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Abstract

As society has become more reliant on electronics, the

need for fault tolerant ICs has increased. This has resulted

in signi�cant research into both fault tolerant controller

design, and mechanisms for datapath fault tolerance in-

sertion. By treating these two issues separately, previous

work has failed to address compatibility issues, as well as

e�cient codesign methodologies. In this paper, we present

a uni�ed approach to detecting control and datapath faults

through the datapath, along with a method for fault iden-

ti�cation and recon�guration. By detecting control faults

in the datapath, we avoid the area and performance over-

head of detecting control faults through duplication or error

checking codes. The result is a complete design method-

ology for self recovering architectures capable of far more

e�cient solutions than previous approaches.

1 Introduction

The increasing need for fault tolerance has motivated
the development of a variety of fault tolerance tech-
niques. For datapath faults, techniques such as trip-
lication with voting [1], checkpointing with rollback
[2] [3], and concurrent error recovery [4] have all been
explored. Recovery from permanent faults has been
addressed through sparing [5], and graceful degrada-
tion [6]. For control faults, the literature concentrates
on detection through duplication or error codes, fol-
lowed by rollback and recovery [7] [8].

While the ideas presented regarding fault tolerant
datapath and controller design are useful, the disjoint
nature of this research limits the practicality of some
of the techniques due to compatibility issues. For ex-
ample, datapath rollback techniques potentially intro-
duce a signi�cant number of state transitions, which
can seriously impact the e�ectiveness of methodolo-
gies for control design that rely on sparse control 
ow
graphs.

Even more relevant is the e�ect that separate con-
troller and datapath design can have on overall design
e�ciency. By treating each separately, potential com-
binations of fault detection and identi�cation circuitry
are ignored.

Our approach addresses these issues by combining
the error detection and fault isolation requirements of
the controller and the datapath into a single system.
For datapath error detection, we rely on duplication
on disjoint hardware, followed by comparison, as in
traditional rollback schemes for transient errors. We
extend this as suggested in [9] by encoding error iden-
ti�cation properties during high-level synthesis capa-
ble of pinpointing datapath faults.

The real novelty in our system is that we are actu-
ally able to identify control faults in the datapath.
In a traditional controller, fault-secure fault detec-
tion through datapath duplication is not possible, let
alone fault identi�cation. This is because a single
control fault may lead to multiple erroneous signals
to the datapath. Thus, when the duplicated calcula-
tions are compared, their mutual corruption could be
masked. To avoid this, we introduce a partitioning
scheme which splits the controller into several sub-
machines. Duplicated calculations are then issued by
disjoint sub-machines, thereby ensuring fault-security
assuming a single fault.

By detecting faults through the datapath, we avoid
costly error detection hardware within the controller.
Not only does this avoid the signi�cant overhead of
controller duplication or error encoding hardware, it
also eliminates the necessity of checking circuitry in
the controller. As checking hardware usually con-
tributes heavily to the critical path of the controller,
and the controller critical path is often crucial in de-
signs with strict timing requirements, this is a signif-
icant bene�t.

An additional novelty is our proposed method of
post-identi�cation recon�guration. Our technique is



based on the observation that since every calculation
is duplicated on disjoint hardware, a single fault is ei-
ther in the duplicate or the original calculation, not
both. Thus, upon identi�cation of a fault, any cal-
culation including that fault can be disabled without
e�ecting performance. The circuitry required to sup-
port this methodology is minimal compared to spar-
ing, and avoids the performance loss of graceful degra-
dation. Instead, degradation is in terms of error-
detection capacity. Of course, sparing and graceful
degradation are fully compatible with our approach,
though their application to the controller is by no
means trivial.
The combined approach to fault detection, isola-

tion, and recon�guration, represents an extremely ef-
�cient solution to fault tolerant controller/datapath
codesign.

