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Abstract
This paper addresses the problem of efficient functional
simulation of synchronous digital systems. A technique
based on the use of Decision Diagrams (DD) for
representing the functions of a design at RT and
behavioural level is introduced. The DD evaluation
technique is combined with cycle based simulation
mechanism to achieve the significant speed up of the
simulation execution. Experimental results are provided
for demonstrating the efficiency gain of this method in
comparison to the event-driven simulation.

1. Introduction

Growing complexity of the nowadays designs fostered
by the progress in the technology requires analogous
increase in the design productivity. Several ways to
augment the productivity are explored in the research.
Among them, shift to the higher levels of automation
through the introduction of e.g. high level synthesis,
belongs to the most important ones.

Associated with each design action is the appropriate
verification step to be performed to ensure the proper
functionali ty of the final design. Here, two complementary
methods are developed: simulation and formal
verification. Former allows the observation of the
behaviour of the design under specific conditions and
input vectors while the latter permit to prove that the
specific properties of the design hold for all possible input
vectors and internal states (in the case of model checking).

In each of those verification approaches the complexity
of the verified design is a critical issue. Event driven
simulation requires to handle the signal drivers for all
signals and ports of the circuits and to update their values

during the simulation cycles. This mechanism allows for
detailed results of the behaviour of the circuit but is
computationally expensive what in consequence increase
the time of the simulation execution.

Several methods shortly discussed in the next section
have been proposed to overcome the problem posed by the
circuit complexity: e.g. abstraction mechanisms or the
application of BDDs or branching programs for fast
discrete function evaluation. However, none of these
methods has applied decision diagrams as a representation
of design functionali ty at the higher level of abstraction
(going up to the behavioural level).

This paper focuses on the application of decision
diagrams (DDs) also called alternative graphs to represent
the functionali ty of the synchronous system at the RT or
behavioural level and combine them with the cycle-based
simulation paradigm to improve the simulation speed. DDs
are built separately for data-path and control path of the
design. In the simulation step DDs are evaluated using the
input and previous state values in order to determine the
next state and output function of the design.

In our work we focus on hardware description
language based design. In particular our work is done with
the use of VHDL, however the methods are sufficiently
general to be applied to other languages (e.g. Verilog).

The improvement of the efficiency of simulation has
been addressed in two different ways: by application of
various abstraction mechanisms and by util isation of
binary decision diagrams.

Gruenbacher et. al. [1] proposes abstraction methods
for improving the simulation efficiency while raising the
level at which the design is represented. Cycle-based
simulation is treated as one of possible timing abstraction.
This work does not apply representation by decision



diagrams for efficient function evaluation. McGeer et al.
[2] applied MDD representation for bit vector discrete
function representation and evaluation for logic level
cycle-based simulation. Another approach based on BDD
and branching programs is presented P. Ashar and S.
Malik  [3] for efficient logic function evaluation. As the
previous approach it can be applied for the simulation at
the logic level. The paper [4] presents a cycle-based
simulation technique for synchronous circuits which
combines a BDD-based logic level cycle simulator with
fast hierarchical direct evaluation of high-level functional
units stored in a library. The mentioned approaches using
BDDs, focus uniquely on the logic level simulation and
are not addressing the higher level of abstraction.

The paper is organised as follows: section 3 presents
the related works in the domain of simulation performance
improvement. In the section 4 decision diagrams are
described. The following section presents the application
of decision diagrams to the representation of the sequential
circuits. The cycle based simulation mechanisms while
using DDs is described in the section 6. Some results from
practical experiments are presented in section 7 followed
by the conclusions and references.

2.  Decision Diagrams

Consider a component (subnetwork) f of a digital
sytem S as a function y=f(x) where y=(y1,…yn) and
x=(x1,…xm) are vector variables. The function f is defined
on X=X1×…×Xm  with values y ∈ Y = Y1×…×Yn, and both,
the domain X and the range Y are finite sets of values. xi, i
= 1,2,…m, are input or state variables of the component f,
whereas yj , j = 1,2,…n, are output or next state variables.
The values of variables may be Boolean, Boolean vectors,
integers. For representing functions y = f(x) the decision
diagrams are used [6, 7].

Definition 1. A DD is a directed acyclic graph
G=(M,Γ,x) where M is a set of nodes, Γ is a relation in M,
and Γ(m)⊂M denotes the set of successor nodes of m∈M.
The nodes m∈M are marked by labels x(m). The labels can
be: variables xi, algebraic expressions of xi, or constants.

