Cycle-based Simulation with Dedsion Diagrams

Raimund Ubar!, Adam Morawiec?, Jaan Raik*

! Tallinn Technicd University, Estonia
Department of Computer Engineeing
Raja15,EE0026Talinn

2TIMA Laboratory
Modelisation et Verification des Systemes Digitaux
BP 53, 46,Avenue Felix Viallet, 38041Grenoke Cedex 9, France

Abstract

This paper addresses the problem of efficient functional
simulation d synchronous digital systems. A tedchnique
based on the use of Dedsion Diagrams (DD) for
representing the functions of a design a RT and
behavioural levd is introduced. The DD evaluation
technique is combined with cyde based simulation
mechansm to achieve the significant speed up of the
simulation exeation. Experimental results are provided
for demonstrating the dficiency gain of this method in
comparison to the exent-driven simulation.

1. Introduction

Growing complexity of the nowadays designs fostered
by the progress in the tedinology requires analogous
increase in the design productivity. Several ways to
augment the productivity are eplored in the reseach.
Among them, shift to the higher levels of automation
through the introduction of e.g. high level synthesis,
belongs to the most important ones.

Asgciated with ead design adion is the gpropriate
verification step to be performed to ensure the proper
functionality of the final design. Here, two complementary
methods are developed: simulation and formal
verification. Former alows the observation of the
behaviour of the design under spedfic conditions and
input vedors while the latter permit to prove that the
spedfic properties of the design told for al possble input
vedors and internal states (in the case of model checking).

In ead of those verificaion approaches the complexity
of the verified design is a aiticd issue. Event driven
simulation requires to handle the signal drivers for all
signals and pats of the drcuits and to update their values

during the simulation cycles. This mechanism allows for
detailed results of the behaviour of the drcuit but is
computationally expensive what in consequence increase
the time of the simulation execution.

Several methods shortly discussed in the next sedion
have been proposed to overcome the problem posed by the
circuit complexity: e.g. abstradion mechanisms or the
application of BDDs or branching programs for fast
discrete function evaluation. However, none of these
methods has applied dedsion diagrams as a representation
of design functionality at the higher level of abstradion
(going wp to the behavioural level).

This paper focuses on the gplication of dedsion
diagrams (DDs) aso cdled aternative graphs to represent
the functionality of the synchronous system at the RT or
behavioura level and combine them with the cycle-based
simulation paradigm to improve the ssimulation speed. DDs
are built separately for data-path and control path of the
design. In the simulation step DDs are evaluated using the
input and previous gate values in order to determine the
next state and output function of the design.

In our work we focus on hardware description
language based design. In particular our work is done with
the use of VHDL, however the methods are sufficiently
general to be gplied to ather languages (e.g. Veril og).

The improvement of the dficiency of simulation has
been addressd in two dfferent ways. by applicaion of
various abstradion mechanisms and by utilisation of
binary dedsion diagrams.

Gruenbacher et. a. [1] proposes abstradion methods
for improving the simulation efficiency while raising the
level at which the design is represented. Cycle-based
simulation is treaed as one of possble timing abstradion.
This work does not apply representation by dedsion

diagrams for efficient function evaluation. McGee et a.
[2] applied MDD representation for bit vedor discrete
function representation and evaluation for logic level
cycle-based smulation. Another approach based on BDD
and branching programs is presented P. Ashar and S.
Malik [3] for efficient logic function evaluation. As the
previous approacd it can be gplied for the simulation at
the logic level. The paper [4] presents a cycle-based
simulation technique for synchronous circuits which
combines a BDD-based logic level cycle simulator with
fast hierarchicd dired evaluation of high-level functional
units stored in a library. The mentioned approaches using
BDDs, focus uniquely on the logic level simulation and
are not addresgng the higher level of abstradion.

The paper is organised as follows. sedion 3 presents
the related works in the domain of simulation performance
improvement. In the section 4 dedsion diagrams are
described. The following sedion presents the gplication
of dedsion diagrams to the representation of the sequential
circuits. The cycle based simulation mechanisms while
using DDs is described in the section 6. Some results from
pradicd experiments are presented in sedion 7 followed
by the conclusions and references.