2 Overall Approach

The standard approach to fault isolation is to perform
each operation three times, compare these results, and
if one disagrees label the associated unit faulty [1].
While triplication is fault secure assuming at most
one fault, it entails massive area and power overhead
in addition to lengthening the critical path with voting
hardware.

Due to this expense, rollback approaches to recov-
ery from transient faults have forgone triplication in
favor of duplication [2] [3]. The reason permanent
faults were not addressed is that while duplication
comparison can detect faults within a single fault as-
sumption, it cannot determine which calculation con-
tains the faulty unit.

Our approach to fault isolation is based on the ob-
servation that while calculation duplication does not
immediately identify the fault, it does supply crucial
information: hardware issuing or used in a calcula-
tion/duplicate pair reporting an error is faulty.

Assuming a single fault, it is known the faulty hard-
ware is shared by all calculation/duplicate pairs re-
porting an error. To pinpoint the fault, we there-
fore intersect the hardware of all calculation/duplicate
pairs reporting an error. When the set of potentially
faulty hardware is reduced to a cardinality of one, the
fault has been identi�ed.

To prevent a single fault from corrupting both a
calculation and its duplicate, potentially masking the
fault, it is important that the calculation and its dupli-
cate utilize disjoint hardware. This is ensured in the
datapath through scheduling and binding restrictions.

Traditional controllers foil this scheme, however, as a
single fault in the controller could potentially e�ect
both a calculation and its duplicate. To avoid this
e�ect, we have devised a partitioning scheme which
splits the controller into distinct submachines. This
decomposition allows calculations and their duplicates
to be issued from disjoint submachines, thereby main-
taining fault security. Figure 1 shows the basic system
organization.
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Figure 1: System Overview.

To support this methodology, comparison opera-
tions that check for errors must be labeled with the
hardware set utilized by the calculations they are com-
paring. This is achieved through tag generation, done
by disjoint tagging units within the controller. Tags
containing the set of potentially faulty hardware are
sent to the fault identi�cation logic to be used for fault
isolation in the event of an error.

Following fault identi�cation, rollback restores a
safe state. Recon�guration is triggered using a sim-
ple, yet e�ective technique. As each calculation is per-
formed twice on disjoint hardware, calculations using
faulty hardware can be suspended without interfer-
ing with functionality. This is implemented by allow-
ing instructions to be issued from each sub-machine
only when the fault identi�cation unit indicates the
hardware utilized is fault free, as shown in �gure 2.
This technique avoids the performance loss of graceful
degradation without the substantial hardware cost of
sparing.

3 Terminology and Assumptions

Several de�nitions are given here to simplify future
references: a checkpoint is a set of timesteps during
which a calculation and its duplicate are performed
and compared. Operations contained by a calcula-
tion within a single checkpoint are referred to as a
string, while a string and its duplicate are referred to
as a track. The set of potentially faulty hardware, as
determined by the intersection of tracks reporting er-
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Figure 2: Controller Structure

rors, is the ambiguity set. A singleton ambiguity set
denotes the faulty unit.
In this paper, we also adopt the following assump-

tions:

1. During fault isolation, we assume at most one
discrete hardware segment is faulty.

2. We adopt a Byzantine fault model, wherein
faults are not assumed to produce consistently
erroneous behavior. A faulty segment producing
a correct value is a false negative.

4 A Small Example

The following example illustrates the fundamental
technique proposed. Table 1 shows a simple FSM
state transition graph. Each output bit corresponds
to the activation of one of three functional units in
the datapath, labeled A, B, and C. Table 2 shows the
accompanying datapath track information. Note that
the original string and duplicate string use disjoint
hardware. What remains to be done is partitioning
of the FSM issuing logic into sub-machines such that
each string is issued by disjoint logic.
Note that table 2 completely de�nes the datapath

fault identi�cation characteristics. For example, if
tracks 1, 2, 4, and 5 all report errors, the intersection
of the unit sets for these tracks identi�es the faulty
unit fA, Bg

T
fA, Cg

T
fA, Bg

T
fA, Cg = fAg.

