
EXPRESSION: A Language for Architecture Exploration through
Compiler/Simulator Retargetability. �

Ashok Halambi Peter Grun Vijay Ganesh Asheesh Khare
ahalambi@ics.uci.edu pgrun@ics.uci.edu ganesh@ics.uci.edu akhare@ics.uci.edu

Nikil Dutt Alex Nicolau
dutt@ics.uci.edu nicolau@ics.uci.edu

Department of Information and Computer Science
University of California, Irvine, CA 92697-3425, USA

Abstract

We describeEXPRESSION, a language supporting archi-
tectural design space exploration for embedded Systems-on-
Chip (SOC) and automatic generation of a retargetable com-
piler/simulator toolkit. Key features of our language-driven de-
sign methodology include: a mixed behavioral/structural repre-
sentation supporting a natural specification of the architecture;
explicit specification of the memory subsystem allowing novel
memory organizations and hierarchies; clean syntax and ease
of modification supporting architectural exploration; a single
specification supporting consistency and completeness check-
ing of the architecture; and efficient specification of architec-
tural resource constraints allowing extraction of detailed reser-
vation tables for compiler scheduling. We illustrate key fea-
tures of EXPRESSION through simple examples and demon-
strate its efficacy in supporting exploration and automatic soft-
ware toolkit generation for an embedded SOC codesign flow.

1 Introduction

The advent of System-on-Chip (SOC) technology has re-
sulted in a paradigm shift for the design process of embed-
ded systems employing programmable processors with custom
hardware. Modern system-level design libraries frequently con-
sist of Intellectual Property (IP) blocks such as processor cores
that span a spectrum of architectural styles, ranging from tra-
ditional DSPs and superscalar RISC, to VLIWs and hybrid
ASIPs. Furthermore, SOC technologies permit the incorpora-
tion of novel on-chip memory organizations (including the use
of on-chip DRAM, frame buffers, streaming buffers, and parti-
tioned register files), allowing a wide range of memory organi-
zations and hierarchies to be explored and customized for the
specific embedded application.

The embedded SOC designer is thus faced with the dual
tasks of 1) rapidly exploring and evaluating different architec-
tural and memory configurations, and 2) using a cycle-accurate
simulator and retargetable optimizing compiler to adapt the ap-
plication and architecture with the goal of meeting system-level

�This work was partially supported by grants from NSF (MIP-9708067) and
ONR (N00014-93-1-1348).

performance, power and cost objectives. Furthermore, shrink-
ing time-to-market cycles create an urgent need to perform the
traditionally sequential tasks of hardware and software design
in parallel. An effective embedded SOC codesign flow must
therefore support automatic software toolkit generation, without
loss of optimizing efficiency. This has resulted in a paradigm
shift towards alanguage-based design methodologyfor em-
bedded SOC optimization and exploration. Consequently there
is tremendous interest in using Architectural Description Lan-
guages (ADLs) to drive design space exploration and automatic
compiler/simulator toolkit generation.

As with an HDL-based ASIC design flow, several benefits
accrue from a language-based design methodology for embed-
ded SOC exploration, including the ability to perform (formal)
verification and consistency checking, to modify easily the tar-
get architecture and memory organization for design space ex-
ploration, and to drive automatically the backend toolkit gen-
eration from a single specification. In this paper we describe
EXPRESSION, an ADL that effectively supports these dual
goals of SOC exploration, as well as automatic generation of
a high-quality software toolkit for embedded SOC. Section 2
describes our goals and approach. In Section 3, we describe re-
lated work on ADLs and compare them with EXPRESSION.
Sections 4 and 5 present a brief overview of EXPRESSION
using an example architecture. Section 6 describes EXPRES-
SION’s support for detailed scheduling and resource constraint
specification. Section 7 illustrates the ease of modification in
EXPRESSION to support design space exploration, while Sec-
tion 8 concludes this paper.

