lat/II
avg. depth avg. depth

loop 1 15/6/2 1.00 5 0.60 4

loop 2 12/6/2 0.75 4 0.25 2

loop 3 30/12/4 6.27 28 1.97 17

loop 4 43/14/5 4.60 34 3.21 23

loop 5 43/14/5 4.60 30 2.14 16

loef11 40/14/11 6.35 44 6.04 31

The results clearly show that this method improves the
accuracy of the scheduler significantly. The impact of the
method can also be clearly observed by considering
examples where the combination of the time and resource
constraints together cause infeasibility. Table 3 shows the
run-time needed by a branch & bound scheduler to



determine infeasibility. The column ’b&b’ shows whether
the scheduler is invoked to prove infeasibility.

Table 3. Results for infeasible examples

example ops/lat/II
no symm. det. symm. det.

example ops/lat/II
b&b time b&b time

FDCT 9nf 42/9/9 yes 0.1 (s) no 0.1 (s)

FDCT 10nf 42/10/10 yes >2hrs yes 369 (s)

loop 4 43/14/4 yes 6.6 (s) yes 0.4 (s)

loop 5 43/14/4 yes 5.0 (s) no 0.6 (s)

To evaluate the run-time performance of symmetry
detection on larger DFGs, we have applied it to scalable data
flow graphs that exhibit a lot of symmetry. Our experiments
confirm the efficiency of the approach. For example, a DFG
with about 750 operations is analyzed in 12 (s).

7. Conclusions

In this paper, we presented a theoretical framework for iden-
tifying symmetries in DSP algorithms. We showed that
these symmetries can be exploited by introducing extra se-
quence edges in the DFG while preserving the feasibility of
the scheduling problem. These sequence edges effectively
reduce the number of schedules that are equivalent modulo
symmetry. The presented theory is proved in a general set-
ting, so that the work is applicable in the context of hardware
compilation as well as code generation.

We proposed two methods for utilizing symmetry. The
first one is based on the idea of detecting symmetries for the
individual operations, while the second one considers iso-
morphic sub-graphs, typically resulting in more sequence
edges. However, the first method has the advantage that it
can handle a wider range of symmetries because it imposes
weaker conditions on the automorphism capturing the sym-
metry. Both methods are complementary to existing
constraint analysis techniques, because unlike these tech-
niques, they focus on preserving the feasibility of the sched-
uling problem rather than preserving all feasible schedules.
The experimental results show that the identification of
symmetry can result in a more accurate determination of the
scheduling freedom.

Further research will focus on the integration of the two
methods proposed in this paper. Furthermore we want to
investigate how the presented methods can be applied dur-
ing scheduling. Once a certain operation is scheduled, the
symmetry analysis can essentially ignore it, possibly result-
ing in more symmetries for the operations that still have to
be scheduled. We expect that this will further improve the
applicability of our symmetry analysis.

Acknowledgements

The authors would like to thank Hans Cuypers and Bart
Theelen for some helpful discussions on symmetry and
computational group theory.

References

[1] S. Chaudhuri, R.A. Walker, and J.E. Mitchell, “Analyzing
and Exploiting the Structure of the Constraints in the ILP
Approach to the Scheduling Problem”, IEEE Trans. on VLSI
Systems 2(4), pp. 456–471, December 1994.

[2] S. Chaudhuri, S.A. Blythe, and R.A. Walker, “A Solution
Methodology for Exact Design Space Exploration in a Three
Dimensional Design Space”, IEEE Trans. on VLSI Systems
5(1), pp. 69–81, March 1997.

[3] C. Ebeling, and O. Zajicek, “Validating VLSI Circuit Layout
by Wirelist Comparison”, Int. Conf. on Computer-Aided
Design, pp. 172–173, 1983.

[4] J.A. Huisken, et al., ”A Power-Efficient Single-Chip OFDM
Demodulator and Channel Decoder for Multimedia Broad-
casting”, Proc. Solid-State Circuits Conference, pp. 40–41,
1998.

[5] C. Loeffler, A. Ligtenberg, and G.S. Moschytz, “Practical
Fast 1D-DCT Algorithms with 11 Multiplications”, Proc.
IEEE Int. Conf. on Acoustics, Speech and Signal Processing,
pp. 988–991, 1989.

[6] P. Marwedel, et al., “A Technique for Avoiding Isomorphic
Netlists in Architectural Synthesis”, Proc. European Design
& Test Conf., p. 600, 1996.

[7] R. Mehra, and J. Rabaey, “Exploiting Regularity for Low-
Power Design”, Proc. Int. Conf. on Computer-Aided Design,
pp. 166–172, 1996.

[8] B. Mesman, et al., “Constraint Analysis for Code Genera-
tion”, Proc. Int. Symp. on System Synthesis, 1997.