Due to false negatives, however, a fault in A does not
always ensure that all tracks including A will report
faults. By building redundancy into the track set, we
can alleviate this threat. Thus, if A is faulty, and
tracks 1 and 5 exhibit false negatives, identi�cation is
still possible due to tracks 2 and 4 fA, Cg

T
fA, Bg

= fAg.

It is always possible that numerous false negatives
will prevent fault identi�cation. For example, if A is

input from to output bits

bits state state A B C

1 s0 s0 0 0 0

0 s0 s1 1 1 1

0 s1 s2 1 1 1

0 s2 s3 1 1 1

0 s3 s4 1 1 1

0 s4 s5 0 1 1

0 s5 s6 1 1 1

0 s6 s7 1 1 1

0 s7 s8 1 1 1

0 s8 s9 1 1 1

0 s9 s10 0 1 1

0 s10 s10 0 0 0

Table 1: State Transition Graph.

Track Original String Duplicate String

1 A(s0,s1) B(s3,s4)

2 A(s2,s3) C(s0,s1)

3 B(s0,s1,s2) C(s2,s3,s4)

4 A(s5,s6) B(s8,s9)

5 A(s7,s8) C(s5,s6)

6 B(s5,s6,s7) C(s7,s8,s9)

Table 2: String Binding and Active States.

faulty, and tracks 2 and 5 exhibit false negatives, a
fault in B cannot be ruled out fA, Bg

T
fA, Bg =

fA, Bg. Of course, assuming random input the prob-
ability of this approaches 0 as the number of tracks
processed approaches in�nity. To maximize resistance
to false negatives, we generate datapath tracks such
as those in table 2 using the di�erentiation heuristic
suggested in [9]. In essence, this technique maximizes
resistance to false negatives by maximizing the num-
ber of tracks that include a and exclude b, for any two
distinct hardware segments a and b.

The di�erentiation heuristic is also used for control
logic partitioning. By utilizing this heuristic instead
of using a constructive approach, we ensure compat-
ibility with advanced partitioning methodologies for
control logic synthesis [10] [11]. A central idea in these
works is to break the controller into smaller portions
before utilizing automated synthesis techniques. As
automated synthesis can �nd much more e�ective so-
lutions on smaller problems, the overall solution can
be dramatically improved. The partitioning method
chosen e�ects how evenly area and speed is distributed
between sub-machines, as well as the amount of opti-
mization possible. By using a hybrid heuristic weight-
ing area, speed, and di�erentiation, it is possible to
tailor controller partitioning to speci�c application re-
quirements.



Sub-Machine 1 Sub-Machine 2 Sub-Machine 3

string 1 string 1 dup

string 2 string 2 dup

string 3 string 3 dup

string 4 string 4 dup

string 5 string 5 dup

string 6 string 6 dup

Table 3: String Partitioning into Three Sub-Machines.

Table 3 shows sub-machine partitioning using the
di�erentiation heuristic. New state transition graphs
can now be generated for each sub-machine. Since
output signals are ORed lines from sub-machines (see
�gure 2) sub-machines not responsible for issuing a
string may encode the relevant output bits as don't

cares, resulting in substantial savings during logic syn-
thesis. Using this methodology, the state transitions
in table 4 can be generated. This description can be
fed into a standard synthesis tool to generate the �nal
control logic.

input from to M1 M2 M3

bits state state output output output

1 s0 s0 000 000 000

0 s0 s1 1-1 -1- |

0 s1 s2 1-1 -1- |

0 s2 s3 | 11- {1

0 s3 s4 | 1{ -11

0 s4 s5 0{ 0{ 011

0 s5 s6 -11 1{ |

0 s6 s7 -11 1{ |

0 s7 s8 -1- {1 1{

0 s8 s9 | {1 11-

0 s9 s10 0{ 0-1 01-

0 s10 s10 000 000 000

Table 4: Sub-Machine 1-3 State Transition Graphs.

