
Abstract

Different logic synthesis tasks have been formulated as in-
put encoding problems but restricted to use a minimum num-
ber of binary variables. This paper presents an original col-
umn based algorithm to solve this optimization problem. The
new algorithm targets economical implementation of face con-
straints unlike conventional algorithms which do not care
about infeasible ones. Experimental results that demonstrate
the superiority of the new method versus conventional tools
and a previous algorithm specifically developed for the mini-
mum length encoding problem are shown. An state assignment
tool which core is the new algorithm is evaluated by imple-
menting an standard benchmark of sequential circuits. It com-
pares very favorably to well known tools like NOVA.

1 Introduction

Frequently, when synthesizing logic integrated circuits,
there are symbolic variables in the specification of a design.
The binary encoding of such symbols should be chosen to op-
timize the final implementation. This task is known as the en-
coding problem. The difficulty of encoding problems resides
in the modeling of the subsequent optimization step. Many en-
coding methods are based in optimizing the symbolic repre-
sentation (using multivalued minimization techniques), to pro-
duce a set of constraints on the relationship between the binary
codes for different symbols so thatthe optimization at the
symbolic level will be preserved in the boolean domain [1],
[2], [3], [4], [5]. Different types of encoding constraints are
generated depending on whether symbols appears as input
or/and outputs in the symbolic representations to be opti-
mized as well as on the symbolic minimization algorithm
used.

The most widely used type are face constraints and so a
high number of algorithms which assign binary codes to a
set of symbols satisfying face constraints have been devel-
oped [6], [7], [8]. These face embedding algorithms have
been applied to many different synthesis tasks such as the
encoding of mnemonic input fields of the microcode, encoding
of symbolic inputs that appear in high level descriptions or the

state assignment of sequential circuits However, in some appli-
cations, satisfying the complete set of constraints involves such
an increase of the length of the codes that gains in terms of area
are not usually achieved. Thus, it is a current practice encoding
n symbols usinglog2n binary variables, the minimum num-
ber required to distinguish every symbol. In this paper we fo-
cus on this optimization problem called partial face-con-
strained encoding and consisting in maximizing a gain func-
tion of the face constraints using minimum code length. We
propose a new algorithm to solve this problem targeting a two-
level design style and show experimental results from an state
assignment tool developed on its basis.

The rest of the paper is organized as follows. Section 2 in-
troduces basic definitions and presents the rationale for the
work. Section 3 describes the new approach. In Section 4 re-
sults obtained for partial face constraint problems with differ-
ent algorithms including the new one are shown and compared.
Also, a tool for state assignment is described and evaluated.

2 Definitions and rationale

In this section, we review several definitions [1], [3], [9] to
give a mathematical formulation of the face constrained en-
coding problem and introduce some new ones to describe de-
veloped approach.

A cube (product term) inBnv of dimensionp (p-cube) is a
collection of any 2p points (minterms) that have exactlynv - p
bits all the same. It can be represented by a row vector withnv
elements belonging to {0, 1, -}. Asuper-cube of a set of cubes
is the smallest cube containing all the minterms contained in
the set of cubes. Given a set of symbolsS = {S1, S2, ...,Sn} and
an integerk, abinary encoding of S is a one to one mapping S
→ {0,1} k. We can think of the encoding as a code matrixC
where thei-th row represents the code assigned toSi, and thej-
th column represents bitj of the encoding. Agroup constraint
gc on a set of symbolic inputsS = {S1, S2, ...,Sn} is a subsetS’
of symbols fromS which must be assigned such that the mini-
mum boolean cube containing their codes does not intersect
the codes of the symbolic inputs absent fromS’. A (seed)di-
chotomyd is a disjoint two block partition, (B1:B2), associated
with a group constraintgc1, such that the blockB1 contains all
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input symbols that belongs togc1 andB2 contains exactly one
of the input symbols that does not belong togc1. A group con-
straint is satisfied if and only if the whole set of its associated
dichotomies is satisfied. Satisfaction of a dichotomyd requires
that subsetB1 be distinguished from subsetB2 of d by at least
one encoding bit.Ik, theintruder set of symbols in constraint
Lk, are the symbols pertaining tosuper1(Lk) not inLk. Notice
that a constraint is satisfied iff . Two constraints arenv-
compatible when it is possible to satisfy them simultaneously
in Bnv.