2 Goals and Approach

SOC designers spend a lot of time and effort exploring can-
didate processor architectures. The availability of a variety of
processor core IP libraries (including DSP, VLIW, SS/RISC and
ASIP) presents the system designer with a large exploration
space for the choice of a base processor architecture. Thus,
tool-kits which allow the designer to perform rapid exploration
of various processor alternatives are necessary. These tool-kits
must provide the designer with quantitative performance mea-
surements in order for him to perform intelligent tradeoffs. Fur-
thermore, the stringent performance, power, code density, and

cost constraints mandated by modern embedded systems neces-
sitate the development of a high-quality software tool-kit, in-
cluding, at a minimum, a cycle-accurate simulator, and an op-
timizing Instruction-Level Parallelism (ILP) compiler that can
exploit novel memory organizations.

Toolkit

Generator

Profiler

FeedbackVerification

Exploration Phase

Application

EXPRESSION

Toolkit

Generator

Profiler

Feedback

Processor
Libraries

DSP

VLIW

ASIP

DESCR.

Exploration
Simulator

Exploration
Compiler

Retargetable
Simulator

Retargetable
Compiler

Refinement Phase

Frame
Buffer

Cache

Prefetch
Buffer

SDRAM

RDRAM

EDO
On−Chip

Memory Libraries

SRAM

Figure 1. EXPRESSION Design Flow

The system designer also requires the ability to customize
the base processor by changing parameters of the processor
core (e.g. number of functional units, operation latencies). The
memory-intensive nature of many embedded applications (e.g.
multimedia and network) further exacerbates the traditionally
critical memory bottleneck. This requires the ability to explore
(and optimize for) novel on-chip and off-chip memory organi-
zations and hierarchies to improve memory bandwidth (exam-
ples include the use of on-chip DRAM, frame-buffers, queues,
novel cache hierarchies, etc.). An important aspect of such an
exploration (not taken into account by most other approaches)
is the ability to also customize the compiler concurrently with
the processor such that a “best-fit” is obtained.

Figure 1 shows our language-based design methodology us-
ing EXPRESSION. An EXPRESSION description of an em-
bedded SOC architecture can be used in two modes. In the
Exploration Phase, the system designer explores and evaluates
different base processor candidates (selected from the Proces-
sor Libraries), and different memory organizations and hierar-
chies (with components selected from the Memory Libraries).
In the exploration phase, the toolkit generator is used to produce
an Exploration Simulatorand aExploration Compiler. The
goal here is to support rapid Design Space Exploration (DSE)
with fast (possibly functional) simulation, and using the com-
piler in an estimation mode for comparative evaluation of candi-
date base processors and memory organizations. In theRefine-
ment Phase, the EXPRESSION description is used to generate
a cycle-accurate simulator and an optimizing ILP compiler that
allows the system designer to tune the base processor character-
istics, as well as to tune the memory subsystem hierarchy.

EXPRESSION was designed to provide a natural and easy-
to-specify mechanism for capturing the information needed to
support this ADL-based design space exploration and software
toolkit generation methodology. As shown in Figure 1, EX-
PRESSION facilitates the automatic generation of an optimiz-

ing compiler and simulator. The retargetable compiler exploits
the parallelism and pipelining available, while the simulator
provides accurate timing and utilization information. Further-
more, since the description of complex processors is cumber-
some and error-prone, EXPRESSION provides the ability to
perform consistency checking and verification of the input spec-
ification.

3 Related Work

Traditionally, ADLs have been classified into two categories
depending on whether they primarily capture the Instruction-Set
(IS) or the structure of the processor.

nML [8] and ISDL [2] are examples of IS ADLs. In nML,
the processor’s IS is described as an attributed grammar with
the derivations reflecting the set of legal instructions. nML
has been used by the retargetable code generation environment
CHESS [1] to describe DSP and ASIP processors. However,
nML does not directly support multi-cycle or multi-word in-
structions. ISDL also describes the processor in terms of its
IS, with the goal of deriving a code-generator ([12]), assembler
and simulator. In ISDL, constraints on parallelism are explic-
itly specified through illegal operation groupings. This could be
tedious for complex architectures like DSPs which permit op-
eration parallelism (e.g. Motorola 56K) and VLIW machines
with distributed register files (e.g. TI C6X). The retargetable
compiler system by Yasuura et al.[3] produces code for RISC
architectures starting from an instruction set processor descrip-
tion, and an application described inValen-C. Valen-C is a C
language extension supporting explicit and exact bit-width for
integer type declarations, targeting embedded software. The
processor description represents the instruction set, but does not
appear to capture resource conflicts, and timing information for
pipelining.