5 Controller Faults

Figure 2 shows the target control structure. Control
logic is partitioned into several sub-machines, whose
output determines datapath activity. If a fault has
previously been identi�ed, that information is sup-
plied by the fault identi�cation unit, which prevents
strings utilizing the faulty hardware from being is-
sued.

The following criteria are required to ensure the
controller is fault secure:

1. A string and its duplicate are issued by disjoint
sets of sub-machines.

2. Decomposition forms at least three distinct sub-
machines.

3. Sub-machines do not communicate.

4. Input/Output lines do not have one-to-many re-
lationships with datapath components.

The �rst requirement prevents a single sub-machine
fault from corrupting a string and its duplicate. A
more subtle issue is that the controller must be par-
titioned into at least three sub-machines. Two is not
su�cient, because each track would be required to in-
clude both sub-machines to maintain disjointness be-
tween strings. Thus, regardless of which tracks report
errors, a fault in the �rst sub-machine is not distin-
guishable from a fault in the second.

It is also important to ensure sub-machines do not
communicate. If communication did occur, fault iso-
lation could not determine if a speci�c sub-machine
was faulty, or if the fault was in a sub-machine it re-
ceived data from. This can lead to replication of some
functionality that otherwise might have been shared.
For most applications, this replication has little e�ect
on area, as the simpli�cation of the synthesis prob-
lem more than compensates for this replication, since
smaller sub-machine de�nitions allow synthesis tools
to perform signi�cantly more optimization. This is
particularly true when the majority of the controller is
dedicated to operation issuing, as in data-dominated
applications.

An additional restriction is that a single control out-
put line must not lead to multiple datapath compo-
nents. The importance of this becomes clear when an-
alyzing the e�ect of interconnect faults. If an output
line is faulty, and controls multiple datapath compo-
nents, then that fault can propagate through multi-
ple resources potentially resulting in error masking.
If each output line controls at most one component,
however, a fault in an output line is equivalent to a
fault in the receiving component. Thus, fault security
and identi�cation capacity is maintained. Similarly,
faults in the AND gates shown in �gure 2, and other
propagation logic associated with output signals do
not jeopardize fault security. Since the logic associ-
ated with propagation of each output signal does not
interact with other output signals, a fault in this logic
can be considered equivalent to a fault in the output
line. Thus, the controller is fault secure.



6 Fault Identi�cation

The hardware associated with fault identi�cation con-
sists of a set of comparators, a set of 
ip-
ops to main-
tain the ambiguity set, and intersection logic for am-
biguity set reduction.
In previous literature, comparators, or voting units,

have often been assumed to be fault free. Our ap-
proach does not rely on fault free comparator units.
Comparators are included in tracks as any other unit
is, with the restriction that the comparator cannot be
a member of either string.

Theorem 1 Let c be a comparator which checks a

track t utilizing a disjoint set of hardware from t. c

reports an error if and only if faulty behavior exists.

Proof: Since track t and comparator c utilize
disjoint hardware, by the single fault assumption a
fault cannot exist in both the hardware utilized by t

and c. Thus, there are three possible conditions:

1. t displays faulty behavior, c does not.

2. c displays faulty behavior, t does not.

3. t and c display correct behavior.

Under condition 1, an error is reported, since c cor-
rectly detects the faulty behavior of track t. Under
condition 2, an error is reported, since c can only dis-
play faulty behavior when a track is correct by re-
porting it is incorrect. Under condition 3, no error
is reported, since c will correctly report that t is cor-
rect. Therefore, under all possible conditions, if a
track or comparator displays faulty behavior, a fault
is reported.
Faults associated with tag generation or ambigu-

ity set storage are also safe under the single fault as-
sumption. If this information is incorrectly generated
or stored due to a fault, then the datapath and con-
troller components responsible for string calculation
are fault free, and the fault is never triggered.