The following example summarizes the two step encoding
strategy described in the introduction and illustrates the identi-
ty of the partial problem.

Figure 1a shows a function with a symbolic input. The
minimized symbolic representation is shown in Figure 1b.
Clearly a boolean representation with the same number of
implicants than the symbolic can be obtained if each sym-
bolic implicant with more than one symbol is taken as a face
constraint during the encoding process and the complete set
is satisfied. If one or more constraints are not satisfied by
the encoding, then the boolean cover can have more impli-
cants or product terms. For example encodings depicted in
Figure 1c and 1dsatisfy face constraints corresponding to
rows 1, 2 and 3 and violate row number 4. Both encodings pro-
duce two level implementations with more than four product
terms which is the cardinality of the minimized symbolic rep-
resentation. However symbolic implicant corresponding to
row number 4 is implemented with four product terms when
encoding c is used and with only two when encoding d is used.

This example shows that two encoding which satisfy the
same subset of group constraints can result in boolean imple-
mentations with different cost. On the other hand when solving
the partial face-constrained encoding problem there is not
guarantee that the complete set of constraints can be satisfied.
This means that conventional approaches to solve this problem
which tries to maximize the number of satisfied face con-
straints, this is, the number of symbolic implicants which can
be implemented with a single product term could lead to sub-
optimal results [10]. Also it can be shown that trying to maxi-
mize the number of satisfied seed dichotomies which was
claimed to be a better approach to the partial problem does not
guarantee cost effective implementation of the complete set of
symbolic implicants.

We propose a new algorithm for the partial face constrained
encoding problem which aims at minimizing the number of
product terms in a sum of product representation of the encod-
ed constraints2. This objective has been identified as suitable
for this problem [10], [11], [12].

1 Smallest cube which contains the codes (0-cubes) of all the symbols
in Lk. This is super-cube of those 0-cubes.

2 A Boolean function is associated with each input constraint. Its on-set
contains the codes of the symbols in the constraint and its off-set con-
tains the codes of the symbols not in the constraint. The used codes are
in the dc-set.

I k ∅=

3 The new algorithm

The new algorithm follows a dichotomy satisfaction strate-
gy while trying to minimize the number of cubes in a SOP
form of the encoded constraints. The later is achieved by fol-
lowing main features:

1) the use of a novel constraint matrix notation let us handle
concepts, like cubes, cube dimension, etc..., still unused in di-
chotomy based procedures. This is the key to allow dynamic
detection, this is, concurrently with the encoding step, of infea-
sible constraint.

2) a detailed analysis of the implementation of infeasible
constraints has originated the concept of guide-constraint. Sat-
isfying the guide-constraint associated with an infeasible one
contributes to an economical implementation of the later.

Figure 2 shows the pseudo-C description of the proposed
algorithm. The core of the algorithm is the functionSolve()
which generates a column of the encoding matrix. Note that it
works with a different set of constraints, derived by function
Update_constraints, at each iteration. The update of constraint
is based in the identification of constraints which can not be
satisfied independently of the code column still not generated
(infeasible constraints). This task is accomplished by function
Classify(). A new constraint called guide-constraint is generat-
ed for each identified infeasible constraint and added to the set
of constraints handle by the encoding process.

0- s1 0
10 s1 0
11 s1 1
00 s2 1
01 s2 0
10 s2 0
11 s2 1
-- s3 0
-- s4 0
-- s5 0
00 s6 1
10 s6 1
-1 s6 0
10 s7 1
0- s7 0
11 s7 0
00 s8 1
10 s8 1
-1 s8 0
00 s9 0
11 s9 0
10 s9 1
01 s9 1
-- s10 0
-- s11 0
-- s12 0
-- s13 0
00 s14 1
01 s14 1
10 s14 1
11 s14 0
-- s15 0

       (a)

00 s2, s6, s8, s14 1   (L1)
11 s1, s2 1   (L2)
01 s9, s14 1   (L3)
10 s6, s7, s8, s9, s14 1   (L4)

00 --01 L1
11 000- L2
01 110- L3
10 0110
-0 1-01

L410 110-
-0 -101

00 01 10 11

00 s1 s5 s11 s9

01 s2 s6 s8 s14

10 s3 s7 s12 s15

11 s4 s10 s13

00 0-1- L1
11 00-0 L2
01 01-1 L3
-0 01-- L4
10 0--1

00 01 10 11

00 s1 s3 s11

01 s7 s9 s4 s12

10 s2 s8 s5 s13

11 s6 s14 s10 s15

(b)

(c)

(d)



Next we define the notation used in the algorithm. Then, we
introduce the concept of guide-constraint and the rationale for
using them during the encoding process. Finally, we explain
main functions of the algorithm.