2. Deasion Diagrams

Consider a @mponent (subnetwork) f of a digital
sytem S as a function y=f(x) where y=(yi,...y,) and
X=(Xg,.. Xm) @e vedor variables. The function f is defined
on X=X x...xX,, with valuesy 7Y = Y;x...xY,, and bah,
the domain X and the range Y are finite sets of values. x;, i
= 1,2,...m, are input or state variables of the component f,
whereas y; , j = 1,2,...n, are output or next state variables.
The values of variables may be Bodean, Boolean vedors,
integers. For representing functions y = f(x) the dedsion
diagrams are used [6, 7].

Definition 1. A DD is a direded acyclic graph
G=(M,I",x) where M is a set of nodes, I" isarelation in M,
and (m)[JM denotes the set of successor nodes of miM.
The nodes mLM are marked by labels x(m). The labels can
be: variables x;, algebraic expresgons of x;, or constants.

For nonterminal nodes m, where (m) # [J], an onto
function exists between the values of x(m) and the
suceesors m°(m) of m. By m® we denote the successor
of m for the value x(m)=e. The elge (m, m°) which
conneds nodes m and m’ is cdl ed activated iff there exists
an assignment z(m)=e. Activated edges which conned m
and m; make up an activated peh |(m,m). An adivated
path I(m°,m") from the initial node m” to a terminal node
m' iscaled full activated path.

Definition 2. Dedsion Diagram G,=(M,[",x) represents
afunctiony = f(x) iff for eat value x, afull pathin G, to a
terminal node m' is adivated, where x(m') = y isvalid.

As an example, a subnetwork of adigital system and its
DD are depicted in Figure 1. Here, R, and R, are registers

Figure 1. Decision Diagram for a subnetwork

(R isalso autput), M3, M, and M3 are multiplexers, + and *
denote adder and multiplier, IN is input bus, yi, y», ys and
Y4 Serve & input control variables, and a,b,c,d,e denote
internal buses. In the DD, the @ntrol variables y;, Vs, Vs
and y, are labelling internal dedcion nodes of the DD with
their values down at edges. The termina nodes are
labelled by constant #0 (reset of R;), by word variables Ry
and R, (datatransfersto R;), and by expressons related to
data manipulation operations of the network. By bold lines
and coloured nodes, a full adivated path in the DD is
shown from x(mP)=y, to x(m")=R*R,, which corresponds
to the pattern y,=2, y,=3, and y,=0. By coloured baxes, the
adivated part of the network at this pattern is denoted.

3. Design representation

Consider a system S=(F,N) as a set F of components
(or subnetworks) represented by functions y=f(x) and a
network N conneding these cmponents. The system is
represented by a set of variables Z={IN,OUT,INT,REG}
defined by relationships of component functions fCJF. Here
IN, OUT, INT and REG represent correspondingly the sets
of primary input, primary output, internal bus and system
state (register) variables. The set of components can be
divided into control part F¢ and datapath Fp, F = F¢ [J Fp.

Definition 3. A set of DDs {G,} represent a digital
system S=(F,N) if for ead function y=f(x) in F there
exists a graph G,=(M,I,xX). The set {G} is cdled DD-
model for the system S.

Note, in the DD-model we do not have the network N
explicitly given. In the DD-model we suppcse that two
variables conneded through the network N have the same
name. In other words, the set {G;} of the DD-model
represents a set of graphs conneded by variables.

Y,R3 @ 0 @ RZ—V@

1
3
3y

Figure 2. DDs for a datapath of a digital system

To generate DDs for components of the datapath, at
first, the DD for the control logic of the component should
be aeaed. If the binary level will be implemented in the
DD-model, the methods for creaing structural BDDs [6]
can be used. In that case, ead node in the graph will
represent a signal path in the gate-level control logic.
Hence the structure of the ontrol circuit will be
represented in terms of signa paths in the DD-modedl. If
the RT-level graphs are to be aeaed, we ansider higher
level (integer) variables which represent control fields of
instructions, microinstructions or control buses. By using
control variables, a DD is built up with one or more
dedsion nodes in eadt path of the graph, and, in general,
with more than two output edges from each dedsion node.
To eat dedsion node, a multiplexer or deader as the
structural part of the module mrresponds. After creaion of
the dedsion part of the DD, al the paths in the model will
terminate with nodes labelled by expressions for data
transfer, data manipulation or constants.