MIMOLA [13] is an example of an ADL which primarily
captures the structure of the processor wherein the net-list of the
target processor is described in a HDL like language. One ad-
vantage of this approach is that the same description is used for
both processor synthesis, and code generation. The target pro-
cessor has a micro-code architecture. The net-list description is
used to extract the instruction set [6], and produce the code gen-
erator. Extracting the instruction set from structure may be dif-
ficult for complicated instructions, and may lead to poor quality
code. MIMOLA descriptions are generally very low-level, and
laborious to write. It is not clear how they generate a cycle-
accurate simulator using the MIMOLA description.

More recently, languages which capture both the structure
and the behavior of the processor, as well as detailed pipeline
information (typically specified using Reservation Tables) have
been proposed.LISA [7] is one such ADL whose main charac-
teristic is the operation-level description of the pipeline. LISA
seems to have been designed primarily for retargeting simula-
tors. Also, it does not support specification of detailed con-
straint information needed for compiler instruction scheduling.
RADL [16] is an extension of the LISA approach that focuses
on explicit support of detailed pipeline behavior to enable gen-
eration of production quality cycle- and phase-accurate simu-
lators. FLEXWARE [5] and MDes [18] have a mixed-level

2

structural/behavioral representation. FLEXWARE contains the
CODESYN code-generator and the Insulin simulator for ASIPs.
The simulator uses a VHDL model of a generic parameterizable
machine. The application is translated from the user-defined tar-
get instruction set to the instruction set of this generic machine.
However, it is not clear how the resource conflicts between par-
allel/pipelined instructions, needed in scheduling, are captured.
Furthermore, explicit specification of the memory subsystem
does not appear to be possible.

The MDes [11] language used in the Trimaran [18] sys-
tem is closest in its goals to our approach. It is a mixed-level
ADL, intended for DSE. Information is broken down into sec-
tions (such as format, resource-usage, latency, operation, regis-
ter etc.), based on a high-level classification of the information
being represented. MDes has good constructs for preprocess-
ing which enable concise descriptions. However, MDes allows
only a restricted retargetablility of the simulator to the HPL-PD
processor family. MDes permits the description of the memory
system, but is limited to the traditional hierarchy (register files,
caches, etc.). In our approach we target more general memory
organizations and hierarchies, including on-chip DRAM, frame
buffers, partitioned memory address spaces, etc. MDes captures
constraints between operations with explicit Reservation Tables
[4], using a hierarchical description for compactness. Because
this hierarchical specification allows instruction set and struc-
ture information to be specified at any level of the hierarchy,
(e.g. usage, latency, operation), local changes to the architecture
(for exploration) could propagate through the hierarchy, and re-
quire global changes to the specification making it cumbersome
and error-prone.

In EXPRESSION we also follow a mixed-level approach
(behavioral and structural) to facilitate DSE. Furthermore, we
provide support for specification of novel memory subsystems.
We avoid explicit representation of the reservation tables by ex-
tracting them from the structural description (using the algo-
rithm outlined in Section 6) Our approach also eliminates re-
dundancy by using the same net-list information to drive both
the compiler and the simulator.

4 EXPRESSION Overview

EXPRESSION captures enough information to retarget a
cycle-accurate structural simulator and an optimizing ILP com-
piler. The system is described both in terms of its instruction-set
(Behavior Specification) and its structure as shown in Figure 2.
Section 5 illustrates these with the aid of an example.