3.1 New notation for constraint matrix

Usually, a set of face constraints onn symbols denoted
{S1, S2, ..., Sn} is represented by a constraint matrixLrxn
wherer equals the number of constraints andLij = 1 if the
symbolic inputSj belongs to thei-th constraint and 0 other-
wise. The new algorithm uses the constraint matrix to store
relevant information During the encoding process. After hav-
ing generated thei-th code-column, the zeros in the constraint
matrix corresponding to dichotomies which have been satis-
fied by this column are changed toi + 1. This is, in our proce-
dure the constraint matrix remembers which encoding column
satisfies each dichotomy. Let us callnv the number of encod-
ing variables. Through the new notation we have available up-
dated information aboutsuper(Lk), the supercube of a group
constraint:

dim[super(Lk)]= nv -

and the intruder set of a constraintLk
Ik= { / Lki = 0 }
Example2.- Following with example 1c, before third col-

umn of code generation, matrix Lrxn

At this stage, from third constraint data it can be concluded
that the maximum dimension ofsuper(L3), dim[super(L3)] =2
becausenv= 4 and 1a and 2a code columns are participating in
L3. It also informs thatsuper(L3) also contains s8. This is
I3={s8}.

PICOLA()
{
get_constraint_matrix();
for each column{
Update_constraints();
Solve(); }}

Update_constraints(){
infeasible_constraints =Classify();
Add_guide_constraints(infeasible constraints);
}

Figure 2. Pseudocode for the new algorithm.

si S∈

L4x15

0

1

3

0

1

1

3

0

2

2

2

2

2

2

2

2

2

2

2

2

1

0

3

1

0

0

3

1

1

3

0

1

0

3

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

0

1

1

2

2

2

2

=

3.2 Guide-constraints

Theorem I.- If the symbols in the intruder set,Ik, of a Lk,
forms a cube which does not intersect with any symbol inLk,
thenLk can be implemented with a number of cubes equal to
dim[super(Lk)] - dim[super(Ik)].

Proof: Constructive. A collection of cubes covering all min-
terms (codes) corresponding to the symbols inLk without in-
tersecting with the codes of the symbols inIk is built up. Let us
callM to the set of literals appearing insuper(Ik) and not in su-
per(Lk). For each literalmj in M a cube is formed by starting
with super(Ik), complementingmj and changing the remaining
literals inM to don´t cares. There arenv - dim[super(Lk)] liter-
als in super(Lk) andnv - dim[super(Ik)] literals in super(Ik).
Thus the cardinality ofM isnv - dim[super(Ik)] - nv + dim[su-
per(Lk)].

Example 3.- Going back to example 1, using the encoding
shown in Figure 1c,super(L4) = 0---. The intruders ares1 and
s2 andsuper(I4) = 00-0. Clearly we are in conditions to apply
the constructive procedure of Theorem. The collection of
cubes is {(01--), (0--1)} which actually implementsL4.

Definition.- A guide-constraintL’ , associated to a group
constraint,L, is the group constraint of the symbols in the in-
truder set ofL.

Satisfying guide-constraints can improve the implementa-
tion of infeasible constraints on the basis of previous theorem.

Example 4.- Following with example 1, we can think in en-
coding 1c as satisfying the guide constraint associated withL4,
namely L4’ :110000000000000 becauses1 has been given
0000 ands2 0010 and sosuper({s1,s2}) = 00-0 leading to an
implementation ofL4 with only two cubes as explained in ex-
ample 3. Such an implementation is optimum because asL4 is
infeasible inB4 it can not be implemented with a single cube.