As an example, a datapath and its corresponding DD-
model are depicted in Figure 2. The DD-model consists of
graphs Gr,, G, Gri, Grs for representing the functions of
register R,, multiplier C and two sub-networks R; and Ry,
surrounded by dotted lines. In this example, y;, Y., and ys
serve & control inputs, A and B are data inputs, R;, R,, and
R; serve & data register variables (by apostrophe the

previous date is denoted), C is the output variable of the
multiplier and input variable for the adder, and Y is the
primary output of the datapath. In nonterminal nodes, only
control variables are used as labels. Termina nodes are
labelled by data transfer, data manipulation expressions or
congtants (reset). Each node has a strong relation to the
structure of the datapath: nonterminal nodes represent the
control logic in modules (subnetworks), the nodes labelled
by data variables represent buses, and the nodes labelled
by expresgons represent data manipulation logic.

As to the mntrol part of the system, we generate DDs
for the output and the next-state behaviour for ead finite
state machine (FSM). In the cae of Moore aittomata, both
DDs can be joined. As labels for the dedsion nodes, input
and previous state variables of the FSM are used. Each
pattern for these variables prescribes a path through the
dedsion tree which would terminate with a node labelled
by expresson (or constant) to define the next state and the
output behaviour of the FSM. In Figure 3, a FSM for
controlling the data path in Figure 2 is depicted. To
represent the FSM, a DD is creaed for the vedor function:
a.Y1,Y2,Ys = f(q',R ,=0). The predicae R ,=0 is used here to
represent a flag variable for reporting the state of the
datapath. We have two dedsion nodes in the graph for
analysing the previous gate ' of the FSM and the flag
R ,=0. The terminal nodes are labelled by constants (the
valuesto be asdgned to the vedor variable q,y1,Y2,Ys)-

q X g |VviyeVYs Activities
0 1 110 y3:R3:=0
1 2 221 V1:R; =B, YR, .= A
2 | R=0]| O 112 Y3 Rz := A[B
2 | R0 | 2 121 V2R, = A
ay1y2ys

Figure 3. DD-model for the control part

For compression of the model, the graph superposition
procedure proposed in [6] for gate-level strucural graph
synthesis can be generalized for the RT-level case. An
example of a superpasitioned DD for the given subnetwork
is shown in Figure 1. Since the bus variables a,b,c,d,e are
disappeaed from the DD, the complexity of the model is
reduced which helpsto speed the cycle-based simulation.

4. Cycle-based simulation

Cycle-based simulation of synchronous digital systems
is performed on a cycle-by-cycle basis. It assumes that

there eist (one or many) clock signals in the drcuit and
al inputs of the systems remain unchanged while
evaluating their values in the simulation cycle. The results
of simulation report only the final values of the output
signalsin the aurrent ssmulation cycle.

In the event driven simulation ead computation is
proportiona to the number of signals both internal and
external in the design (number of drivers and updates). In
DDs, only the changes of signals on which depend the
outputs are used for evaluation what allows to compute
only the necessry information without the overheal
asciated with evaluation of intermediate values.

The idea of the cycle-based simulation on DDs is the
following. The DDs are ranked in such a way that when a
DD is dmulated his arguments dwould be dl either
spedfied or cdculated. So, the simulation starts with DDs
that depend only on input or state variables, i.e. they are
spedfied either by the input pattern or by the previous
state (from the previous clock cycle). Afterwards, also
these DDs which depend on the internal variables which,
however, have been already cdculated in the current cycle,
are simulated. In such a way there is a neal to assess the
output value of eat DD, but the evaluation is performed
only one time in a cycle. In the event driven simulation,
ead change of a signad necessitates the recdculation of
other signals dependent on it. So, in one simulation cycle
there might be several conseautive recdculations of the
same signal what is very costly in terms of exeaution time.