Figure 2 shows the interaction between EXPRESSION spec-
ification and the retargetable compiler/simulator. The dark
shaded boxes represent generators that read in the appropriate
sections of the EXPRESSION specification and generate the
information required by the compiler/simulator components.
The structural simulator is retargeted by changing the datapath
netlist and the execution semantics of the architectural compo-
nents. The ILP compiler is retargeted by changing the machine
dependent parameters of Instruction Selection, Resource Allo-
cation, ILP Scheduling and Memory Optimization techniques.

A key feature required by an ADL supporting aggressive and
accurate compiler scheduling is the ability to capture detailed

resource constraint information, typically in the form of reser-
vation tables. Previous approaches (e.g. MDes) required the
user to specify reservation tables on a per-operation basis. This
makes specification of reservation tables cumbersome for ar-
chitectures containing a lot of instruction types (e.g. instruc-
tions with varied accessing modes). Furthermore, for VLIW
architectures with DSP-style features, the IS may not be well-
structured; thus one cannot use hierarchical composition rules
to simplify the specification of reservation tables. In EXPRES-
SION we solve this problem by permiting concise specifica-
tion of resource constraints at an abstract level, from which
detailed reservation tables can be automatically generated on
a per-operation basis.

Operations Specification

Instruction Description

Operation Mappings

Arch. Components Spec.

Behavior Specification

EXPRESSION

Pipeline & Data Transfer Paths

Reservation Table Gen.

Connectivity Information ExtractionComponent Information Extraction

Compiler
Instr. Set Information FU + RF binding Scheduling Information

Analysis and Optimization Library

Simulator

Connectivity InformationTarget Specific components

Simulator Engine Library Reusable components Library

Binding Info. ExtractionTree Pattern Generation

Structure Specification

Memory Subsystem

Figure 2. Interaction between EXPRESSION and the retar-
getable compiler/simulator toolkit.

EXPRESSION allows the user to specify the RT–level dat-
apath netlist1 (i.e. netlist without the control signals) of the
processor at an abstract level. First, each RT-level architectural
component is specified. Then, pipeline paths and all valid data-
transfer paths are specified. Using this information, both the
netlist for simulator and reservation tables for compiler are gen-
erated. Our resource constraint specification scheme not only
reduces the complexity of specification, but also allows for con-
sistency and completeness checking on the specification.

MAIN MEMORY

Unit 1 Unit 2 Unit 3

RF 1 Frame
Buffer

RF 2

DMA

sram1

L1_
cache

Figure 3. An example Memory Subsystem

Another key feature of EXPRESSION is the ability to spec-
ify novel memory subsystems. SOC technology permits cus-
tomization of processor cores with different memory architec-
tures and thus requires the exploration of novel memory orga-
nizations and hierarchies. Figure 3 shows an example mem-
ory system with the memory address space divided between a

1subsequently, netlist will refer to RT–level datapath netlist

3

SRAM and a main memory (DRAM). The main memory is ac-
cessed through the datacache and the frame buffer. EXPRES-
SION’s Storage Subsytem specification is used to retarget com-
piler optimizations that exploit memory organization.

5 EXPRESSION Organization

EXPRESSION employs a simple LISP-like syntax to ease
specification and enhance readability. A detailed description of
EXPRESSION can be found in[10]. We illustrate salient fea-
tures of EXPRESSION using the example in Figure 4.

5.1 Example Architecture

Cross
Box

RFA RFB RFY

ALU MULT

X_MEM Y_MEM

X_BUS

Y_BUS
C1 C2 C4

C6C5

RFX

C3

Figure 4. An example architecture

Figure 4 shows a simplified version of the Motorola DSP
56000 processor to which an additional multiplier unit has been
added. The DSP 56000 is a bus based architecture and can exe-
cute one ALU operation and upto two additional parallel moves
in one cycle. Two Address Generation Units AGU1 and AGU2
(not shown in the figure) generate the addresses required for the
parallel moves.2

5.2 Sections in EXPRESSION

As shown in Figure 2, an EXPRESSION description is com-
posed of two main sections: Behavior (or IS), and Structure,
which are further sub-divided into three subsections each: Op-
erations, Instruction, Operation mappings, and Components,
Pipeline/Data–transfer paths, Memory subsystem respectively.
Each subsection is illustrated with examples below. (refer Fig-
ure 4)

5.2.1 Operations Specification
This subsection describes the IS of the processor. Each oper-
ation of the processor is described in terms of its opcode and
operands. The types and possible destinations of each operand
are also specified.