Although a guide-constraint is not completely fulfilled, sat-
isfying a group of its associated dichotomies can contribute to
improve the implementation of the original constraint. This is
because of every group of such dichotomies marked in same
column constitutes a cube for a subgroup of symbols in the
original constraint.

3.3 FunctionClassify()

FunctionClassify() identifies infeasible constraints to be
substituted by their guide-constraints. Before generating the
next encoding column, information on the partial encoding al-
ready built is used in order to determine whether each face con-
straint can still be satisfied using minimum code length. The
efficient implementation of this task relies on the way informa-
tion is stored in constraint matrix and in a novel procedure to
determine thenv-compatibility of a pair of constraints. Clearly,
once a constraint is satisfied, those ones which are notnv-com-
patible to it are identified as infeasible

number of code columns
participating in Lk.



Checking a pair of constraints for nv-compatibility
Some of the following definitions and relations belong to

the background of face embedding theory [8].
Definition.- Theson constraint of LA and LB, LAB or Lson

contains the symbols both in LA and LB.
Definition.- The don´t care set of a constraint Lk are the un-

used codes in its cube implementation. We will refer to the
number of elements in this set asdc(Lk).

Checking fornv-compatibility is different depending on the
constraints involved:

a) If their son constraint is not null or void
First, basics conditions of Boolean algebra are checked:
Conditions I:
if
if

Conditions II:
Where the cubes satisfying the constraints have to adjust

their dimension according to this conditions.
Then, checking fornv-compatibility is done on the basis of

the following theorem.
Theorem.- IfLA andLB arenv-compatible then
i) , (super containing all the

symbols in LA and LB )
ii) the expression to calculate this dimension is

Proof: i) Is trivial because of we are encoding in Bnv. ii) is
derived from the definition

dim[super(LA, LB)]=nv-(colA+colB-colAB), wherecol indi-
cates columns participating of the different constraints, notice
that colA+colB-colAB are the number of code columns shared
by LA andLB. Adding (+nv-nv) to the last expression

dim[super(LA,LB)]=(nv-colA)+(nv-colB)-(nv-colAB)
and relation is directly demonstrated.
b) If their son constraint is null a sufficient condition to sat-

isfy is:

3.4 Function solve()

Suppose thej-th column of the encoding is to be generated.
Initially all its bits are assigned to 1. The algorithm assigns bits
to 0 until the resulting column together with thej-1 previously
built columns forms a valid partial encoding. This is, it is pos-
sible to distinguish every state with the columns still not gen-
erated. The key of the procedure is the selection of which bit
assign to 0 each time. A cost function is evaluated for each bit
(symbol) which can be fixed to 0 without avoiding the genera-
tion of a valid partial encoding. Then the bit which maximizes
this cost is selected and assigned to 0. Concerning the selection
of the cost function several comments are in order. We use as
cost function a weighted sum of the satisfied seed dichotomies.
The weight of each seed dichotomy is related to the size, type
(original or guide) of its face constraint and depend on the en-

Lson L father dim Lfather( ) dim Lson( )>⇒≠
Lson L father dim Lfather( ) dim Lson( )=⇒=

dc Lson( ) dc Lfather( )≤

dim super LA LB( , )[ ] nv≤

dim super LA LB,( )( ) dim LA( ) dim LB( ) dim LAB( )–+=

dc LA( ) dc LB( )+ dc S( )≤

coding column generated so far. This aim at favoring the satis-
faction of dichotomies leading to the fulfillment of face con-
straints as well as to the effective implementation of those that
are not going to be satisfied using Theorem I.

4 Experimental results

In this section we summarize the results obtained with PI-
COLA (Partial Input Column based Algorithm), a C imple-
mentation of the algorithm described in section 4, on a wide set
of standard input encoding problems (derived form IWLS’93
FSM benchmark [13] substituting next state field by an one-
hot code) 10]. Table I shows the number of group constraints
for each problem; and the number of cubes required to imple-
ment the constraints with the minimum length encodings ob-
tained with three different algorithm. The algorithms included
are NOVA [6], an conventional tool, ENC [10] and the new
one. PICOLA outperforms NOVA in 16 cases while NOVA
outperforms PICOLA in only 7 cases. In global, implementa-
tion of benchmark is 11% more expensive with an standard
tool like NOVA. Comparing ENC and PICOLA, both target-
ing the partial problem, the quality of the results is similar. We
could not carry out a comparison of times with ENC be-
cause data is not available in [10]. However,because of the
intensive use of logic minimization it involves, it can be con-
cluded that PICOLA is significantly faster than ENC. In
fact, ENC is not practical for medium and large examples.
Note that It is reported that it fails to solve problemscf. We
have included comparison with ENC because it has been suc-
cessfully applied to different synthesis tasks which are mod-
eled by the problem we are dealing with.