In DDs during simulation, not all nodes are tracel.
Only the aguments of traversed nodes are required for
counting. From that asped, additional gain in simulation
sped is achieved with DDs in comparison to other
simulation models. As an example in Figure 1 during the
simulation for the control pattern y,=2, y>=3, y,=0, only a
path through nodes vy, Vs, Y. should be traced with
cdculation R,=R;*R,. This is the maximum length (L=3)
of the path traversed in the DD. The shortest one is L=1,
and the average (for the case when the probabiliti es of
vaues of y; are equal) L=2/3*1+1/3*(1/2*2+1/2*3)=1,5.
In the traditional case of network simulation, aways the
following seguence of operations should be cdculated:
a=f1(y1,R1,|N), b=f2 (yZ,R]_,IN), c=at R2, dzb*Rz, e:f3(y:.;,
C,d,Rl,I N), R2 :f4(y4,e, Rz)

In [8] a method was presented for synthesis of DDs
from VHDL where the fine-grained timing is replaced by a
coarse timing, which helpsto get rid of unnecessary details
from the model not needed in cycle based ssimulation.

An example [8] of a VHDL description and its cycle-
based DD-model is represented in Figure 4 to ill ustrate the
simulation procedure. For the first three processes of the
VHDL description, DDs for cdculating state, enalle in,
reg_cp are aeaed, whereas for the last process DDs for
nexX-state, outreg, fin,reg_cp_com reg are aeded. After
superpasitioning [8] of the model, only two DDs remain.

Simulation results of 6 clock cycles on these DDs are

depicted in Table 1. The paths traced on DDs for the first
cycle ae shown by coloured nodesin Figure 4. Only a part
of the whole model (two dedsion nodes insteal of eight)
was processed, and no timing data (clock event variables
like falling and rising edges) are used in cdculation, which
resultsin a high speed of simulation in general.

entity rd_pcis
port
(clk, rst: in bit; rbO : in bit; enable: in hit; reg_cp : out hit ;
reg : out bit ; outreg : out bit ; fin : out bit) ; end rd_pc;
architecure archi_rd_pc of rd_pcistype STATETYPE is
(statel, state?);
signal state, nstate: STATETY PE ; signal enable_in: bit ;
signal reg_cp_comb : bit ;
begin
procesgclk, rst) - - processP(state)
begin
if rst="1" then state <= statel ;
dsif (clk'event and clk="1") then state <= nstate;
end if ; end process;
procesgclk, enable) - - processP(enable_in)
begin
if clk="1"then enable_in <= enable;
endif ; end process;
procesgclk, reg_cp_comb) - - processP(reg_cp)
begin
if clk="0"then reg_cp <=reg_cp_comb;
endif ; end process;
comb: process(state, rb0, enable in) - - processP(nstate, out)
begin
case stateis
when statel => outreg<='0"; fin<="'0";
if (enable_in='0") then nstate <= statel ;
reg<='1';reg_cp_comb<='0';
dse ndate<=date? ; reg<="1";
reg_cp_comb<="1"; endif ;
when state2 =>
if (rb0="1") then nstate <= state? ; reg<='0";
reg_cp_comb <="1"; outreg <="0"; fin <="0";
esif (enable in='0") then nstate <=statel ; reg<='0';
reg_cp_comb <="'0"; outreg <="1'; fin<="1,
else nstate <= state? ; reg<='0';
reg_cp_comb <='0"; outreg <="0"; fin<="1};
endif ; end case; end process; end archi_rd pc;

Figure 4. DD-model for the VHDL design

To fully exploit the alvantage provided by the
separation of the mmbinational part of the design from the

sequential part the dependency analysis can be performed
on the combinatorial blocks. This is done in order to find
the best ordering of the evaluation of blocks to ensure that
the outputs of the blocks are cdculated only when
necessary to avoid an overheal in evaluation.

cycle 1 2 3 4 5 6
rst 1 0 0 0 0 0
enable | O 1 1 1 0 0
rb0 X X 1 0 0 0
state 1 1 2 2 2 1
outreg 0 0 0 0 1 0
fin 0 0 0 1 1 0
regcp| O 1 1 0 0 0
reg 1 1 0 0 0 1

Table 1. Simulation results for 6 clock cycles

5. Experimental results

A prototype of a simulator based on the dedsion
diagrams representation and cycle-based paradigm has
been tested on benchmark circuits described in Table 3.