// Specifying the parallel move operations
(OP GROUP pmove1ops
(OPCODE pmove1 (OPERANDS src1 dst1)))
// The var groups (src1, dst1) used above are defined here.
(VARGROUPS
(src1 (OR Xmem Ymem)) (dst1 (OR RFA RFB RFX RFY)))

5.2.2 Instruction Description
This subsection captures the parallelism available in the archi-
tecture. An Instruction is viewed as containing operations that
can be executed in parallel. Each Instruction contains a list of
slots (to be filled with operations), with each slot corresponding
to a Functional Unit.

2While the 56K does not contain explicit opcodes to model the parallel
moves, for purposes of illustration, we denote moves by opcodes ’pmove1’and
’pmove2’.

// The instr has 4 slots (alu, mult and 2 parallel moves)
(INSTR (SLOTS (UNIT ALU) (UNIT MULT)
(UNIT AGU1) (UNIT AGU2)))

5.2.3 Operation Mappings
In this subsection the user specifies information needed by In-
struction Selection and architecture-specific optimizations of
the compiler.

// mapping a compiler operation to a target specific op.
(OP MAPPING ((GENERIC (iadd src1 src2 dst))
(TARGET (add src1 src2 dst)))
// Multiply x by 2 can be replaced with ADD x x
((GENERIC (mult src1 #2 dst))(TARGET (add src1 src1 dst)))

5.2.4 Components Specification
This subsection describes each RT-level component in the ar-
chitecture. The components can be any of Pipeline units, Func-
tional units, Storage elements, Ports, Connections and Buses.
For multi-cyle or pipelined units, the timing behavior is also
specified.

(ExUnit ALU() (OPCODES aluops)) // Instantiate ALU.
// alu ops is defined in the Operations section.

5.2.5 Pipeline and Data-Transfer Paths Description
This subsection describes the netlist of the processor. The
pipeline descriptionprovides a mechanism to specify the units
which comprise the pipeline stages, while thedata-transfer
paths descriptionprovides a mechanism for specifying the valid
data-transfers. This information is used to both retarget the sim-
ulator, and to generate reservation tables needed by the sched-
uler, as shown in Section 6

(PIPELINE FETCH DECODE EX) // 3 stage pipeline
(EX (PARALLEL ALU Mult AGU1 AGU2)
// Describe datapath transfers. Type: uni/bi-directional.
// (Source, sink, components activated during transfer)
(DTPATHS (TYPE BI)
(RFA Xbus C1) (RFB Ybus C2) (RFX Xbus C3)
(RFY Ybus C4) (Xmem Xbus C5) (Ymem Ybus C6)
(X bus Ybus CrossBox))

5.2.6 Memory Subsystem
This subsection describes the types and attributes of various
storage components (like Register Files, SRAMs, DRAMs,
Caches etc). Note that the netlist also contains connectivity in-
formation for the memory subsystem.

(STORAGEPARAMETERS
(L1 cache (TYPE cache) (SIZE 1024) (LINE 32)
(ASSOCIATIVITY 2) (ADDRESSRANGE 0 511)
(ACCESSTIMES 1)))

6 Reservation Table Generation

As mentioned before, the compiler’s scheduler needs reser-
vation tables to test for resource conflicts between operations
whose execution cycles overlap. Rather than requiring the user
to laboriously specify the reservation tables on a per–operation
basis, we use the structural information in EXPRESSION to au-
tomatically generate them. The key idea behind the reservation
table generation approach in EXPRESSION is that every op-
eration proceeds through a pipeline path andaccesses storage
units through some data-transfer paths. In effect, it is possible
to trace the execution of the operation through the pipeline and
data-transfer segments and thus generate accurate reservation

4

tables. This frees the user from the burden of having to specify
reservation tables for each operation and additionally, makes it
possible to check for consistency and completeness in the spec-
ification.