For nonterminal nodes m, where Γ(m) ≠ ∅, an onto
function exists between the values of x(m) and the
successors me∈Γ(m) of m. By me we denote the successor
of m for the value x(m)=e. The edge (m, me) which
connects nodes m and me is called activated iff there exists
an assignment z(m)=e. Activated edges which connect mi

and mj make up an activated path l(mi,mj). An activated
path l(m0,mT) from the initial node m0 to a terminal node
mT is called full activated path.

Definition 2. Decision Diagram Gy=(M,Γ,x) represents
a function y = f(x) iff f or each value x, a full path in Gy to a
terminal node mT is activated, where x(mT) = y is valid.

As an example, a subnetwork of a digital system and its
DD are depicted in Figure 1. Here, R1 and  R2 are registers

(R2 is also output), M1, M2 and M3 are multiplexers, + and *
denote adder and multiplier, IN is input bus, y1, y2, y3 and
y4 serve as input control variables, and a,b,c,d,e denote
internal buses. In the DD, the control variables y1, y2, y3

and y4 are labelli ng internal decicion nodes of the DD with
their values shown at edges. The terminal nodes are
labelled by constant #0 (reset of R2), by word variables R1

and  R2 (data transfers to R2), and by expressions related to
data manipulation operations of the network. By bold lines
and coloured nodes, a full activated path in the DD is
shown from x(m0)=y4 to x(mT)=R1*R2, which corresponds
to the pattern y4=2, y3=3, and y2=0. By coloured boxes, the
activated part of the network at this pattern is denoted.

3. Design representation

Consider a system S=(F,N) as a set F of components
(or subnetworks) represented by functions y=f(x) and a
network N connecting these components. The system is
represented by a set of variables Z={IN,OUT,INT,REG}
defined by relationships of component functions f∈F. Here
IN, OUT, INT and REG represent correspondingly the sets
of primary input, primary output, internal bus and system
state (register) variables. The set of components can be
divided into control part FC and datapath FD, F = FC ∪ FD.

Definition 3. A set of DDs {Gy} represent a digital
system S=(F,N) if for each function y=f(x) in F there
exists a graph Gy=(M,Γ,x). The set {Gy} is called DD-
model for the system S.
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Figure 1. Decision Diagram for a subnetwork

Fig. 4. Superposition DDs



Note, in the DD-model we do not have the network N
explicitly given. In the DD-model we suppose that two
variables connected through the network N have the same
name. In other words, the set {Gy} of the DD-model
represents a set of graphs connected by variables.
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Figure 2. DDs for a datapath of a digital system

To generate DDs for components of the datapath, at
first, the DD for the control logic of the component should
be created. If the binary level will be implemented in the
DD-model, the methods for creating structural BDDs [6]
can be used. In that case, each node in the graph will
represent a signal path in the gate-level control logic.
Hence, the structure of the control circuit will be
represented in terms of signal paths in the DD-model. If
the RT-level graphs are to be created, we consider higher
level (integer) variables which represent control fields of
instructions, microinstructions or control buses. By using
control variables, a DD is built up with one or more
decision nodes in each path of the graph, and, in general,
with more than two output edges from each decision node.
To each decision node, a multiplexer or decoder as the
structural part of the module corresponds. After creation of
the decision part of the DD, all the paths in the model will
terminate with nodes labelled by expressions for data
transfer, data manipulation or constants.

As an example, a datapath and its corresponding DD-
model are depicted in Figure 2. The DD-model consists of
graphs GR2, GC, GR1, GR3 for representing the functions of
register R2, multiplier C and two sub-networks R1 and R3,
surrounded by dotted lines. In this example, y1, y2, and y3

serve as control inputs, A and B are data inputs, R1, R2, and
R3 serve as data register variables (by apostrophe the

previous state is denoted), C is the output variable of the
multiplier and input variable for the adder, and Y is the
primary output of the datapath. In nonterminal nodes, only
control variables are used as labels. Terminal nodes are
labelled by data transfer, data manipulation expressions or
constants (reset). Each node has a strong relation to the
structure of the datapath: nonterminal nodes represent the
control logic in modules (subnetworks), the nodes labelled
by data variables represent buses, and the nodes labelled
by expressions represent data manipulation logic.

As to the control part of the system, we generate DDs
for the output and the next-state behaviour for each finite
state machine (FSM). In the case of Moore automata, both
DDs can be joined. As labels for the decision nodes, input
and previous state variables of the FSM are used. Each
pattern for these variables prescribes a path through the
decision tree which would terminate with a node labelled
by expression (or constant) to define the next state and the
output behaviour of the FSM. In Figure 3, a FSM for
controlli ng the data path in Figure 2 is depicted. To
represent the FSM, a DD is created for the vector function:
q,y1,y2,y3 = f(q’ ,R’ 2=0). The predicate R’ 2=0 is used here to
represent a flag variable for reporting the state of the
datapath. We have two decision nodes in the graph for
analysing the previous state q’  of the FSM and the flag
R’ 2=0. The terminal nodes are labelled by constants (the
values to be assigned to the vector variable q,y1,y2,y3).