GCC and DIFFEQ are the HLSynth benchmarks,
MULT8X8 is an 8-bit multiplier using Robertson’'s
algorithm. The experiments have been performed on
Pentium Il 200MHz computer with 128VB RAM running
Windows NT. For experiments ead circuit is $Smulated
for 200000 random input vedors. Exeaution time is
measured using internal system procedure
GetProcessTimes. The simulators used for experiments are
ModelSim PE/Plus 4.7b and VeriBest VHDL SysSim
98.0. The improvement in the simulation performance
while using DD based approach over event-driven
simulators ranges between 3 to 9 times for the faster
simulator and 9 to 37 times in the cae of the slower
simulator for measured benchmarks. The detailed results
are presented in the Table 3. All results are in seconds;
“Retio” is the event-driven simulation time to DD-based
simulation time ratio.

6. Conclusions

A new conceptual approach based on high-level
dedsion diagrams for simulation of digital systems was
developed. The gproach alows a uniform graph based
description of VLSl designs on different levels of
abstradion with uniform simulation procedures based on
path tradng on DDs. DDs alow to uniformly describe a
wide dass of digita systems on mixed logical and
functional levels. This class contains random logic,
traditionally treded at the gate level, as well as complex
digital circuits like microprocessors, controllers etc.,
traditionally described at the procedural or RTL levels.
Unlike the HDL-based descriptions, DDs give an excell ent
formal basis for diagnostic analysis of digital systems, and
allow to creae more dficient CAD toodls than event-driven
HDL-based simulators for functional simulation as well as
for fault analysis and testing purposes. Due to the fad that
only apart of DDs dould be traced during simulation and
due to negleding the time spedfic information inherent in
HDL descriptions, the speed of simulation on DDs can be
drasticdly increased in comparison to traditional event-
driven simulators.

References

[1] H. Gruenbadher, M. Khosravipour, G. Gridling:
“Improving Simulation Efficiency by Hierarchicd
Abstradion Transformations’, System Level Design
Language Workshop, Lausanne, Switzerland, 1998

[2] P. McGeeg et a: “Fast Discrete Function Evaluation
Using Dedsion Diagrams’, ICCAD'95, pp 402-407

[3] P. Ashar, S. Malik: “Fast Functional Simulation Using
Branching Programs’, ICCAD Conf, 1995 pp 408-412

[4] Y. Luo, T. Wongsonegoro, A. Aziz: “Hybrid Tedh-
niques for Fast Functional Simulation”, DAC 1998

[5] S.P. Smith, J. Larson : “A High Performance VHDL
Simulator with Integrated Switch and Primitive
Modelling“, Computer HD Languages and their
Applications, Elsevier, IFIP, 1990

[6] R.Ubar. “Test Synthesis with Alternative Graphs.”,

Circuit | Inputs | Outputs | Control | Complexity IEEE DesignTest of Comput., Spring 1996 pp.48-57
States | Gates | FIF [7] J.Raik, R.Ubar. Sequential Circuit Test Generation
GCD 10 4 8 227 | 15 Using Dedsion Diagram Models. Published in the
DIFFEQ 82 32 6 4195 | 115 same Proceedings.
MULT8X8| 18 16 8 1058 | 95 [8] R. Leveugle, R. Ubar. “Synthesis of DDs from Clock-
Table 2. Benchmark circuits Driven Multi-ProcessVHDL for Test Generation.”,
MIXDES98, Lodz, Poland, June 1998 pp.353-358.
Circuit DD based VHDL Simulator 1 VHDL Simulator 2
simulator Compil ation Simulation Ratio Compil ation Simulation Ratio
GCD 3.89 0.63 1313 34 3.58 33.98 8.7
DIFFEQ 8.96 0.69 8151 9.1 3.81 331.62 37.0
MULT8X8 5.79 0.72 2538 4.4 4.18 64.81 112

Table 3. Experiments with cycle-based DD-model for the VHDL

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