In Figure 5 we outline the reservation table generation
scheme, given an operation and the structural description. We
also illustrate the generation of the reservation table for a par-
allel move operation (opcode ’pmove1’ and functional unit
’AGU1’).

Steps needed for Reservation Table Generation.

3. For

/* Output the completed reservation table */

 the data-transfer.

Find transfer segments which implement.

Determine the source and sink components.

Input: Operation (OP)

Output: Reservation Table (RT) for operation OP.

1. Find pipeline path which contains OP’s F.U.

2. Generate partial RT from the pipeline path.

each data-transfer initiated by OP

Add objects in the segment to RT.

Input: pmove1 (AGU1) X_mem[100] RFB

Output: /* Reservation Table for the operation */
 /* Cyc stands for Cycle */

 Pipeline path - Fetch; Decode; AGU1;

 Source: X_mem, Sink: RFB

Cyc3: AGU1;

Example to illustrate Reservation Table Generation.

 Partial RT - Cyc1: Fetch; Cyc2: Decode;

 (C5 X_bus) (Cross Box) (Y_bus C2)

RT - Cyc1 ... Cyc3: AGU1, X_mem, C5, X_bus,

 Cross Box, Y_bus C2 RFB

Figure 5. The steps in Reservation Table generation illus-
trated with an example (also refer Figure 4.)

As shown in Figure 1, EXPRESSION is designed to support
both rapid DSE (exploration phase requiring fast turnaround
time), as well as high-quality code generation with cycle-
accurate simulation (refinement phase). Thus, in different
phases of Figure 1’s design flow, the computation speed require-
ment shifts from total exploration time to compilation and simu-
lation time. To account for these conflicting goals, Reservation
Tables can either be generated on-the-fly during compilation,
or they can be generated beforehand and stored in a database.
During the exploration phase computing reservation tables on-
the-fly is beneficial. Once the architecture has been fixed, and
a quality tool-kit is needed, the reservation tables are computed
apriori to reduce compilation time.

7 Support for Design Space Exploration

DSE allows the system designer to perform tradeoffs be-
tween various competing goals like cost, performance and
power. The objective during DSE is to evaluate numerous pro-
cessor and memory configurations w.r.t. the targeted applica-
tions. Thus, an ADL for DSE should capture both structural
and behavioral aspects of the system. Hence, EXPRESSION
follows a mixed-level approach (to enable changes to structure
or IS or the memory subsystem). Furthermore, the ADL should
be able to easily reflect the changes made to the system. For
example, the designer may vary the processor parameters like
number of functional units, register files, buses etc. Another
example could be varying the IS by adding/deleting operations,
changing the operand types etc. Changes to the behavior are
fairly easy in EXPRESSION as well as in other ADLs that are
behavior-centric (e.g. ISDL) or which employ a mixed-level
approach (e.g. MDes). On the other hand, structural changes
in EXPRESSION are quite simple while structural changes in
other ADLs (e.g. ISDL, MDes) become complicated, and in

some cases (e.g. for novel memory organization and hierar-
chies) they are not feasible.

We evaluated EXPRESSION to see how easy it is to make
local changes to the architecture and to add/delete operations
and compared this with equivalent changes in MDes. We illus-
trate this on the example architecture shown in Figure 4. For
this example, the initial MDes specification required approxi-
mately 100 lines while EXPRESSION required approximately
75 lines.3

Although the MDes specification appears to be fairly con-
cise, this comes at a large cost: modifications to the architecture
in MDes may necessitate a change in many sections. This in-
creases the possibility of errors creeping into the specification.
In EXPRESSION, changes to the architecture usually involve
making changes only to certain sections. Furthermore, we can
automatically generate detailed reservation table information
from EXPRESSION’s structural description, whereas MDes re-
quires a per-operation change in the affected reservation tables.
Additionally, the consistency and completeness checking mech-
anism alerts the designer to errors (if any) in the EXPRESSION
specification.

We evaluate the effect of splitting the register file RFX in
Figure 4 into two register files RFX1 and RFX2. (This could be
useful, for instance, to reduce the cost since it is expensive to
build register files with many ports). The modified architecture
is shown in Figure 6.