For compression of the model, the graph superposition
procedure proposed in [6] for gate-level strucural graph
synthesis can be generalized for the RT-level case. An
example of a superpositioned DD for the given subnetwork
is shown in Figure 1. Since the bus variables a,b,c,d,e are
disappeared from the DD, the complexity of the model is
reduced which helps to speed the cycle-based simulation.

4. Cycle-based simulation

Cycle-based simulation of synchronous digital systems
is performed on a cycle-by-cycle basis. It assumes that
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Figure 3. DD-model  for the control part



there exist (one or many) clock signals in the circuit and
all i nputs of the systems remain unchanged while
evaluating their values in the simulation cycle. The results
of simulation report only the final values of the output
signals in the current simulation cycle.

In the event driven simulation each computation is
proportional to the number of signals both internal and
external in the design (number of drivers and updates). In
DDs, only the changes of signals on which depend the
outputs are used for evaluation what allows to compute
only the necessary information without the overhead
associated with evaluation of intermediate values.

The idea of the cycle-based simulation on DDs is the
following. The DDs are ranked in such a way that when a
DD is simulated his arguments should be all either
specified or calculated. So, the simulation starts with DDs
that depend only on input or state variables, i.e. they are
specified either by the input pattern or by the previous
state (from the previous clock cycle). Afterwards, also
these DDs which depend on the internal variables which,
however, have been already calculated in the current cycle,
are simulated. In such a way there is a need to assess the
output value of each DD, but the evaluation is performed
only one time in a cycle. In the event driven simulation,
each change of a signal necessitates the recalculation of
other signals dependent on it. So, in one simulation cycle
there might be several consecutive recalculations of the
same signal what is very costly in terms of execution time.

In DDs during simulation, not all nodes are traced.
Only the arguments of traversed nodes are required for
counting. From that aspect, additional gain in simulation
speed is achieved with DDs in comparison to other
simulation models. As an example in Figure 1 during the
simulation for the control pattern y4=2, y3=3, y2=0,  only a
path through nodes y4, y3, y2 should be traced with
calculation R2=R1*R2. This is the maximum length (L=3)
of the path traversed in the DD. The shortest one is L=1,
and the average (for the case when the probabiliti es of
values of yi are equal) L=2/3*1+1/3*(1/2*2+1/2*3)=1,5.
In the traditional case of network simulation, always the
following sequence of operations should be calculated:
a=f1(y1,R1,IN), b=f2 (y2,R1,IN), c=a+R2, d=b*R2, e=f3(y3,
c,d,R1,IN), R2 =f4(y4,e,R2).

In [8] a method was presented for synthesis of DDs
from VHDL where the fine-grained timing is replaced by a
coarse timing, which helps to get rid of unnecessary details
from the model not needed in cycle based simulation.

An example [8] of a VHDL description and its cycle-
based DD-model is represented in Figure 4 to ill ustrate the
simulation procedure. For the first three processes of the
VHDL description, DDs for calculating state, enable_in,
reg_cp are created, whereas for the last process, DDs for
next-state, outreg, fin,reg_cp_com reg are created. After
superpositioning [8] of the model, only two DDs remain.

Simulation results of 6 clock cycles on these DDs are

depicted in Table 1. The paths traced on DDs for the first
cycle are shown by coloured nodes in Figure 4. Only a part
of the whole model (two decision nodes instead of eight)
was processed, and no timing data (clock event variables
like fall ing and rising edges) are used in calculation, which
results in a high speed of simulation in general.