Finally, in order to show an application of the algorithm, we
have developed an state assignment tool on the basis of the pro-
posed algorithm. In [14] a column based state assignment algo-
rithm is presented that works with face constraints but takes ad-
vantage of the information on the code columns which have
been generated so far to overcome limitations of using only
face constraints for the state assignment problem. The new tool
approach the problem using this model. Table II compares the
results obtained with those from NOVAi_hybrid andNOVA
io_hybrid. The size of a two-level implementation of the com-
binational component of IWLS’93 FSMs,size, is shown in this
Table. Also, execution times, normalized to those of NOVA,
i_hybrid are given. New algorithm compares favorably to all
of them.

5 Conclusions

A new column-based algorithm for the partial face-con-
strained encoding problem has been presented. The concept of
guide constraint has been introduced and its usefulness in
achieving economical implementations of infeasible con-
straints has been demonstrated. An effective method to detect



infeasible constraints to be substituted by guide constraints has
been developed. It takes into account the code columns gener-
ated so far as well as the number of binary variables to be used
so that the detection is dynamically done during the encoding
process.This original concept is easily portable to any algo-
rithm attempting to solve the partial problem. We have
shown that the quality of the results obtained with a prelimi-
nary version of the new algorithm is comparable to existing ap-
proaches but time performance is superior. An state assign-
ment tool have been developed on its basis which clearly out-
performs well known standard tools.
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Table I.- Comparison between different approaches.

FSM const

NOVA ENC PICOLA

cubes cubes cubes

bbara 4 8 * 5
bbsse 5 12 8 8
cse 12 24 18 17
dk512 10 12 11 12
ex3 6 8 * 8
ex5 7 11 * 10
ex7 6 10 * 9
kirkman 25 58 58 57
lion9 10 10 * 10
mark1 4 6 * 5
opus 2 2 * 2
train11 11 13 * 12
s208 5 8 * 7
s420 5 8 * 7
dk16 34 43 48 55
donfile 24 48 39 43
ex1 11 19 19 19
ex2 8 10 * 12
keyb 33 41 * 41
s1 14 14 14 14
s1a 14 14 14 14
sand 7 8 8 8
tma 11 19 * 16
pma 18 30 * 30
styr 18 29 26 23
tbk 98 284 237 208
s820 15 17 * 17
s832 15 17 * 17
planet 12 12 12 13
s1494 29 81 * 66
s1488 29 70 * 63
scf 14 21 fails 21

Table II.- State Asignment results: size and time performance.

FSM

NOVA
-ih
size

time
ratio

NOVA
-ioh
size

time
ratio

NEW

size

time
ratio

s208 1375 1 1320 7.00 1265 0.36
s420 1375 1 1320 7.23 1265 0.47
dk16 1298 1 1364 5.56 1364 0.19
donfile 700 1 940 3.40 660 0.04
ex1 2496 1 2704 15.59 2392 0.98
ex2 609 1 924 56.92 609 3.15
keyb 1488 1 3162 10.38 1488 2.08
s1 2960 1 2775 103.91 2738 4.78
s1a 2812 1 2701 112.30 2738 1.73
sand 4646 1 4554 39.06 4094 10.03
tma 1155 1 1225 5.21 1190 1.20
pma 1755 1 1989 3.12 1833 0.54
styr 4042 1 4558 27.83 3913 1.39
tbk 4620 1 2820 8.83 1620 0.25
s820 5320 1 4620 54.45 4550 1.50
s832 5040 1 4480 63.61 4550 1.64
planet 4641 1 5049 75.66 4743 6.92
s1494 7367 1 6320 13.76 5141 0.46
s1488 7049 1 6307 12.81 4982 0.44
scf 19388 1 18733 56.41 18078 3.50
Total 1 0.97 0.86
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