Cross
Box

RFA RFB RFX1 RFX2 RFY

ALU MULT

X_MEM Y_MEM

X_BUS

Y_BUS
C1 C2 C7 C8 C4

C6C5

Figure 6. The modified example with RFX split into RFX1
& RFX2, connection C3 deleted, C7 & C8 added

This change in the architecture impacts the resource con-
straints specification of both MDes and EXPRESSION. Shown
below are the additions4 made to the specifications of both
MDes and EXPRESSION in order to incorporate the changes
to the example architecture (Figure 6).

7.1 Changes to MDes:

SECTION ResourcefRFX1(); RFX2(); C7(); C8();g
SECTION ResourceUsagef
$for (C7 C8 RFX1 RFX2)f
RU $fCASEg (use($fCASEg) time(0));gg
SECTION ResourceUnitsf
RFX1unit (use(RFX1 C7 Xbus));
RFX2unit (use(RFX2 C8 Xbus));g
SECTION TableOptionf
any X reg transfer (oneof(RFX1unit RFX2unit));g
SECTION ReservationTablef
RT PMOVE2X2 (use(RUAGU2 RFAunit RU RFX2));
RT PMOVE2X1 X2 (use(RUAGU2 RFX1unit RU RFX2));g
SECTION SchedulingAlternativef

3Due to space limitations, the complete specfi-
cations for MDes and EXPRESSION were omitted. These can be viewed at
http://www.ics.uci.edu/˜ahalambi/EXPRESS/ADL/main.html

4The deletions made to remove the original register file were slightly more
extensive in MDes than in EXPRESSION.

5

$for (CASE in PMOVE2X2 PMOVE2X1 X2)f
ALT $fCASEg (resv(RT$fCASEg));gg
SECTION Operationf
$for (CASE in PMOVE2X2 PMOVE2X1 X2)f
OP $fCASEg (alt(ALT $fCASEg));gg

7.2 Changes to EXPRESSION:

(RegFile RFX2()) (Connection C7() C8())
(DTPATHS (TYPE BI
(RFX1 Xbus C7) (RFX2 Xbus C8)))

For this local architectural change, MDes required modi-
fications across 7 sections in the hierarchy (18 lines added),
whereas in EXPRESSION the changes were more localized,
requiring modifications to 2 sections (3 lines added). More
complex changes to the architecture (such as adding buses, con-
nection, units and memories) would require drastic changes in
MDes, but would be rather simple in EXPRESSION. Thus, as
can be seen from the above example, EXPRESSION seems to
be better suited as a language for rapid DSE.

8 Summary

In this paper we present EXPRESSION, a new ADL used for
rapid DSE, and retargeting a high-quality compiler/simulator
toolkit. To support fast iteration through the design cycles of
complex Systems-on-Chip, fast retargeting of the compiler and
simulator is necessary. We use the EXPRESSION language to
retarget the optimizing compiler and cycle-accurate simulator,
through a set of toolkit generation algorithms. The compiler
exploits the parallelism/pipelining available in the architecture,
while the simulator provides accurate profiling feedback to the
designer, to allow good system-level trade-offs.

Attributes nML LISA ISDL MIMOLA MDes EXPRESSION
Compiler supp

p
-

p p p p

Cycle-acc sim -
p

? ? -
p

Pipeline supp ?
p

-
p p p

Mult-cyc supp -
p p p p p

Net-list info - - -
p p p

Instr-set info
p p p

-
p p

Reserv tables -
p

-
p p p

Memory hier - - - - ?
p

Table 1. Comparison between different ADLs

We also propose a new mechanism to concisely specify re-
source information required to generate reservation tables used
in scheduling parallel/pipeline/multi-cycle operations from a
structural description of the architecture. This eliminates re-
dundancy, reducing the amount of description needed from the
user, and makes the process less error-prone.

The memory-intensive nature of many multimedia appli-
cations requires exploration of different memory organiza-
tions in order to meet the cost/performance/power goals. EX-
PRESSION is able to capture these memory organizations for
memory-aware compiler optimizations.