entity rd_pc is
   port
      ( clk, rst : in bit; rb0 : in bit; enable : in bit; reg_cp : out bit ;
      reg : out bit ; outreg : out bit ; fin : out bit ) ; end rd_pc ;
architecture archi_rd_pc of rd_pc is type STATETYPE is
   (state1, state2);
   signal state, nstate: STATETYPE ; signal enable_in : bit ;
   signal reg_cp_comb : bit ;
begin
   process(clk, rst) - - process P(state)
   begin
      if rst='1' then state <= state1 ;
      elsif (clk'event and clk='1') then state <=  nstate ;
   end if ; end process ;
   process(clk, enable) - - process P(enable_in)
   begin
      if clk='1' then   enable_in <= enable ;
   end if ; end process ;
   process(clk, reg_cp_comb) - - process P(reg_cp)
   begin
      if clk='0' then   reg_cp <= reg_cp_comb ;
   end if ; end process ;
   comb: process (state, rb0, enable_in) - - process P(nstate, out)
   begin
      case state is
         when state1 => outreg <= '0' ; fin <= '0' ;
            if (enable_in='0') then   nstate <= state1 ;
                                 reg <= '1' ; reg_cp_comb <= '0' ;
                            else  nstate <= state2 ; reg <= '1' ;
                                 reg_cp_comb <= '1' ; end if ;
         when state2 =>
            if (rb0='1') then   nstate <= state2 ; reg <= '0' ;
                             reg_cp_comb <= '1'; outreg <= '0'; fin <= '0';
               elsif (enable_in='0') then   nstate <= state1 ; reg <= '0' ;
                             reg_cp_comb <= '0'; outreg <= '1'; fin <= '1';
                             else  nstate <= state2 ; reg <= '0' ;
                             reg_cp_comb <= '0'; outreg <= '0'; fin <= '1';
end if ;  end case ;  end process ;  end archi_rd_pc ;

rst #1state
1

0
state’

rb0

enable’

#2

#1
1

1

12
0

0

0enable

#0011

#0001

1

enable

#0100

#1100
1

0

state

rb0

1

2

0

#0010
1

outreg
fin
reg_cp
reg

Figure 4. DD-model for the VHDL design

To fully exploit the advantage provided by the
separation of the combinational part of the design from the



sequential part the dependency analysis can be performed
on the combinatorial blocks. This is done in order to find
the best ordering of the evaluation of blocks to ensure that
the outputs of the blocks are calculated only when
necessary to avoid an overhead in evaluation.

cycle 1 2 3 4 5 6

rst 1 0 0 0 0 0
enable 0 1 1 1 0 0
rb0 x x 1 0 0 0

state 1 1 2 2 2 1
outreg 0 0 0 0 1 0
fin 0 0 0 1 1 0
reg_cp 0 1 1 0 0 0
reg 1 1 0 0 0 1

Table 1. Simulation results for 6 clock cycles

5. Experimental results

A prototype of a simulator based on the decision
diagrams representation and cycle-based paradigm has
been tested on benchmark circuits described in Table 3.

GCC and DIFFEQ are the HLSynth benchmarks,
MULT8X8 is an 8-bit multiplier using Robertson’s
algorithm. The experiments have been performed on
Pentium II 200MHz computer with 128MB RAM running
Windows NT. For experiments each circuit is simulated
for 200000 random input vectors. Execution time is
measured using internal system procedure
GetProcessTimes. The simulators used for experiments are
ModelSim PE/Plus 4.7b and VeriBest VHDL SysSim
98.0. The improvement in the simulation performance
while using DD based approach over event-driven
simulators ranges between 3 to 9 times for the faster
simulator and 9 to 37 times in the case of the slower
simulator for measured benchmarks. The detailed results
are presented in the Table 3. All results are in seconds;
“Ratio” is the event-driven simulation time to DD-based
simulation time ratio.

6. Conclusions

A new conceptual approach based on high-level
decision diagrams for simulation of digital systems was
developed. The approach allows a uniform graph based
description of VLSI designs on different levels of
abstraction with uniform simulation procedures based on
path tracing on DDs. DDs allow to uniformly describe a
wide class of digital systems on mixed logical and
functional levels. This class contains random logic,
traditionally treated at the gate level, as well as complex
digital circuits like microprocessors, controllers etc.,
traditionally described at the procedural or RTL levels.
Unlike the HDL-based descriptions, DDs give an excellent
formal basis for diagnostic analysis of digital systems, and
allow to create more efficient CAD tools than event-driven
HDL-based simulators for functional simulation as well as
for fault analysis and testing purposes. Due to the fact that
only a part of DDs should be traced during simulation and
due to neglecting the time specific information inherent in
HDL descriptions, the speed of simulation on DDs can be
drastically increased in comparison to traditional event-
driven simulators.
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VHDL Simulator 1 VHDL Simulator 2Circuit DD based
simulator Compilation Simulation Ratio Compilation Simulation Ratio

GCD 3.89 0.63 13.13 3.4 3.58 33.98 8.7
DIFFEQ 8.96 0.69 81.51 9.1 3.81 331.62 37.0

MULT8X8 5.79 0.72 25.38 4.4 4.18 64.81 11.2

Table 3. Experiments with cycle-based DD-model for the VHDL

ComplexityCircuit Inputs Outputs Control
States Gates F/F

GCD 10 4 8 227 15
DIFFEQ 82 32 6 4195 115

MULT8X8 18 16 8 1058 95

Table 2. Benchmark circuits
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