7 Recovery Mechanism Faults

Faults in the recovery mechanism are di�erent from
faults in identi�cation hardware, as there is the po-
tential to rearrange multiple calculations. The recov-
ery mechanism we propose, however, does not rebind
or reschedule operations as in many purely datapath
solutions. Our technique simply disables strings and
comparisons which utilize faulty hardware. Therefore,
in order to maintain functionality despite a fault in the

recovery mechanism, we simply need to ensure that if
a string is disabled, its duplicate is not.
The ambiguity set is stored using a 
ip-
op for each

hardware segment. The disable line is on for segment
a if segment a's 
ip-
op is on, and no other 
ip-
op is
on. In this organization, a single fault can only turn
on the disable line of a single segment. Since strings
are disjoint, if a string is disabled, its duplicate is not.

8 Implementation and Results

We implemented scheduling and binding algorithms
for the datapath, maximizing di�erentiation through
a greedy algorithm. The algorithm acts to maintain
disjointness and maximize resistance to false negatives
for registers, functional units, and comparators. As
comparator scheduling implicitly creates tracks, track
information and its e�ect on di�erentiation was up-
dated following each comparison scheduled. If in-
creasing the number of comparators would decrease
the critical path, the number of comparators was iter-
ated, and comparator scheduling redone. This di�ers
from the technique speci�ed in [9], where the number
of tracks were minimized with the assumption that
this would minimize the number of comparators. As
comparators are explicitly included in our model, we
attempted full utilization of available comparators to
improve fault identi�cation.

The state transition graph generated is sent to our
partitioning algorithm, which partitioned tracks into
three sub-machines through greedy assignment, pri-
oritizing di�erentiation. Following partitioning, don't
cares were inserted according to the criteria outlined
in section 4.

As standard high-level synthesis benchmarks are
quite small, and devoid of interesting control char-
acteristics, we incorporated several benchmarks into
a single architecture. The resulting architecuter could
repeatedly iterate on a FIR(�nite-length impulse re-
sponse) �lter, an Elliptic �leter, a Discrete Cosine
Transformation, and an AR(autoregressive) �lter. It
could also loop through each in turn.

As expected, the datapath had signi�cant area sav-
ings over triplication (33%), comparable to results
from previous implementations utilizing this fault
identi�cation technique [4] [9]. We synthesized the
controller portion using both SIS and Synopsys. Fig-
ure 3 shows the result of compilation using our par-
titioning method with Synopsys, while �gure 4 shows
the result of triplication.
The area savings over triplication were 47% for both



Figure 3: Control Logic Synthesis Using Our Method-
ology.

Figure 4: Control Logic Synthesis Using Triple Mod-
ular Redundancy.

tools (3.034 mm
2 vs. 1.596 mm

2 in SIS), while the
speedup was 18% (24.68 ns for triplication vs. 20.27
ns for our method.)

It must be noted that since area was not a parti-
tioning criterion the area distributions between sub-
machines varied drastically, as can be seen in �gure
3. This resulted in uneven propagation delay through
the three sub-machines (20.27 ns, 18.71 ns, 8.81 ns.)
As the fastest machine must wait for the slowest ma-
chine, this uneven distribution results in a slower over-
all machine than a more even partitioning would have.
While outside the scope of this paper, it is important
to note that this e�ect can be avoided through parti-
tioning heuristics that prioritize area distribution and
timing constraints [10] [11]. As the controller often
contributes to the critical path, this adjustment can
have very bene�cial results.

9 Conclusion

We have presented the �rst approach to self-recovering
ASIC design to combine datapath and controller is-
sues into a single coherent synthesis system. We do
so by identifying both datapath and control faults
in the datapath, thereby eliminating error checking
hardware from the controller. The result is an e�-

cient methodology which severely reduces controller
area requirements, while maintaining compatibility
with state of the art datapath and controller design
methodologies.
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