Table 1 summarizes the comparison between EXPRESSION
and some other ADLs. The rows represent characteristics of
the ADLs. In many respects the MDes language is similar to
our approach. However, for cycle-accurate simulation, MDes
provides a limited retargeting for the HPL-PD processor fam-
ily, while we employ an approach similar to LISA, providing

more control over the modeled architecture. We differ from
LISA in the extensive support for optimizing compiler algo-
rithms. Unlike MDes, we extract reservation tables from the
netlist. Also, unlike other ADLs, EXPRESSION is able to cap-
ture novel memory subsystems. In EXPRESSION we employ a
mixed-level specification combining both behavioral and struc-
tural information to efficiently support DSE and retargetability
through automatic compiler/simulator toolkit generation.

EXPRESSION descriptions for a range of architectures in-
cluding VLIW (TI C6X [17]) and DSP (Motorola 56K [14])
have been implemented. EXPRESSION is currently used to
drive several projects at U.C. Irvine, including MEMOREX
(a memory estimation and exploration environment)[9],[15]
and EXPRESS (an optimizing, retargetable compiler and ex-
ploration environment for Embedded Systems-on-Chip). Our
on-going work targets strengthening the coupling between the
compiler and the architecture, by inserting more architecture–
dependent optimizations and providing an architecture based
self–adapting compiler flow.

References

[1] G. Goosens et al. CHESS: Retargetable code generation for embedded DSP proces-
sors. InCode Generation for Embedded Processors.Kluwer, 1997.

[2] G. Hadjiyiannis et al. ISDL: An instruction set description language for retargetabil-
ity. In Proc. DAC, 1997.

[3] H. Yasuura et al. A programming language for processor based embedded systems.
In Proc. APCHDL, 1998.

[4] J. Gyllenhaal et al. Optimization of machine descriptions for efficient use. InProc.
29th Annual International Symposium on Microarchitecture, 1996.

[5] P. Paulin et al. FlexWare: A flexible firmware development environment for embed-
ded systems. InProc. Dagstuhl Code Generation Workshop, 1994.

[6] R. Leupers et al. Retargetable generation of code selectors from HDL processor
models. InProc. EDTC, 1997.

[7] V. Zivojnovic et al. LISA - machine description language and generic machine model
for HW/SW co-design. InIEEE Workshop on VLSI Signal Processing, 1996.

[8] M. Freericks. The nML machine description formalism. Technical Report TR SM-
IMP/DIST/08, TU Berlin CS Dept., 1993.

[9] P. Grun, F. Balasa, and N. Dutt. Memory size estimation for multimedia applications.
In Proc. CODES/CACHE, 1998.

[10] P. Grun, A. Halambi, A. Khare, V. Ganesh, N. Dutt, and A. Nicolau. EXPRESSION:
An ADL for system level design exploration. Technical Report TR 98-29,University
Of California, Irvine, 1998.

[11] J. Gyllenhaal. A machine description language for compilation. Master’s thesis,
Dept. of EE, UIUC,IL., 1994.

[12] S. Hanono and S. Devadas. Instruction selection, resource allocation, and scheduling
in the AVIV retargetable code generator. InProc. DAC, 1998.

[13] R. Leupers and P. Marwedel. Retargetable code generation based on structural pro-
cessor descriptions.Design Automation for Embedded Systems, 3(1), 1998.

[14] MOTOROLA Inc.DSP56000 24-Bit Digital Signal Processor Family Manual, 1995.

[15] P. Panda, N. Dutt, and A. Nicolau. Architectural exploration and optimization of
local memory in embedded systems. InProc. ISSS, 1997.

[16] C. Siska. A processor description language supporting retargetable multi-pipeline
dsp program development tools. InProc. ISSS, December1998.

[17] TEXAS INSTRUMENTS. TMS320C62x/C67x CPU and Instruction Set Reference
Guide, 1998.

[18] Trimaran Release: http://www.trimaran.org.The MDES User Manual, 1998.

6

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