[9] B. Mesman, et al., “A Constraint Driven Approach to Loop
Pipeling and Register Binding”, Proc. Conf. on Design,
Automation and Test in Europe, 1998.

[10] A. Sharma, and R. Jain, “Estimating Architectural Resources
and Performance for High-Level Synthesis”, Proc. 30th
Design Automation Conference, pp. 355–360, 1993.

[11] C.C. Sims, “Computation with Finitely Presented Groups”,
Cambridge University Press, 1994.

[12] A.H. Timmer, and J.A.G. Jess, “Execution Interval Analysis
under Resource Constraints”, Proc. Int. Conf. on Computer-
Aided Design, 1993.

[13] A.H. Timmer, and J.A.G. Jess, “Exact Scheduling Strategies
based on Bipartite Graph Matching”, Proc. European Design
& Test Conf., pp. 42–47, 1995.

[14] A.H. Timmer, “From Design Space Exploration to Code
Generation”, Ph.D. thesis, Eindhoven University of Technol-
ogy, 1996.

[15] M. Xu, and F.J. Kurdahi, “Layout-Driven High Level
Synthesis for FPGA Based Architectures”, Proc. Conf. on
Design, Automation and Test in Europe, 1998.



Appendix A
Proof of Theorem 1
Consider a data dependency (u, v)� E. Because � is an
automorphism and (u, v)� E, also (�(u),�(v)) � E. Be-
cause � meets all data dependencies, we have:

�(�(v)) � �(�(u))� �(�(�(u))) . (1)
It follows from Definition 2 that �(�(u)) equals �(u), and
therefore Equation 1 can also be written as:

�(�(v)) � �(�(u))� �(�(u)) . (2)
Because ��(v) � �(�(v)), it follows that:

��(v) � ��(u)� �(�(u)) , (3)
which shows that also schedule �� satisfies the data
dependency (u,v). Because this reasoning holds for all the
data dependencies, it follows that �� meets all the data
dependencies. Furthermore, because we have only ex-
changed the start times of operations having the same
operation type, the schedule �� results in the same latency,
initiation interval, and resource usage as �. Therefore we
conclude that �� is a feasible schedule. �

Proof of Theorem 2
Assume that there is an operation u� A(v) such that
�(u) � �(v). Because u� A(v), there is an automorphism
�i � A that maps v to u. If we consider the schedule �i�

defined by:
� i�(v) � �(�i(v)) , (4)

then v is moved to an earlier time step. We can repeat such
transformations until the condition of the theorem holds,
because the number of possible start times is finite and after
each transformation, the start time of v is decreased.�

Proof of Theorem 3
Similar to the proof of Theorem 1, we first consider the data
dependencies. We will show that if � fulfils a data
dependency, then so does ��. Consider the data dependency
(u, v)� E. We do a case analysis on the membership of u
and v of the sets Vfix , V1 and V2, as shown in the following
diagram:     

Vfix

V2

V1

Vfix V2V1

u

v

(a)

(c)

(d)

(b) (b)

(b)

(b)

Note that two cases cannot appear because of the third rule in
Definition 3.
Case (a): u, v� Vfix . This case is straightforward, because
the start times of u and v are not changed.
Case (b): Assume that u� Vfix and v� V1. Because � is
an automorphism that satisfies Def. 3, we know that
(u,�(v)) � E and �(v) � V2. For schedule �, we have:

�(v) � �(u)� �(�(u)) ,

�(�(v)) � �(u)� �(�(u)) .
Therefore, these data dependencies cannot be violated by
exchanging the start times of v and �(v). The other three
sub-cases follow the same line of reasoning.
Case (c): Assume that u, v� V1. If �(u) � �(�(u)) and
�(v) � �(�(v)), the data dependency (u,v) is not violated
because the start times of u and v are not changed. If
�(u) � �(�(u)) and �(v) � �(�(v)), the data dependency
(u,v) is not violated because the start times of u and v with
schedule �� equal those of �(u) and �(v) with schedule �,
and schedule � satisfies the data dependency (�(u),�(v)). If
�(u) � �(�(u)) and �(v) � �(�(v)), then the start time of
u decreases while the start time of v remains unchanged.
This obviously cannot cause a violation of the data
dependency (u,v). This leaves the case that �(u) � �(�(u))
and �(v) � �(�(v)). We have to show that:

�(�(v) � �(u)� �(�(u))) .
This follows directly from the fact that:

�(�(v)) � �(�(u))� �(�(�(u))) ,

and �(�(u)) � �(�(�(u))) and �(u) � �(�(u)).
Case (d): The proof is analogous to the proof of case (c).

Because we only exchange the start times of symmetric
operations which have the same operation type, the schedule
�� results in the same latency, initiation interval, and
resource usage as �. Therefore we conclude that �� is a
feasible schedule. �


	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index


